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Preface

It is ingrained in mathematical sciences that any real
advance goes hand in hand with the invention of sharper
tools and simpler methods which also assist in understanding
earlier theories and cast aside earlier more complicated
developments.

David Hilbert

In science everything should be made as simple as possible,
but not simpler.

Albert Einstein

Metric regularity has emerged during last 2–3 decades as one of the central con-
cepts of variational analysis. The roots of this concept go back to a circle of
fundamental regularity ideas from classical analysis embodied in such results as the
implicit function theorem, the Banach open mapping theorem, and theorems of
Lyusternik and Graves, on the one hand, and Sard’s theorem and transversality
theory, on the other hand.

Smoothness is the key property of the objects to which the classical results are
applied. Variational analysis, on the other hand, appeals to objects that may lack
this property: functions and maps that are nondifferentiable at points of interest,
set-valued mappings, etc. Such phenomena naturally appear in optimization theory
and elsewhere.1

In traditional nonlinear analysis, regularity of a continuously differentiable
mapping (e.g., from a normed space or a manifold to another space or manifold) at a
certain point means that its derivative at the point is an operator onto. This property,
translated through available analytic or topological means to corresponding local

1Grothendieck mentions the “ubiquity of stratified structures in practically all domains of geom-
etry” in his 1984 Esquisse d’un Programme, see [140].
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properties of the mapping, plays a crucial role in the study of some basic problems
of analysis such as the existence and behavior of solutions of a nonlinear equation
FðxÞ ¼ y. The most fundamental consequence of regularity of F at some x is that
the equation has a solution for any y in a neighborhood of y ¼ FðxÞ and moreover,
the distance from the solution to x is controlled by ky� yk.

Similar problems appear if, instead of an equation, we consider an inclusion

y 2 FðxÞ ð1Þ

(with F a set-valued mapping this time) which, in essence, is the main object of
study in variational analysis. The challenge here is evident: There is no clear way to
approximate the mapping by simple objects, like linear operators in the classical
case.

The key step in the answer to this challenge was connected with the under-
standing of the metric nature of some key phenomena that appear in the classical
theory. This eventually led to the choice of the class of metric spaces as the main
playground and subsequently to abandoning approximation as the primary tool of
analysis in favor of a direct study of the phenomena as such. The “metric theory”
offers a rich collection of results that, being fairly general and stated in a purely
metric language, are easily adaptable to Banach and finite-dimensional settings (still
the most important in applications) and to various classes of mappings with special
structure.

Moreover, however surprising this may sound, the techniques coming from the
metric theory may appear in certain circumstances more efficient, flexible, and easy
to use and at the same time able to produce more precise results than the available
Banach techniques (e.g., connected with generalized differentiation), especially in
infinite-dimensional Banach spaces. Furthermore, it should be added that the central
role played by distance estimates has determined a quantitative character of the
theory (contrary to the predominantly qualitative character of the classical theory).
Altogether, this opens the gates to a number of new applications, such as, say,
metric fixed point theory, differential inclusions, all chapters of optimization theory,
and numerical methods.

Our goal is to give a systematic account of the theory of metric regularity. The
three principal themes that will be at the focus of our attention are as follows:
regularity criteria (containing quantitative estimates for rates of regularity), the
effect of perturbations of a mapping on its regularity properties, and the role of
metric regularity in analysis and optimization. The structure of this book corre-
sponds to the logical structure of the theory. We start with a thorough study of
metric theory that lays a solid foundation for the subsequent study of metric reg-
ularity of mappings, first between Banach and then between finite-dimensional
spaces. In the last two cases, special attention is paid to mappings with special
structures (e.g., mappings with convex graphs, single-valued Lipschitz mappings,
polyhedral and semi-algebraic mappings). We also consider a number of applica-
tions of the theory to concrete problems of analysis and optimization, including
those mentioned in the previous paragraph.
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But we begin, in Chap. 1, with a brief survey of the classical theory, providing
complete proofs of most of the results. Hopefully, this will help to make the threads
connecting the classical and modern theories more visible as far as both the basic
ideas and the specific techniques are concerned.

The proper study of the theory of metric regularity starts in Chap. 2. It is
concentrated on a direct analysis of the phenomena exhibited by the three equiv-
alent regularity properties: openness at a linear rate, metric regularity proper, and
the pseudo-Lipschitz property of the inverse mapping. The main results of the
chapter are the regularity criteria and perturbation theorems describing the effect of
Lipschitz perturbations of the mapping on the rates of regularity. Both will be
systematically used in the sequel. Note that along with the typical local regularity
“near a point of the graph” that dominates the research and publications, we
thoroughly consider nonlocal metric regularity “on a fixed set,” which so far has
attracted less attention. Meanwhile, it leads to important applications, especially
connected with various existence problems.

The chapter also contains a section in which we introduce and study weaker
regularity concepts such as subregularity, calmness, and controllability. These
properties may not be stable under small perturbations of the mapping, and hence
can hardly be used for practical computations, but nonetheless prove to be extre-
mely useful in some problems of analysis, e.g., in subdifferential calculus and the
theory of necessary optimality conditions.

In Chap. 3, we continue to study metric theory, this time its infinitesimal aspects,
with the concept of slope at the center. The main results are infinitesimal analogues
of the corresponding general results of Chap. 2, actually consequences of the latter.
But they are equal in strength only under some restrictions on the class of possible
range spaces. The restrictions are not particularly strong. Length spaces, for
instance (that is, spaces in which the distance between points is defined by the
length of curves joining the points), would work. We also consider in some detail
the so-called nonlinear regularity models in which the basic estimates involve
certain functions of distances that appear in the definitions of basic regularity
properties, rather than distances themselves. The chapter concludes with a study of
global regularity which in certain respects is closer to the local theory than to the
regularity theory on fixed sets.

Chapter 4 is rather a service chapter providing a bridge between the metric and
the Banach space theories. It contains necessary information about tangential
set-valued approximations as well as the theory of subdifferentials, mainly relating
to the five main types of subdifferentials: Fréchet, Dini–Hadamard, limiting Fréchet,
G-subdifferential, and Clarke’s generalized gradients. All results are supplied with
proofs. The latter makes the chapter, together with x 7.2, in which we consider
applications of regularity theory to subdifferential calculus, a reasonably complete,
albeit short introduction to the subdifferential theory of variational analysis in
arbitrary Banach spaces, not covered, by the way, by the existing literature (except,
to a certain extent, in the recent monograph by Penot [265]).
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Regularity criteria for set-valued mappings between Banach spaces established
in Chap. 5, either dual, using subdifferentials and coderivatives, or primal, using
directional derivatives, tangent cones, and contingent derivatives, all follow from
the slope-based criteria of Chap. 3 through a series of simple propositions con-
necting the values of slopes of certain distance functions, naturally connected with
the mapping, on the one hand, and norms of suitable elements of subdifferentials,
coderivatives, or tangent cones, on the other hand. The propositions also allow us to
make a fairly detailed comparison between various Banach space criteria that
results in the rather surprising conclusion that certain dual criteria are never worse
than their primal counterparts. Another result to be mentioned is the separable
reduction theorem, which says that in the Banach case metric regularity of a
set-valued mapping near a point is fully determined by its restrictions to separable
subspaces of the domain and range spaces. This is a substantial simplification from
the theoretical viewpoint, in particular because in separable spaces subdifferential
regularity criteria are much more convenient to work with, especially if the space is
not reflexive.

In Chap. 6, we turn to the study of regularity properties of some special classes
of mappings between Banach spaces. Information about the structure of a mapping
may help to use more specialized techniques and obtain more precise results, e.g.,
better estimates for regularity rates. This is the case we are dealing with in the first
three sections devoted, respectively, to error bounds, mappings with convex graphs,
and single-valued locally Lipschitz mappings. In the last section, we briefly review
implications of regularity for two types of mappings from a Banach space into its
dual: monotone operators and subdifferentials of lower semi-continuous functions.

In Chap. 7, we consider a number of applications of regularity theory to analysis
and optimization, mainly in infinite-dimensional Banach spaces. We begin with a
discussion of possible extensions of the classical transversality concepts to settings
of variational analysis. Applications to subdifferential calculus are considered next
with fairly short proofs of the strongest available versions of calculus rules for
practically all operations of interest in variational analysis. The metric qualification
conditions in the statements of the rules are not just the most general. Remarkably
(and contrary to popular qualification conditions involving subdifferentials), they
are formulated in exactly the same way for all spaces, whether finite or
infinite-dimensional, and for all functions, whether convex or not.

We then present a Banach space version of the implicit function theorem for
set-valued mappings with special attention to generalized equations. The existence
theorem for differential inclusions proved in the fourth section is the first appli-
cation of the regularity-on-fixed-sets theory. Another application is considered in
the seventh section, where we discuss connections between metric regularity and
metric fixed point theory. The theorems proved in this section cover a number of
well-known and recently established results. But the main innovation is the proofs,
void of any iterations and fully based on regularity arguments. It seems that the
proofs may substantially change the common perception of the relationship
between metric regularity and metric fixed point theories.
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The remaining two sections of Chap. 7, the fifth and the sixth, are devoted to
necessary conditions in optimization problems. In the fifth section, we discuss two
“nonvariational” approaches, both based on regularity theory, and, in particular,
demonstrate one of them by giving a nontraditional proof of second-order opti-
mality conditions in smooth optimization problems with equality and inequality
constraints. In the sixth section, we give a new proof of Clarke’s necessary con-
ditions for optimal control problems with differential inclusions, so far the strongest
for problems of that sort.

The finite-dimensional theory is studied in Chap. 8. Naturally, all regularity
criteria here are the best possible and give the exact values of regularity rates.
Proofs of the criteria and results relating to stability analysis in finite-dimensional
spaces easily follow from what we have already obtained in the previous chapters.
We then pass to the study of two classes of finite-dimensional sets that often appear
in practice and have many remarkable properties, namely polyhedral sets and their
finite unions (called semi-linear sets), on the one hand, and semi-algebraic sets, on
the other hand. (The first is, of course, a subclass of the second.) Locally, poly-
hedral sets have the structure of polyhedral cones, that is, convex hulls of finitely
many directions, which tremendously simplifies working with them. The geometry
of semi-algebraic sets is more complex. The principal structural property of a
semi-algebraic set is that it admits Whitney stratification into a smooth manifold (a
sort of stratification in which different strata meet each other in a certain regular
way). This makes it possible to obtain a fairly strong version of Sard’s theorem (in
which the exceptional set is not just of measure zero but of a smaller dimension) for
semi-algebraic set-valued mappings. These structural properties make the regularity
theory of semi-linear and semi-algebraic sets and mappings especially rich and
interesting.

Finally, in Chap. 9, we apply the theory to a variety of finite-dimensional
problems of analysis and optimization. The problems are not essentially connected
and cross through a spectrum of disciplines that can be observed in the titles of the
sections. In the first section, we offer a new treatment of the theory of variational
inequalities over polyhedral sets, fully based on the regularity theory and ele-
mentary polyhedral geometry. Some very recent results emphasizing the role of
transversality properties for linear convergence of the method of alternating pro-
jections for convex and nonconvex sets are presented in the second section. In the
third section, we introduce and study a class of curves of “almost steepest descent”
for lower semi-continuous functions. We prove the existence of such curves under
some natural assumptions on the function and the possibility to obtain them as
solutions of the anti-subgradient inclusion involving limiting subdifferentials or
generalized gradients. Then, in the fourth section, we return to discussions on the
connection between regularity properties of the subdifferential mapping and the
characterization of minima of nonconvex functions, in particular tilt stability of the
minima under linear perturbations of the function. Finally, in the fifth section, we
apply the semi-algebraic Sard's theorem and transversality theorem to prove the
typically regular behavior of solutions of nonsmooth optimization problems with
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semi-algebraic data and of equilibrium prices in (also nonsmooth) models of
exchange economies in the spirit of the famous Debreu theorem.

We have substantially benefited from the existing monographs of Klatte and
Kummer [200] and, especially, of Dontchev and Rockafellar [96], which have
allowed us to mainly concentrate on those basic aspects of the theory that have not
been touched upon in these monographs. This is first of all the bulk of the metric
theory, including general regularity criteria and all local theory involving slopes,
but also quite a bit of the infinite-dimensional Banach space theory, everything
connected with semi-algebraic mappings and the majority of applications. On the
other hand, there are a number of issues of fundamental importance that have been
thoroughly studied in the two quoted monographs and that we address using very
different approaches based on the theory developed in this book.

The first to be mentioned is the circle of problems associated with implicit
functions. This is, of course, one of the principal themes of any regularity theory
and by far the subject of main interest in [96]. We start with a version of the implicit
function theorem stated in the most general situation of inclusion (1), where both
the domain and the range spaces are metric, and follow the evolution of this result
step-by-step as the assumptions on the environments and properties of the mapping
change. The proofs at every step are surprisingly simple, and the main idea of the
standard proof of the classical implicit function theorem (given in Chap. 1) works
already at a very early stage, still in the fully metric setting. Another example is the
theory of variational inequalities over polyhedral sets, which we have already
mentioned, in many respects very different from the theories available in the
existing literature.

Proofs have been the subject of special attention in the process of writing. I have
already mentioned that the metric theory offers some new and efficient technical
instruments that have been systematically used. To a large extent thanks to them,
new, shorter, and simpler proofs have been given to quite a few known results,
especially associated with applications. This does not change the fact that in
variational analysis we have to deal with rather complicated objects and structural
information is often helpful in pursuing simpler and more transparent proofs. This
partly explains the close attention paid in this book to classes of objects with special
structures. Fortunately, such objects seem to be rather typical in practice.

The book is essentially a research monograph whose aim is to present the state
of the art of a fast developing and widely applicable theory. A certain level of
advanced knowledge (e.g., in functional analysis and optimization) and mathe-
matical maturity is desirable. But I believe the book will be accessible to a broad
audience, including graduate students in mathematical departments and engineering
departments with an advanced mathematical education (typical for computer sci-
ence, electrical engineering, and industrial engineering/operation research depart-
ments in many universities).

We conclude with a few technical remarks about the organization of the book,
terminology and notation.
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How the Book is Organized

Every chapter begins with a short preface explaining the content of the chapter, the
main results, techniques, and connections with other parts of the book. Whenever
needed, we then add an introduction containing all necessary prerequisite, often
with proofs, and the notation that appears in the chapter for the first time. At the end
of every chapter (starting with Chap. 2), and in Chaps. 7 and 9 at the end of every
section, we add bibliographic comments whose main purpose is not only to indicate
the source of one result or another, or the relation of the results presented in the text
with those in the literature, but also to give some information about the develop-
ment of the ideas, the connections with some other related areas of analysis, open
questions, etc. There are also many exercises scattered throughout the text.

Terminology and Notation

I have tried to avoid introducing new terminology and notation, unless there was a
real necessity (very rarely). Concerning objects, properties, etc., for which there is
more than one term often used in the literature, I have usually chosen one for
systematic use but mentioned some others as well in definitions (usually in
parentheses). The most essential notation is repeatedly reintroduced to free the
reader from having to search for its meaning.

It is to be finally mentioned that the number of publications connected with
metric regularity is enormous and continues to grow. So the bibliography presented
in this book is definitely far from complete. In addition to publications most
immediately connected with the results and proofs contained in this book, I have
tried to mention works in which, to the best of my knowledge, ideas and results
were originated or substantially improved or received new understanding in one
way or another, plus of course available monographs, survey articles, and closely
related publications from other areas. Needless to say, by doing this, despite all
attempts, one cannot avoid being subjective. Therefore, I wish to apologize in
advance for (hopefully not many) possible and inevitable omissions, misquotations,
and plain mistakes.

Haifa, Israel Alexander D. Ioffe
April 2017
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Chapter 1
The Classical Theory

This chapter contains a brief account of the classical “smooth” regularity theory with
two major blocks of results that lie at the heart of modern nonlinear analysis:

Lyusternik–Graves theorem ⇒ Inverse Function & Implicit Function theorems
and

Sard & Smale–Sard theorems ⇒ Thom’s transversality theorem,
the first explaining the virtues of the regularity properties and the second showing
that they are typical (generic and full measure) for sufficiently smooth mappings.

The theory has a wide range of applications: in control theory, mathematical
economics and, of course, in mathematics itself from optimization and numerical
analysis to differential topology and dynamical systems. But the theory also has a
beauty and perfection sufficient to make it a worthy object to study and develop.

Almost all main results and a number of accompanying results presented in this
chapter are supplied with complete proofs. A few exceptions are those theorems that
can be found in practically every book on functional or nonlinear analysis such as,
for example, the Banach open mapping theorem. A partial exception, traditional for
books on nonlinear analysis and differential topology, is Sard’s theorem, which is
proved only for the C∞-case: the general proof (e.g. [1]) is much more complicated
and not really needed for further discussions; the latter though equally applies to the
simplified proof of the C∞-version of Sard’s theorem. But the elegance of the proof
and the role of Sard’s theorem in analysis make the availability of the proof highly
desirable.

We have tried to present the results in a form that would help to make the future
passage to non-differentiable settings natural and understandable by emphasizing,
whenever appropriate, along with the basic ideas and principles, the metric and
quantitative aspects to which the classical theory has not paid much attention.

© Springer International Publishing AG 2017
A.D. Ioffe, Variational Analysis of Regular Mappings, Springer Monographs
in Mathematics, DOI 10.1007/978-3-319-64277-2_1
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2 1 The Classical Theory

1.1 Introduction

Notation. Everywhere in this chapter X, Y, Z are Banach spaces over reals. As a
rule we denote the norms in different spaces by the same symbol ‖ · ‖;

X∗ – adjoint of X ;
〈x∗, x〉 – the value of x∗ on x (canonical bilinear form on X∗ × X );
IRn – the n-dimensional Euclidean space;
B – the closed unit ball in a Banach space (sometimes indicated by a subscript to

avoid confusion, e.g. BX is the unit ball in X and BX∗ is the unit ball in X∗);
◦
B – the open unit ball

B(x, r) and
◦
B(x, r)– closed and open balls of radius r and center at x ;

ker A – kernel of the (linear) operator A;
L⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0, ∀ x ∈ L} – annihilator of L ⊂ X ;
Im A – image of the operator A;
dQ(x) or d(x, Q) – distance from x to Q;
d(Q, P) = inf{‖x − u‖ : x ∈ Q, u ∈ P} – distance between Q and P;
ex(Q, P) = sup{d(x, P) : x ∈ Q)} – excess of Q over P;
H(Q, P) = max{ex(Q, P), ex(P, Q)} – Hausdorff distance between Q and P;
I – the identity mapping (the space is sometimes indicated by a subscript, e.g.

IX );
F |Q – the restriction of a mapping F to the set Q;
L(X, Y ) – the space of linear bounded operators X → Y with the operator norm:

‖A‖ = sup
‖x‖=1

‖Ax‖.

X × Y – Cartesian product of spaces;
L ⊕ M – direct sum of subspaces.

We use the standard conventions d(x,∅) = ∞; inf ∅ = ∞; sup∅ = −∞ with one
exception: when we deal with non-negative quantities we set sup∅ = 0.
The Banach–Schauder open mapping theorem. Recall that a Banach space X
is a direct sum of its closed subspaces L and M : X = L ⊕ M if the mapping
(x, y) → x + y from L × M into X is a linear isomorphism, that is, its image is all of
X and there is a K such that ‖x‖ + ‖y‖ ≤ K‖x + y‖ for all x ∈ L and y ∈ M . It is
said that a closed subspace L ⊂ X splits X if there is another closed subspace M such
that X = L ⊕M . This is tantamount to the existence of a continuous linear projection
π : X → L , which is a continuous linear mapping X → X such that π(X) = L
and the restriction of π to L is the identity. Any finite-dimensional subspace and
any closed subspace of finite codimension splits X . In a Hilbert space any closed
subspace splits the space.

Theorem 1.1 (Banach–Schauder open mapping theorem). Let A : X → Y be a
linear bounded operator onto Y , that is, A(X) = Y . Then 0 ∈ int A(B).
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A close look at the proof of the theorem (available in most textbooks on functional
analysis) allows us to deduce the following result.

Corollary 1.2. If A : X → Y is a bounded linear operator and zero belongs to the
interior of the closure of A(B), then 0 ∈ int A(B).

The corollary says that there is a K > 0 such that for any y ∈ Y there is an x ∈ X
such that A(x) = y and ‖x‖ ≤ K‖y‖ (take as K the reciprocal of the radius of a
ball in Y contained in the image of the unit ball in X under A). This, in turn, can be
interpreted as an existence theorem for a bounded right inverse of a linear bounded
operator onto Y, that is to say, the existence of a mapping R from Y into X such that
(A ◦ R)(y) = y for all y ∈ Y and ‖R(y)‖ ≤ K‖y‖. It is to be emphasized that R
is not uniquely defined unless A is one-to-one, and in general R cannot be a linear
operator unless ker A splits X (see Proposition 1.9 and the subsequent remark).

As an immediate consequence of this interpretation we get another famous result
of Banach. Recall that a bounded linear operator A ∈ L(X, Y ) is invertible, or a
linear homeomorphism, if it is one-to-one, maps X onto Y and the inverse mapping
is also a bounded linear operator.

Corollary 1.3. A linear bounded operator which is one-to-one and onto is a linear
homeomorphism.

There are other important consequences of the Banach–Schauder open mapping
theorem.

Corollary 1.4 (triangle lemma). Let X, Y and Z be Banach spaces, let A : X → Y
be a linear bounded operator onto Y , and let T : X → Z be a bounded linear
operator such that ker A ⊂ ker T . Then there is a bounded linear operator S : Y →
Z such that T = S ◦ A.

Proof. By the assumption (as ker T ⊂ ker A) T (x) = T (x ′) if Ax = Ax ′. Thus
the formula S(y) = T (A−1(y)) defines a single-valued mapping from all of Y (as
Im A = Y ) into Z having the property that S ◦ A = T . This mapping is linear
because A−1(λy) = λA−1(y) and A−1(y + y′) = A−1(y) + A−1(y′). Finally, by
the Banach–Schauder theorem there is a K > 0 such that Ax = y for some x with
‖x‖ ≤ K‖y‖. This implies that ‖S(y)‖ = ‖T x‖ ≤ K‖T ‖‖y‖, which means that S
is a bounded linear operator. �

Corollary 1.5 (annihilator of the kernel). If A is a bounded linear operator from X
onto Y , then

(ker A)⊥ = Im A∗.

Proof. If x∗ = A∗y∗ and x ∈ ker A, then 〈x∗, x〉 = 〈y∗, Ax〉 = 0. Conversely,
let x∗ ∈ (ker A)⊥. If we view x∗ as a linear operator from X into R, then A and
x∗ satisfy the conditions of the triangle lemma. Hence there is a y∗ ∈ Y ∗ such that
〈y∗, Ax〉 = 〈x∗, x〉 for all x , that is, x∗ = A∗y∗. �
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Definition 1.6 (Banach constant). Let A : X → Y be a bounded linear operator.
The quantity

C(A) = sup{r ≥ 0 : r BY ⊂ A(BX )} = inf{‖y‖ : y /∈ A(BX )}

will be called the Banach constant of A.

The Banach–Schauder theorem effectively says that the Banach constant of a
bounded linear operator onto a Banach space is positive. The following proposition
offers two more expressions for the Banach constant. Given a linear operator A :
X → Y , we set

‖A−1‖ = sup
‖y‖≤1

d(0, A−1(y)) = sup
‖y‖=1

inf{‖x‖ : Ax = y}.

We shall see later in Chap.5 that the quantity ‖A−1‖ is precisely the lower norm of
the (generally) set-valued mapping A−1. Of course, if A is a linear homeomorphism,
this is the usual norm of the inverse operator.

Proposition 1.7 (calculation of C(A)). For a bounded linear operator A : X → Y

C(A) = inf‖y∗‖=1
‖A∗y∗‖ = ‖A−1‖−1. (1.1.1)

In particular, if A is onto, then A∗ is one-to-one and

‖A∗y∗‖ ≥ C(A)‖y∗‖.

Proof. If C(A) = 0, then ‖A∗y∗‖ ≥ C(A) for any y∗. If C(A) > 0, take an
r < C(A). For any y∗ ∈ Y ∗ with ‖y∗‖ = 1

‖A∗y∗‖ = sup
‖x‖≤1

〈y∗, Ax〉 ≥ sup{〈y∗, y〉 : y ∈ r BY },

so that (as r can be arbitrarily close to C(A)), inf‖y∗‖=1 ‖A∗y∗‖ ≥ C(A).
Furthermore, if C(A) > 0, that is, int A(BX ) �= ∅, then for any y /∈ A(BX ) there

is a y∗, ‖y∗‖ = 1, separating y and A(BX ), that is,

‖y‖ ≥ 〈y∗, y〉 ≥ sup{〈y∗, v〉 : v ∈ A(BX )} = sup
‖x‖≤1

〈y∗, Ax〉 = ‖A∗y∗‖,

which proves the opposite inequality: C(A) ≥ inf{‖A∗y∗‖ : ‖y∗‖ = 1}.
Finally, if C(A) = 0 then by Corollary 1.2 the closure of A(BX ) cannot contain

interior points and therefore there is an arbitrarily small y not belonging to the closure
of A(BX ), and the same separation argument shows that for any ε > 0 there is a y∗
with ‖y∗‖ = 1 such that ‖A∗y∗‖ ≤ ε. This completes the proof of the left equality
in (1.1.1).
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Let us prove that C(A) = ‖A−1‖−1. If C(A) = 0, then by the Banach–Schauder
theorem there is a y /∈ A(X), that is, such that A−1(y) = ∅. According to our
general convention d(0, A−1(y)) = ∞ for such y, therefore ‖A−1‖ = ∞, whence
the equality. Assume now that C(A) > 0. By definition, for any positive r < C(A)

and any y ∈ Y there is an x such that y = Ax and ‖x‖ ≤ r−1‖y‖ and for any
r > C(A) there is a y for which such an x cannot be found. In other words,

C(A)−1 = sup
‖y‖=1

inf{‖x‖ : y = A(x)} = sup
‖y‖=1

d(0, A−1(y)) = ‖A−1‖. �

Remark 1.8. (a) By analogy, we can introduce the dual Banach constant of A:

C∗(A) = inf‖x‖=1
‖Ax‖.

Clearly, if C∗(A) > 0 then A is nonsingular, that is, ker A = {0}. Another obvious
relation is: C∗(A∗) = C(A). We shall see in Chap.5 that these trivial relations have
fairly non-trivial analogues in variational analysis.

(b) If X = IRn and A is an operator from X into itself, then C(A) is the minimal
singular value of A. (Recall that singular values of a compact operator A are square
roots of eigenvalues of AA∗.) This is an easy consequence of Proposition 1.7: consider
the problem of minimizing ‖A∗x‖2 subject to ‖x‖2 = 1 and apply the Lagrange
multiplier rule.

Proposition 1.9. If A ∈ L(X, Y ) is onto and ker A splits X, then there is a bounded
linear operator T : Y → X which is a right inverse of A with ‖T ‖ ≥ C(A)−1.

Proof. Take a closed subspace M ⊂ X which is complementary to L = ker A. Then
the restriction A|M of A to M is an invertible bounded linear operator onto Y . Set
T = (A|M)−1 and consider it an operator into X . Clearly (AT )y = y for all y ∈ Y ,
so T is a right inverse of A. On the other hand, as C(A|M) ≤ C(A), then, as follows
from Proposition 1.7, ‖T ‖ = C(A|M)−1 ≥ C(A)−1. �

Remark 1.10. If ker A does not split X , we cannot state the existence of a linear
bounded right inverse. However, we can be sure that there is a continuous bounded
right inverse if C(A) > 0. This follows from the continuous selection theorem of
Michael (see e.g. [12], p. 82)1 because A−1(y) is a closed subspace and, as follows
from the Banach–Schauder theorem, H(A−1(y), A−1(y′)) ≤ C(A)−1‖y − y′‖.
Fredholm operators. A linear bounded operator A : X → Y is called a Fredholm
operator if its kernel has finite dimension and its image is a closed subspace of finite
codimension in Y . The integer

1Michael’s theorem states that a lower semicontinuous set-valued mapping from ametric space into
a Banach space whose values are closed convex sets admits a continuous selection.
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ind A = dim(ker A) − codim(Im A)

is called the index of A. The collection of Fredholm operators from X into Y is an
open set in the spaceL(X, Y ) and the index is constant on each connected component
(Gohberg–Krein [137]).

If both X and Y are finite-dimensional, then any linear mapping X → Y is
obviously Fredholm and the index of any of them is equal to dim X − dim Y .

Derivatives. Everywhere in the book, when we speak about a (continuous) mapping
from X into Y , we mean a mapping F defined on an (open) subset of X , the domain
of F . So let F be a mapping from a neighborhood of x ∈ X into another Banach
space Y . A bounded linear operator A : X → Y is the (Fréchet) derivative of F at
x if

‖F(x) − F(x) − A(x − x)‖ = o(‖x − x‖).

The derivative is usually denoted F ′(x) (sometimes DF(x)). If the derivative exists
(it is unique in this case), then F is said to be (Fréchet) differentiable at x . F is called
strictly differentiable at x if it is differentiable at x and there is a neighborhood of x
such that for all x in the neighborhood

F(x + h) − F(x) − F ′(x)h = r(x, h)‖h‖,

where ‖r(x, h)‖ → 0 when x → x and h → 0. This essentially says that the
mapping h → F(x + h) − F(x) − F ′(x)h satisfies the Lipschitz condition on small
neighborhoods of x with Lipschitz constants going to zero as the neighborhoods
shrink to x .

It is said that F is continuously (Fréchet) differentiable at x if it is differentiable at
every point in a neighborhood of x and the mapping x → F ′(x) is continuous from
the norm topology of X into the uniform operator topology in the space of operators,
that is, if for any x in the neighborhood ‖F ′(u) − F ′(x)‖ → 0 if ‖u − x‖ → 0.
Continuous differentiability implies strict differentiability.

A mapping is twice differentiable at x if it is Fréchet differentiable and there is a
bounded bilinear mapping B(x, u) from X × X into Y such that

f (x + h) = F(x) + F ′(x)h + 1

2
B(h, h) + r(h),

where ‖r(h)‖ = o(‖h‖2). Among bilinear operators satisfying this equality (if such
operators exist), there is precisely onewhich is symmetric (that is, B(x, u) = B(u, x)

for all x , u). The linear symmetric operator from X into X∗ associated with the latter
(that is, such that 〈Ax, u〉 = B(x, u)), is called the second (Fréchet) derivative of F
at x and is denoted F ′′(x). F is said to be twice continuously differentiable at x if it is
continuously differentiable at x , twice differentiable in a neighborhood of x and F ′′ is
a continuous mapping from a neighborhood of x into the space of bilinear operators
X ×X → Y . Note that if F is twice continuously differentiable, the second derivative
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at any point is the Fréchet derivative of the first derivative mapping x �→ F ′(x). The
definition of derivatives of higher orders follows this model in an obvious way. It is
said that F is of class Ck if it is defined on an open set and is k times continuously
differentiable at every point of its domain. A mapping F from an open set of X into
Y is a Ck-diffeomorphism if it is a homeomorphism and both F and F−1 are k times
continuously Fréchet differentiable on U and F(U ), respectively.

Suppose now we have a mapping F from the product of two Banach spaces, e.g.
X and Z into Y . Then by Fx and Fz we shall denote the partial derivatives of F
with respect to the corresponding argument. If the partial derivatives exist and are
continuous on an open set, then the mapping is continuously differentiable on this
set, in which case we have the standard relation

F ′(x, z)(h, v) = Fx (x, z)h + Fz(x, z)v.

Baire category and residual sets. A set in a topological space is called residual or
a set of second Baire category if it contains a countable intersection of dense open
sets. A complement of a residual set, that is, a set which is contained in a countable
union of closed nowhere dense sets, is called a set of the first Baire category.

The Baire Category Theorem states that a residual set in a complete metric space
is dense (hence nonempty). A property is called generic if it holds on a residual set.

A countable intersection of residual sets is again a residual set. Hence, if we have
a sequence (Pn) of generic properties, then the property

∧
Pn (meaning that all Pn

are simultaneously satisfied) is also generic.
Manifolds. Many of the results that will be discussed in this chapter and in the book
in general can be extended to functions and mappings on general smooth manifolds.
Butwewill usuallyworkwith functions andmaps onBanach spaces and occasionally
on submanifolds of Banach spaces. The latter form a convenient class of sets in which
a metric structure, which plays a key role in future discussions, is well coordinated
with the structure of a differentiable manifold.

Namely, we shall call a subset M of a Banach space X aCk-submanifold if for any
x ∈ M there are a closed subspace Lx of X , open neighborhoods Ux ⊂ M of x and
Vx ⊂ Lx of zero and a Ck-diffeomorphism ϕx of Vx onto Ux such that ϕx (0) = x .

This definition is somewhat different from the standard definition involving local
charts. It has been chosen to facilitate using the inducedmetric structures on subman-
ifolds along with differential structures. To emphasize the difference we shall call
the triple (Lx , Vx ,ϕx ) a local parameterization of M at x . It can be shown, however,
(see Exercise 11) that this definition implies the existence of local charts if all spaces
Lx split X (cf. Aubin–Ekeland [13]). In variational analysis such a property may not
always be natural. But if it is satisfied, the submanifold receives another and often
much more convenient representation.

Proposition 1.11. Let M ⊂ X be a Ck-manifold. Let (L , V,ϕ) be a local parame-
terization of M at a certain x ∈ M. If L splits X, then there is a neighborhood U of
x and a Ck mapping ψ(x) from U into X such that M

⋂
U = ψ−1(0) = {x ∈ U :

ψ(x) = 0}.
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Proof. Let E be a closed subspace of X which is complementary to L , and let π be
the projection to E parallel to L , that is, π(x) = 0 for x ∈ L . Set ψ(x) = π ◦ ϕ−1.

�
If Lx can be chosen the same for all x ∈ M , we shall say that M is modeled on L .

In this case we shall mean by a local parameterization the pair (Vx ,ϕx ). If the model
space L has dimension (codimension) r , then we shall say that M is a submanifold
of dimension (codimension) r .

The subspace Tx M = ϕ′
x (0)(Lx ) (clearly isomorphic to Lx ) is called the tangent

space to M at x . The elements of the tangent space are called tangent vectors (to M at
x). It is an easy exercise to show that the tangent space does not depend on the choice
of a local parameterization. Note also that the tangent space is a closed subspace as
so is Lx . The annihilator of the tangent space, that is, the subspace Nx M = (Tx M)⊥
is the normal space to M at x and its elements are normal vectors or normals to M
at x .

Everywhere in the book the word “manifold’ means “submanifold of a Banach
space” with the induced metric. It is also convenient to consider the empty set as a
C∞-manifold.

1.2 Regular Points of Smooth Maps: Theorems
of Lyusternik and Graves

Theorem 1.12 (Graves [138]).Let F be a continuous mapping from a neighborhood
of x ∈ X into Y . Suppose that there are a linear bounded operator A : X → Y and
positive numbers δ > 0, γ > 0, ε > 0 such that C(A) > δ + γ and

‖F(x ′) − F(x) − A(x ′ − x)‖ < δ‖x ′ − x‖, (1.2.1)

whenever x and x ′ belong to the open ε-ball around x. Then

B(F(x), γt) ⊂ F(B(x, t))

for all t ∈ (0, ε).

Proof. We can assume for convenience that F(x) = 0. Take K > 0 such that
K C(A) > 1 > K (δ + γ), and let ‖y‖ < γt for some t < ε. Set x0 = x , y0 = y and
define recursively first xn and then yn as follows:

yn−1 = A(xn − xn−1), ‖xn − xn−1‖ ≤ K‖yn−1‖,
yn = A(xn − xn−1) − (F(xn) − F(xn−1)).

(1.2.2)

Subtracting the second equality from the first, we get yn−1 − yn = F(xn)− F(xn−1),
so that
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y − yn =
n∑

i=1

(yi−1 − yi ) =
n∑

i=1

(F(xi ) − F(xi−1)) = F(xn).

Thus if the process can be extended infinitely and xn converges to some x , we would
have F(x) = y.

To see that this is indeed the case and to find how far x is from x , we notice that
‖yn‖ ≤ δ‖xn − xn−1‖ by (1.2.1) and the second equation in (1.2.2). Together with
the inequality in (1.2.2), this gives ‖yn‖ ≤ K δ‖yn−1‖, so that

‖xn − xn−1‖ ≤ (K δ)n−1K‖y‖, ‖yn‖ ≤ (K δ)n‖y‖, (1.2.3)

and therefore

‖xn − x‖ ≤ K

1 − K δ
‖y‖ ≤ γ−1‖y‖ < t.

This means that the process can be continued and by (1.2.3) (xn) is a Cauchy
sequence. Finally, if x = lim xn , then ‖x − x‖ ≤ t , as claimed. �

Corollary 1.13 (Graves’ theorem at nearby points). Under the assumptions of the
theorem, the inclusion

B(F(x), γt) ⊂ F(B(x, t))

holds whenever ‖x − x‖ + t < ε, t > 0.

Proof. Replace x by x and ε by ε − ‖x‖. �

The following result is also an easy corollary of Graves’ theorem.

Theorem 1.14 (Banach constant under perturbation). For any two bounded linear
operators A, T : X → Y

|C(A + T ) − C(A)| ≤ ‖T ‖.

If, moreover, A is invertible and C(A)−1‖T ‖ < 1, then A + T is also invertible and
‖(A + T )−1‖ ≤ (C(A) − ‖T ‖)−1.

Proof. To prove the first statement, we only have to show that C(A + T ) ≥ C(A) −
‖T ‖ (because A = (A + T ) + (−T )). The inequality is trivial if C(A) ≤ ‖T ‖. If
‖T ‖ < C(A), set F(x) = A(x) + T (x), δ = ‖T ‖, x = 0. Then by Theorem 1.12

(C(A) − ‖T ‖) ◦
B ⊂ (A + T )(B), from which the inequality easily follows.

If A is also invertible, then by Proposition 1.7

‖A(x)‖ ≥ ‖A−1‖−1‖x‖ = C(A)‖x‖

for all x . Therefore

‖(A + T )(x)‖ ≥ ‖A(x)‖ − ‖T (x)‖ ≥ (C(A) − ‖T ‖)‖x‖,
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which means that A+T is one-to-one. But it is also onto since under the assumption,
C(A + T ) > 0, as we have seen. Hence A + T is invertible and the last inequality
is precisely the announced inequality for the norm of (A + T )−1. �
Theorem 1.15 ([189]). Under the assumptions of Graves’ theorem, the inequality

d(x, F−1(y)) ≤ 1

γ
‖y − F(x)‖

holds for all (x, y) satisfying ‖x − x‖ + γ−1‖y − F(x)‖ < ε.

Proof. Set t = γ−1‖y − F(x)‖. Then ‖x − x‖ + t < ε and y ∈ B(F(x), γt). By
Corollary 1.13 there is a u ∈ X such that F(u) = y and ‖x − u‖ ≤ γ−1t . Thus

d(x, F−1(y)) ≤ ‖x − u‖ ≤ γ−1‖y − F(x)‖.
�

Up to nowwe have not needed any differentiability of the maps. It is time to return
to the classical situation of continuously differentiable mappings and to see what can
be obtained from the results just proved in this case.

Definition 1.16 (regular point). Let F be a continuously differentiable mapping
from an open set U ⊂ X into Y . A vector x ∈ U is called a regular point of F if
F ′(x) maps X onto the whole of Y : Im F ′(x) = Y . If Im F ′(x) �= Y , we say that x
is a singular point of F .

The first result we are going to state follows immediately from Theorem 1.14 and
the Lyusternik–Graves theorem.

Theorem 1.17 (stability of the regularity property). The set of regular points of a
C1-mapping is open. Hence the set of singular points is closed in the domain of the
mapping. Moreover, let P be a topological space of parameters, and let F(x, p) be
continuous and have a continuous (jointly in (x, p)) Fréchet derivative with respect
to x. Assume that for certain p ∈ P the mapping F(·, p) is regular at x. Then there
are neighborhoods U ⊂ X and Q ⊂ P of p such that any x ∈ U is a regular point
of F(·, p) for every p ∈ Q.

This result introduces a property that can be characterized as a stability of the
regularity property under small variations of the mapping and the point. This is an
important fact since (as we have already mentioned) only those phenomena of the
real world that do not disappear if the environment changes slightly can be observed.
We shall see, however, in the course of further discussions that this is in a sense the
weakest stability property and that regularity of mappings display much more robust
behavior in various situations.

Definition 1.18 (tangent cone). A vector h ∈ X is called a tangent to a set S ⊂ X
at x ∈ S if d(x + th, S) = o(t) when t → +0. The collection of all tangent vectors
to S at x (which is always a cone containing zero) is denoted by T (S, x). If this set
is a subspace, it is called the tangent space to S at x .
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The last definition applies to any set, not necessarily to submanifolds. The different
notation (though standard in variational analysis) emphasizes the difference with the
definition of a tangent space to a submanifold given in §1.Note also that the collection
of tangent vectors to an arbitrary set need not be a subspace. It can be shown, however,
that for submanifolds both definitions are equivalent.

Theorem 1.19 (Lyusternik [235]). Suppose that F is strictly differentiable and reg-
ular at x. Then the collection of vectors tangent to the level set M = {x : F(x) =
F(x)} at x is a subspace coinciding with ker F ′(x).

Proof. Clearly T (M, x) ⊂ ker F ′(x). Indeed, if h is a tangent vector to M at x , then
for any t there is an h(t) such that F(x + th(t)) ∈ M and ‖h − h(t)‖ = o(t). This
means that

F ′(x)h = lim
t→0

F ′(x)h(t) = lim
t→0

t−1
(
F(x + th(t)) − F(x) + o(‖th(t)‖) = 0.

This implication holds without any assumption on the range of F ′(x).
On the other hand, if we set A = F ′(x), then F and A satisfy the assumptions of

Theorem 1.12 with any positive δ. Therefore, given an h ∈ ker A, for any small δ
(say, all δ < C(A)/2) by Theorem 1.15

d(x + th, M) ≤ C(A)

2
‖F(x) − F(x + th)‖ = o(t).

�

Lyusternik’s theorem was proved in 1934 and Graves’ theorem in 1950. The
methods they used in their proofswere very similar (and our proof ofGraves’ theorem
follows the same lines). For that reason the following statement, which is somewhat
weaker than Graves’ theorem and somewhat stronger than the Lyusternik’s theorem,
is usually called the Lyusternik–Graves theorem.

Theorem 1.20 (Lyusternik–Graves theorem). Assume that F : X → Y is strictly
differentiable and regular at x. Then for any positive r < C(F ′(x)), there is an ε > 0
such that

B(F(x), r t) ⊂ F(B(x, t)),

whenever ‖x − x‖ < ε, 0 ≤ t < ε.

We shall see later (see Corollary 2.80 in the next chapter) that the converse is
also true. This fact will appear as a consequence of a deep theorem of Milyutin to be
proved in the next chapter.


