

Robert LeMoine
Timothy Mastroianni

Wearable and Wireless Systems for Healthcare I

Gait and Reflex Response Quantification

Smart Sensors, Measurement and Instrumentation

Volume 27

Series editor

Subhas Chandra Mukhopadhyay
Department of Engineering, Faculty of Science and Engineering
Macquarie University
Sydney, NSW
Australia
e-mail: subhas.mukhopadhyay@mq.edu.au

More information about this series at <http://www.springer.com/series/10617>

Robert LeMoyne · Timothy Mastroianni

Wearable and Wireless Systems for Healthcare I

Gait and Reflex Response Quantification

Springer

Robert LeMoyne
Department of Biological Sciences, Center
for Bioengineering Innovation
Northern Arizona University
Flagstaff, AZ
USA

Timothy Mastroianni
Independent
Pittsburgh, PA
USA

ISSN 2194-8402 ISSN 2194-8410 (electronic)
Smart Sensors, Measurement and Instrumentation
ISBN 978-981-10-5683-3 ISBN 978-981-10-5684-0 (eBook)
<https://doi.org/10.1007/978-981-10-5684-0>

Library of Congress Control Number: 2017952009

© Springer Nature Singapore Pte Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

In Memoriam:

***David Peduto (Lt. Col. US Army)
(1954–2016)***

*To a friend, valued research team member,
and Patriot.*

Jonathan Swift Ph.D. (1932–2017)

*To an incredible teacher who made learning
an adventure.*

“Think globally, and act locally!”

Wes Stewart (1924–2017)

*Cousin Wes you are a dearly cherished
member of our family and the personification
of America’s Greatest Generation. You are
deeply missed. I take comfort knowing
everybody has an angel.*

*To my wife, thank you for everything. Love
Always.*

*I would like to thank my Mother, Father, and
brother for their support.*

*“Nothing transcends the power of the human
spirit.”
from a homeless Vietnam Veteran and very
loyal friend
And in the wind he’s still alive.*

*“To beat a tiger, one needs a brother’s help.”
Chinese Proverb
Thanks Tim.*

*Chiri mo tsumoreba yama to naru.
A favorite Japanese Proverb (in Romaji)
Translation:
Even dust piled up becomes a mountain.*

Preface

The domain of wearable and wireless systems for biomedical and rehabilitation applications, such as through smartphones and portable media devices, is anticipated to grow exponentially. Even from the time of presenting the draft manuscript of this book to the time of publication, the prevalence of this subject is expected to undergo meaningful transformation and evolution. These devices enable wireless inertial sensor applications to an assortment of scenarios pertaining to rehabilitation and therapy.

Since 2010 when LeMoyne, Mastroianni, and our research team applied a novel smartphone application for quantifying Parkinson's disease tremor and gait quantification in the context of a wireless accelerometer, the opportunities have expanded considerably. The authors are delighted to provide a contribution to this exciting field with the anticipation of the considerable array of developments in years to follow. Please enjoy the knowledge and intellectual inspiration that our book provides with the goal of providing meaningful, robust, and optimal rehabilitation for many.

Flagstaff, USA
Pittsburgh, USA

Robert LeMoyne
Timothy Mastroianni

Contents

1	Wearable and Wireless Systems for Gait Analysis and Reflex Quantification	1
1.1	Introduction	2
1.2	Summary of the Pending Chapters	5
1.3	Conclusion	16
	References	17
2	Traditional Clinical Evaluation of Gait and Reflex Response by Ordinal Scale	21
2.1	Introduction	21
2.2	Ordinal Scale for Quantification of Reflex Response	22
2.3	Ordinal Scale Technique for Gait	25
2.4	Ordinal Scale Strategy for Friedreich's Ataxia	25
2.5	Transition to Wearable and Wireless Systems	26
2.6	Conclusion	27
	References	27
3	Quantification Systems Appropriate for a Clinical Setting	31
3.1	Introduction	31
3.2	Conventional Systems for Gait Analysis	33
3.2.1	Foot Switches	34
3.2.2	Electrogoniometers	34
3.2.3	Electromyogram (EMG)	35
3.2.4	Metabolic Analysis	36
3.2.5	Optical Motion Cameras (Kinematics of Human Motion)	36
3.2.6	Force Plates	38
3.3	Synergistic Operation of Clinical Gait Laboratory Resources for Gait Analysis and Associated Signal Processing	40

3.4	Electromechanical Techniques for Reflex Quantification	41
3.5	Conclusion	42
	References	42
4	The Rise of Inertial Measurement Units	45
4.1	Introduction	45
4.2	Evolutionary Pathway for Inertial Sensors	46
4.3	Application Scenarios for Accelerometer Systems	47
4.4	Wireless Accelerometer Systems for Gait Analysis.	52
4.5	Conclusion	55
	References.	55
5	Portable Wearable and Wireless Systems for Gait and Reflex Response Quantification	59
5.1	Introduction	59
5.2	First Generation Wireless Reflex Quantification Device	60
5.3	Second Generation Wireless Reflex Quantification Device	60
5.4	Third Generation Wireless Quantified Reflex Device	61
5.5	Artificial Reflex System	62
5.6	Wireless Accelerometer Reflex Quantification System Characterizing Response and Latency.	63
5.7	Fourth Generation Wireless Quantified Reflex Device	63
5.8	Gait Analysis Using Wearable and Wireless Accelerometer Nodes	65
5.9	Virtual Proprioception.	67
5.10	Further Applications of Wearable and Wireless Inertial Sensor Systems for Gait Quantification.	68
5.11	Conclusion	69
	References.	70
6	Smartphones and Portable Media Devices as Wearable and Wireless Systems for Gait and Reflex Response Quantification	73
6.1	Introduction	73
6.2	Smartphone Quantifying Gait as a Wireless Accelerometer Platform	75
6.3	Post-processing and Numerical Analysis for the Acquired Acceleration Waveform for Gait.	77
6.4	Portable Media Device for Quantifying Gait as a Wireless Accelerometer Platform	78
6.5	Smartphone Wireless Accelerometer Platform for Quantification of Prosthetic Gait.	79
6.6	Smartphone Wireless Gyroscope Platform for Quantification of Hemiplegic Reduced Arm Swing	80

6.7	Portable Media Device Functioning as a Wireless Gyroscope Platform for Quantification of Reduced Arm Swing for Erb's Palsy.	82
6.8	Quantification of Patellar Tendon Reflex Response Through Portable Media Device and Smartphone as a Wireless Accelerometer Platform.	84
6.9	Quantification of Patellar Tendon Reflex Response Through Smartphone and Portable Media Device as a Wireless Gyroscope Platform	85
6.10	Other Research Applications Regarding the Smartphone for Gait Analysis	87
6.11	Network Centric Therapy by Application of the Smartphone and Portable Media Device.	88
6.12	Conclusion	90
	References.	90
7	Bluetooth Inertial Sensors for Gait and Reflex Response Quantification with Perspectives Regarding Cloud Computing and the Internet of Things	95
7.1	Introduction	95
7.2	Utility of Bluetooth.	96
7.3	Applications of Bluetooth Connected Sensors for Gait Analysis	96
7.4	Wearable and Wireless Inertial Sensors Using Bluetooth, Tablet, and Cloud Computing.	97
7.5	Bluetooth Wireless Capability for Reflex Quantification.	99
7.6	Relevance for Sensor Fusion	99
7.7	Internet of Things.	99
7.8	Network Centric Therapy: The Significance of Bluetooth.	100
7.9	Conclusion	100
	References.	100
8	Quantifying the Spatial Position Representation of Gait Through Sensor Fusion.	105
8.1	Introduction	105
8.2	Sensor Level.	106
8.3	Orientation Filter	106
8.3.1	Kalman Filter	106
8.3.2	Gradient Descent Orientation Filter.	107
8.4	Quaternions.	107
8.5	Zero Velocity Update.	107
8.6	Velocity Estimation and Trajectory Formation	108

8.7	Network Centric Therapy and the Role of Sensor Fusion	108
8.8	Conclusion	109
	References	109
9	Role of Machine Learning for Gait and Reflex	
	Response Classification	111
9.1	Introduction	111
9.2	Waikato Environment for Knowledge Analysis (WEKA) for Machine Learning Classification of Human Movement Characteristics Through Wearable and Wireless Devices	112
9.2.1	J48 Decision Tree	115
9.2.2	K-nearest Neighbors	115
9.2.3	Logistic Regression	115
9.2.4	Support Vector Machine	116
9.2.5	Multilayer Perceptron Neural Network	116
9.2.6	Attribute-Relation File Format (ARFF) File	116
9.3	Utility of Machine Learning with Future Perspective on Network Centric Therapy	117
9.4	Conclusion	118
	References	119
10	Homebound Therapy with Wearable and Wireless Systems	121
10.1	Introduction	121
10.2	Portable Media Device Wireless Accelerometer Platform for Assistive Device Usage Evaluation	123
10.3	Smartphone Wireless Gyroscope Platform for Ankle Rehabilitation	125
10.4	Portable Media Device Wireless Gyroscope Platform for a Wobble Board	126
10.5	Virtual Proprioception for Eccentric Training	126
10.6	Network Centric Therapy for Homebound Therapy with Wearable and Wireless Systems	128
10.7	Conclusion	130
	References	131
11	Future Perspective of Network Centric Therapy	133

Chapter 1

Wearable and Wireless Systems for Gait Analysis and Reflex Quantification

Abstract The capacity to quantify the movement features of a person undergoing the rehabilitation process enables therapists and clinicians to proactively optimize the therapy strategy. Wearable and wireless systems, such as the smartphone and portable media device, are equipped with accelerometers and gyroscopes that can readily quantify aspects of human movement pertinent to rehabilitation, such as gait and reflex response. The smartphone and portable media device can measure gait and reflex response through their inertial sensors, and the acquired data can be conveyed by wireless transmission to the Internet as an email attachment. This capability enables the experimental site and post-processing resources to be remotely situated. Three phases of the evolution of quantification techniques for the rehabilitation process are observed, which are characterized as a first, second, and third wave. The first wave pertains to the traditional ordinal scale approach used by expert clinicians. The second wave emphasizes the role of quantification systems that are generally constrained to a clinical setting. The third wave envisions the development of Network Centric Therapy through the application of wearable and wireless systems, such as smartphones and portable media devices, for quantifying movement characteristics, such as gait and reflex response. Network Centric Therapy encompasses a quantum leap in rehabilitation capability through Cloud Computing amalgamated with machine learning with patient and therapy team situated remotely anywhere in the world. A summary of each chapter is further presented.

Keywords Wearable and wireless systems • Smartphone • Portable media device Accelerometer • Gyroscope • Gait • Gait analysis • Reflex response • Reflex response quantification • Ordinal scale • Quantification apparatus • Network Centric Therapy

1.1 Introduction

The capacity to quantify trends in a patient's rehabilitation enhances the acuity for a team of clinicians to refine the therapy strategy and prescription [1–6]. Inertial sensors, such as accelerometers and gyroscopes, have been proposed for the quantification of human movement characteristics, such as gait and reflex [3–7]. With recent advances in microelectronics and wireless technology wearable and wireless accelerometer and gyroscope systems have permeated the fields of biomedical engineering and healthcare with previous arrangements, such as tethered sensor systems, becoming effectively obsolete [3–6, 8].

The progressive integration of wearable and wireless systems are envisioned to enable a quantum leap with regards to the capabilities of the biomedical and healthcare environment. Inertial sensors, such as the accelerometer and gyroscope, can facilitate a therapist's acuity with regards to the nature of the patient's movement quality in the context of the therapy response. In particular wearable and wireless devices are forecasted to considerably advance the rehabilitation experience, especially with regards to gait analysis and the associated quantification of reflex characteristics.

Essentially the presence of wearable and wireless systems with inertial sensors, such as the accelerometer and gyroscope, is representative of the Internet of Things for the biomedical community. The objective of the book is to provide a perspective of the role of wireless accelerometer and gyroscope sensor apparatus that are also wearable for the advance of rehabilitation and therapy in the context of gait analysis and correlated aspects, such as reflex quantification. This book sequentially advocates the evaluation to Network Centric Therapy, which is predicted to radically advance the efficacy of the rehabilitation experience.

An advantage of the wearable and wireless accelerometer and gyroscope system is the considerable flexibility of available devices for the scenario under consideration. One of the first and most fundamental pathways was with regards to the application of wireless accelerometer nodes for the domain of gait and reflex quantification. Wireless accelerometer nodes were successfully demonstrated for the accurate and reliable quantification of gait and reflex characteristics. At this level of technology evolution wireless accelerometer nodes would locally transmit data packages by wireless connectivity to a nearby situated PC [6, 9–22].

Further research and investigation respective of the technology pathway sought to acquire wireless capabilities that could better access the Internet directly. Equipped with the proper software application the smartphone is capable of functioning as a wireless accelerometer platform and also a wireless gyroscope platform. The recorded data package could be wirelessly conveyed to the Internet as an email attachment, and the data could be post-processed remote from the experimental location. Beginning in 2010 LeMoyne and Mastroianni have thoroughly researched, developed, tested, and evaluated the role of the smartphone for the accurate and reliable quantification of gait and reflex response features [3–5, 23–37]. With the successfully demonstration of the smartphone as a gait analysis tool a multitude

of clinically relevant applications have advocated its wireless inertial sensor capability [3–5].

Another similar wearable and wireless system relative to the smartphone is the portable media device. Using the same operating system as the smartphone the portable media device is readily capable of likewise functioning as a wireless accelerometer platform and wireless gyroscope platform. The primary differentiator between the portable media device and smartphone is the device cost and wireless accessibility to the Internet. A portable media device imparts a fixed cost; however, the smartphone generally requires a marginal cost to sustain the telecommunication package. The portable media device requires localized wireless Internet connectivity, and by contrast the smartphone can access the Internet through a broad telecommunication footprint. Research, development, test, and evaluation has demonstrated the ability of the portable media device as a wireless accelerometer and gyroscope platform for the quantification of gait and reflex response similar to the capabilities of smartphone [3–5, 37–49].

Further developments with respect to the capabilities of wireless and wearable systems for quantifying rehabilitation status are evident in light of local Bluetooth wireless connectivity. The concept of Bluetooth wireless offers the capacity to locally connect the inertial sensor node to the more broadly Internet accessible devices, such as a tablet, portable media device, and smartphone. This design perspective alleviates mass encumbrance and mounting complexity of the sensor node to the patient being monitored. For example, the relevance and acuity of the Timed 25 Foot Walk test has been considerably advanced through the application of a wireless accelerometer and gyroscope sensor node locally positioned about the ankle joint. The experimental trial data package is then streamed by Bluetooth wireless connectivity to a tablet, and the tablet then transmits the data to an Internet resource, such as a Cloud Computing database [50].

These available capabilities regarding the broad domain of wearable and wireless accelerometer and gyroscope sensors coalesce to promote the potential for Network Centric Therapy. Network Centric Therapy comprises the capabilities of rehabilitation and advanced therapy in consideration of the Internet of Things. In essence Network Centric Therapy would involve Cloud Computing level storage and post-processing of therapy and rehabilitation based on quantified data from wearable and wireless accelerometer and gyroscope sensors used by the patient.

There are a considerable array of utility that Network Centric Therapy offers for the biomedical and rehabilitation community, the therapist regarding enhanced acuity and awareness of the efficacy of the therapy strategy, and the patient's experience of optimal rehabilitation and timeliness of recovery. This concept promotes augmented patient intensive and focused therapy. The inherent nature of this envisioned rehabilitation technique is logically robust.

A patient can provide the therapist ample quantified data as to the status of the rehabilitation experience from the convenience of a familiar and therefore highly relevant home bound environment through the application of wearable and wireless sensors systems, such as accelerometers and gyroscopes. For example, a therapist