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To the memory of Julián Carrillo
(1875–1965) and
Alexander Grothendieck (1928–2014)



Foreword

It is my great honour and pleasure to introduce you to this book which focuses on
fundamental challenges and issues in the relatively new field of Mathematical
Music Theory, in turn able to be translated into computational practice.

This book, under the title The Musical-Mathematical Mind: Patterns and
Transformations, collects the efforts of specialists who participated in the four-day
International Congress on Music and Mathematics (ICMM, which took place in
Puerto Vallarta, Jalisco, Mexico, November 26–29, 2014). Its contents reflect the
maturing of a variety of new conceptualisations on music and mathematics. This
congress was organised by the Mexican mathematicians, musicians and musicol-
ogists Octavio A. Agustín-Aquino, Juan Sebastiàn Lach Lau, Emilio Lluis-Puebla
(Congress Head), Roberto Morales-Manzanares, Pablo Padilla-Longoria, and
Gabriel Pareyon (Program Chair and Main Editor).

Mexican scholars have been uniquely proactive in the propagation and support
of the mathematical aspects of music in theory and practice, in creativity and
epistemology. Already in 2000, the First International Seminar on Mathematical
Music Theory took place in Saltillo, on the occasion of the annual congress of the
Mexican Mathematical Society, and the Fourth International Seminar on
Mathematical Music Theory took place in Huatulco, again in Mexico, respectively
organised by Lluis-Puebla, and by Agustín-Aquino.

It is remarkable that these Mexican conferences took place in the years when the
Society for Mathematics and Computation in Music (SMCM) had no conference:
its conferences are biannual and have taken place in the odd years since 2007. It is
also remarkable because the Mexican initiative proves that there is an increasing
intensity of scholarly and artistic work centred around mathematics and music. It
gives us a model of how the future of this mathemusical enterprise could look.

The program of the congress in Puerto Vallarta is not only a testimony of the
high level of scientific research achieved in the early years of the 21st century, it
also proposed a deep spectrum of musical, mathematical, physical, and philo-
sophical perspectives that have emerged in this field of cultural and scientific
integration since its Pythagorean origins. The big difference that we observe when
comparing the state of this art to the achievements in the 20th century is the
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involvement of advanced techniques and concepts of modern mathematics and
physics, relating for example to Grothendieck’s topos theory and physical string
theory. It is not astonishing that the mathematician and philosopher of modern
mathematics, Fernando Zalamea, has—among other authors in this book—con-
tributed a beautiful perspective on the philosophy that lies inside the efforts to
reunite mathematics with music as approaches to a unified universal knowledge.

Minneapolis, USA
January 2016

Guerino Mazzola
(ICMM 2014, Honorary President)
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Preface

Proficiency and enthusiasm are gathered in this volume, as the fruit of a long-awaited
conference of international specialists who devote their lives to connect, exchange
and mutually involve music with mathematics and mathematics with music. We
celebrate this publication at the moment of Julián Carrillo’s (1875–1965) one
hundred and fortieth anniversary, to whom we also dedicated a special panel (with
results to be published separate from this book) during our International Congress on
Music and Mathematics (ICMM) held at Puerto Vallarta, Mexico (November, 2014).

Our conference was a unique feast of mind and feelings, sound and meaning,
imagination and empiricism, as the continuation and synthesis of a long tradition.
The link between music and mathematics is a notorious intersection at a common
origin of human civilisation embracing aesthetics, pragmatics and abstract thought.
As a matter of fact, aesthetics, pragmatics and abstraction arise as human practice
deeply rooted in a primary notion of repetition, rhythm, comparison, measurement,
spacialization and transformation, all of them common grounds for music and
mathematics.

In every part of the world, “civilisation” is a social complexity that seems to need,
from its early sources, the sprout of music and mathematics. Thus, in the context
of the original civilisations of Mesoamerica, music and mathematics are also
strongly associated. I should mention—at least briefly—some milestones in the long
history binding music and mathematics in ancient and modern Mexico: the Olmec
and the Maya peoples, so admired today for their architectural, astronomical and
mathematical achievements, must also be acknowledged for creating original
instruments, orchestras and choirs, as well as for developing their own graphic
representation of human sounds and sounds from nature. Thereafter, among the
Aztec people, the patron of poetry, symmetry, music and numbers is
Xochipilli-Macuilxochitl, a name that relates the number five with the symbolisation
of colour, abstraction, geometry, ratio and proportion.

Later, in the Spanish colony, Sister Juana Inés de la Cruz (1651–1695) developed
her own research about the connections between harmony, numbers and geometry.
Even today Sor Juana’s conceptualisations are still valid for the philosophical study
of music, such as the study of spirals for harmonic modelling. In 19th century
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Mexico, Juan N. Adorno (1807–1880) published his treatise Harmony of the
Universe, based on principles of physical and mathematical harmony. Later, the
Porfirian thinker Juan N. Cordero (1851–1916) in his book Examen de los acordes
de transformación tonal (Examination of the Chords of Tonal Transformation)
proposed a principle of musical transformation based on logical axioms. A few
decades after, in the 20th century, José Vasconcelos (1882–1959) claimed that “only
the musical study of mathematics, and the rhythmic comprehension of numbers,
could be useful as effective forms of thought and discovery of the human nature”.
In the same epoch, another Mexican thinker, Samuel Ramos (1882–1959) wrote that
“All kinds of perturbation in the Universe are of a rhythmic nature. The fluency of
changes cannot be unarticulated among them; therefore the rhythm of changes is
accumulative”. Quoting Sor Juana, Adorno, Cordero, Vasconcelos, and Ramos
are part of what semiotician Mauricio Beuchot (1950–) —a contemporary of
us—acknowledges as “the Mexican devotion of Pythagoreanism and related
doctrines”.

Indeed, the orientation of Mexican cultures seems to be magnetised by the
intuitions of ratio, proportion, analogy, metonymy, and geometrical and algebraic
transformation. We may trace this influence in the most famous composers and
music theorists of modern Mexico, namely Augusto Novaro, Conlon Nancarrow,
Ervin Wilson, Julio Estrada, Manuel Enríquez, Antonio Russek, Roberto Morales-
Manzanares, Víctor Rasgado, and Hebert Vázquez, among others. Indeed, they
influence nowadays Mexican studies on music and mathematics as a new mixed
discipline. This transdisciplinarity also flourished thanks to the effort of mathe-
matician Prof. Emilio Lluis-Puebla, who graduated an internationally active group
of specialists.

As I mentioned before, our meeting also devoted a special panel to the dis-
cussion of mathematics applied to music, in honour of the great violinist, conductor,
composer and maker of new musical instruments, Julián Carrillo, who through a
long and very productive life achieved the invention of music that transcended the
traditional Western principles of consonance and harmony, as he foresaw a
“universe of endless musical scales and chords”. Carrillo’s project in the domain of
physics and mathematics, and its musical output, is an inspiration for current dis-
cussion on these subjects, addressed from different viewpoints during our congress.

We may mention some recurring concepts and theoretical approaches that
motivated us during our meeting: tessellation in topological-musical spaces, scaling
and even distribution, diatonicity, algebraic transformations, networks and geom-
etry, partitions and well-formedness theory, theories of gestures, morphisms, set
theory and fuzzy logic, as well as a new discussion on elementary particles and
quantum symmetry as interests of systematic musicology. Despite this variety, all
our mathematical proposals fell into five general areas: I. Dynamical Systems,
II. Logic, Algebra and Algorithmics, III. Gestural Theories, IV. New Methods for
Music Analysis, and V. Modern Geometry and Topology. Although we followed
this thematic division during our congress, this book is classified by alphabetical
order of authors, for the sake of practical consultation and because most of the
contributions present developments in more than one subject.
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I wish to end this Preface emphasising the fact that the international President of
our Congress, Prof. Guerino Mazzola, is one of the leading thinkers in the field
of the Mathematical Theory of Music; and our national Head of Congress, Prof.
Emilio Lluis-Puebla pioneered systematic musicology in Mexico and Latin
America, organising the Seminars on Mathematical Theory of Music in previous
years. We completed our group of national and international guests with the best
and more original proposals received after almost two years of organisation that
reached its climax during the four days of ICMM 2014. We remain grateful to all
our contributors.

Guadalajara, Mexico Gabriel Pareyon
December 2015 (ICMM 2014, Program Chair and Editor)
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Introduction

For those who read for the first time or inquire about music and mathematics, let me
tell you that this field is both a recent area of study and also a very old one. At the
beginning of history, there was a connection between numbers and music. Later,
Pythagoras made a mathematical effort to say things about music with a certain
foundation. The names Descartes, Galileo, Kepler, Leibniz, Euler, d’Alembert,
Helmholtz, and some others are relevant here.

In the twentieth century, acoustics and its technology were very successful
applying mathematics to music, as well as computer science and some other fields
like linguistics. Later, the work of Clough in 1979, Lewin in 1982, and Mazzola in
1985 inspired both music-inclined mathematicians and mathematics-inclined
musicians to continue working in mathematics and music.

A big trend in the last three decades in mathematics was to do not only appli-
cations but to do new mathematics in a variety of fields of knowledge, and the field
of music has been no exception.

So, mathematical music theory is both a recent area of study and also a very old
one. From Pythagoras until the 1980s, very little and not very sophisticated
mathematics was employed in music. When sufficiently powerful mathematical
machinery became available and talented mathematicians used it, modern mathe-
matical music theory was born.

One of the main goals of mathematical music theory (I will state some of
Guerino Mazzola’s thoughts mainly from [1] and from personal conversations with
him) was to develop a scientific framework for musicology. This framework had as
its foundation, established scientific fields. It included a formal language for
musical and musicological objects and relations. Music is fundamentally rooted
within physical, psychological and semiotic realities. But the formal description of
musical instances corresponds to mathematical formalism.

Mathematical music theory is based on category theory, algebraic topology, in
particular, topos theory, module theory, group theory, homotopy theory, homology
theory, algebraic geometry, just to name some areas, that is, on heavy mathematical
machinery. Its purpose is to describe musical structures. The philosophy behind it is

Emilio Lluis-Puebla
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understanding the aspects of music that are susceptible to reason in the same way as
physics does it for natural phenomena.

This theory is based in an appropriate language to manage the relevant concepts
of the musical structures, in a group of postulates or theorems with regard to the
musical structures subject to the defined conditions, and in the functionality for
composition and analysis with or without a computer.

Mazzola also says that music is a central issue in human life, though it affects a
different layer of reality than physics. The attempt to understand or to compose a
major work of music is as important and difficult as the attempt to unify gravitation,
electromagnetism, and weak and strong forces. For sure, the ambitions are com-
parable and hence the tools should be comparable too.

It is only in the last three decades that there is consistent work in mathematical
music theory. Thus I will address this period of time in Mexico’s history on this
subject, since Gabriel Pareyon [2] summarises the time span before 1980. I will
write about this in a personal way.

When I was 21 years old, in 1974, I was listening to the station Radio
Universidad (University Radio Station), to a low, magnificent voice that was talking
(in Spanish) about the application of finite group theory to the musical analysis of
Bach’s music, etc. This caught my attention and I went to see the owner of this
voice. I located him in the old building of the Escuela Nacional de Música de la
UNAM (UNAM Faculty of Music) and this young thin man kindly showed me a
bunch of papers he had. I read them for half an hour or so and got the idea of what
he was doing. This young man was Julio Estrada, a distinguished Mexican com-
poser and musicologist.

Then I went to Canada to do a Ph.D. on algebraic K-theory. I was in love with
pure mathematics like homological algebra, algebraic topology, algebraic geometry,
homotopy theory, etc. Nobody could have ever told me that these marvellous pieces
of pure mathematics were ever to appear more than thirty years later in the other
field of my passion: music.

When I came back to México, in the early 1980s I wanted to do some work in
mathematics and music, in particular to guide an undergraduate thesis for a student,
but the angry face and terrible gesticulations of a colleague who was in charge of
some high position at the department demoralised me. Does this sound familiar to
anyone?

Some years later, in the 1990s, a lady from the mathematics undergraduate
program at UNAM with a piano background, with great conviction, full of energy,
appeared in my office, completely determined to do an undergraduate thesis in
mathematics and music, particularly based on the ideas of Julio Estrada which
turned into a book that he published in the 1980s [3]. I gave her more papers and
books and she started to look for more bibliography. The librarian got some ref-
erences of Guerino Mazzola. Particularly his book Gruppen und Categorien in der
Musik, some articles by him, and others, including Chemiller’s papers, plus some
from the American School. This lady was Mariana Montiel. Now she is a full
professor in the United States.
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Mariana decided also to do a master’s thesis on mathematical music theory,
especially on denotator theory. I invited Guerino Mazzola to México for the first
time in 1997 and we began a wonderful friendship.

In 2000, when I was President of the Sociedad Matemática Mexicana
(Mathematical Society of Mexico), I dared to organise the First International
Seminar on Mathematical Music Theory which took place simultaneously at the
Facultad de Ciencias (Faculty of Sciences) and the Escuela Nacional de Música
(School of Music) both from UNAM. Thomas Noll and Guerino Mazzola attended,
among others.

Some days before the first international seminar, we had a previous special
session on mathematical music theory at the annual Congreso Nacional de la
Sociedad Matemática Mexicana in Saltillo which had an attendance of about 2000
persons, with great success. As a frame to both meetings we had concerts by
Guerino Mazzola in Saltillo, Sala Carlos Chávez and at the Sala Xochipilli in
Mexico City which turned into a delightful free jazz recording called Folia:
The UNAM Concert with Guerino Mazzola playing Rachmaninoff’s Corelli: La
Folia theme as motive.

At both meetings, many mathematicians and musicians attended with surprise on
their faces. The proceedings of the seminar were published by the Sociedad
Matemática Mexicana Electronic Publications and lately were unified with the
proceedings of the Second International Seminar which took place in Germany in
2001 and with the third one which took place in Switzerland in 2002 and was
published by Epos Music of the University of Osnabruck in 2004 [4]. (I almost did
not see this publication because I almost died. I was very ill for six months with an
unknown disease which was later believed to be a viral meningitis, for which there
was no cure!)

After not dying, six years later, in 2009, a student of mine, a young, impetuous
and talented mathematician and musician, Octavio Agustin-Aquino, convinced me
to organise the fourth seminar. It took place in Huatulco, Oaxaca, in 2010 as the
Fourth International Seminar on Mathematical Music Theory [5]. By the way,
Octavio became the first Ph.D. in mathematics graduated in Mexico at UNAM in
mathematical music theory in 2011 with a thesis on microtonal counterpoint. He is
now a full professor at the Universidad de la Cañada which belongs to the SUNEO
in Oaxaca State, Mexico.

Finally, in November 2012 another very talented man (musicologist, also doing
systematic musicology) which I admire the most because of his vast culture, ability,
organisational capabilities, enormous memory and many other wits, contacted me
in order to organise a sequel of the international seminars which turned out to be the
International Congress on Music and Mathematics, 2014. This great man is Gabriel
Pareyon.

Through the years there were also some more students who did some work with
me but they did not continue in this field due to economic or vocational reasons. In
2013 and 2014, two of my students (Yemile Chávez and Santiago Rovira, both with
music backgrounds) approached me like Mariana and Octavio before. They
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presented a lecture at ICMM 2014, and I hope they continue to work in this
marvellous field.

Of course there are some other colleagues who have worked in mathematics and
music in a rather isolated way, but now we had the opportunity to collect their
efforts in this book, and made the connections to have a stronger unified community
worldwide.

And well, what relationship does exist between music and mathematics? Or
equivalently what connection or correspondence exists? We know, for example,
that mathematical concepts were applied several years ago and recently (coming
after all from nature or from man’s abstract thought, etc.), just to mention four
examples I use in my lectures [6]: to the entertainment with a game of dice in
Mozart’s creations; to aesthetics, as in Birkhoff’s theory; to musical composition,
for example by Bartók; and to create a precise language for musicology and music
by Mazzola, among others. Certainly, there are many other music fields where
mathematics contributes to our understanding, like in performance or analysis, etc.

For me, the most important relationship between mathematics and music is that
both are “fine arts”. They possess similar characteristics. They are related in the
sense that mathematics provides a way to understand music, and musicology has a
scientific basis in order to be considered a science, not a branch of common poetic
literature.

I have worked since the 1970s on homotopy theory, cohomology theory, alge-
braic topology, homological algebra, among other fields of mathematics. As I wrote
before, at the time these were considered pure mathematics. However, thirty years
later, these wonderful pieces of mathematics came to be applied mathematics, and
guess where? It turned out to be (as I wrote before) in my other passion: music! But
not only as an application, you can do new mathematics as well!

Let me tell you an anecdote. In 2001, when I was president of the Sociedad
Matemática Mexicana, during a visit to Rio de Janeiro I called a friend of mine, the
president of the International Mathematical Union at that time, the Brazilian Jacob
Palis. We agreed to meet at the famous Copacabana Palace where I was going to
play Rachmaninoff's Second Piano Concerto as a soloist of the Rio de Janeiro
Philharmonic Orchestra. He did not know I was a pianist. When he got there, he
saw the president of the Sociedad Matemática Mexicana getting out on stage and
sitting down to play the concerto. He was thrilled and invited me to dinner. We had
a very long talk and having answered all his questions about me as a pianist and
about mathematical music theory, he told me almost the same phrase that Guerino
Mazzola got from Grothendieck: “the mathematics of the future!”. So, in brief
words, let me tell you that, for me, mathematics is one of the “fine arts”, the purest
of them, which has the gift of being the most precise of all sciences.

I was very honoured to meet all of the participants of ICMM in order to stimulate
the interchange of visions, thoughts and points of view on this fascinating subject in
a very friendly way. I am sure we all have profited from this interaction in such a
wonderful place.

As you know, not only in Mexico, the funding for meetings is practically
nonexistent. Many persons interested in coming could not join us because they did
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not have economic support from their universities. We thought we could obtain
some funding for it, but once more, as in the Fourth International Seminar, we had
to do it with our own personal budgets, energies and personal work and risk. We
proudly can say that once more we have done it by ourselves!

Besides the small support (for such a big meeting) of very few institutions (see
the acknowledgements in this book) we only had a small contribution from the
Sociedad Matemática Mexicana to partially finance two of my own students which
we, again, sincerely thank. The rest is exclusively ours and yours.

On Gabriel Pareyon’s behalf (I recognise all his tremendous work on the
organisation), the other organisers and myself, we thank all the participants of the
International Congress on Music and Mathematics. We had a wonderful conference!
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Extended Counterpoint Symmetries
and Continuous Counterpoint

Octavio A. Agustín-Aquino

Abstract A counterpoint theory for the whole continuum of the octave is obtained
from Mazzola’s model via extended counterpoint symmetries, and some of its prop-
erties are discussed.

1 Introduction

Mazzola’s model for first species counterpoint is interesting because it predicts the
rules of Fux’s theory (in particular, the forbidden parallel fifths) reasonably well. It
is also generalizable to microtonal equally tempered scales of even cardinality, and
offers alternative understandings of consonance and dissonance distinct from the one
explored extensively in Europe. In this paper we take some steps towards an effective
extension of the whole model from a microtonal equally tempered scale into another,
and not just of the mere consonances and dissonances, as it was done by the author
in his doctoral dissertation [1].

First, we provide a definition of an extended counterpoint symmetry that preserves
the characteristics of the counterpoint of one scale in the refined one. Then, we see
that the progressive granulation of a specific example suggest an infinite counterpoint
with a continuous polarity, different from the one that Mazzola himself proposed;
a comparison of both alternatives calls for a deeper examination of the meaning of
counterpoint extended to the full continuum of frequencies within the octave.

Wemustwarn the reader that just aminimumexpositionofMazzola’s counterpoint
model is done, and hence we refer to his treatise The Topos of Music [3] (whose
notation we use here) and an upcoming comprehensive reference [5] for further
details.
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2 Some Definitions and Notations

Let R be a finite ring of cardinality 2k. A subset S of R of such that |S| = k is a
dichotomy. It is often denoted by (S/�S) tomake the complement explicit. The group

−→
GL(R) = R � R× = {euv : u ∈ R, v ∈ R×}

is called the affine group of R, its members are the affine symmetries. It acts on R by

euv(x) = vx + u;

this action is extended to subsets in a pointwise manner. A dichotomy S is called
self-complementary if there exists an affine symmetry p (its quasipolarity) such
that p(S) = �S. A self-complementary dichotomy is strong if its quasipolarity p is
unique, in which case p is called its polarity.

Of particular interest are the strong dichotomies of Z2k , since this ring models
very well the equitempered 2k-tone scales modulo octave and Mazzola discovered
that the set of classical consonances is a strong dichotomy. For counterpoint, the
self-complementary dichotomies of the dual numbers

Z2k[ε] = {a + ε.b : a, b ∈ Z2k, ε
2 = 0}

are even more interesting, since they are used in Mazzola’s counterpoint model as
counterpoint intervals. More specifically, given a counterpoint interval a + ε.b, a
represents the cantus firmus, and b the interval between a and the discantus, and
from every strong dichotomy (K/D) with polarity p = eu .v in Z2k we can obtain
the induced interval dichotomy

(K [ε]/D[ε]) = {x + ε.k : x ∈ Z2k, k ∈ K }

in Z2k[ε]. It is easily proved that, for every cantus firmus, there exists a quasipolarity
qx [ε] that leaves its tangent space x + ε.K invariant.

A symmetry g ∈ −→
GL(Z2k[ε]) is a counterpoint symmetry of the consonant interval

ξ = x + ε.k ∈ K [ε] if
1. the interval ξ belongs to g(D[ε]),
2. it commutes with the quasipolarity qx [ε],
3. the set g(K [ε]) ∩ K [ε] is of maximal cardinality among those obtained with

symmetries that satisfy the previous two conditions.

Given a counterpoint symmetry g for a consonant interval ξ, themembers of the set
g(K [ε]) ∩ K [ε] are its admitted successors; they represent the rules of counterpoint
in Mazzola’s model. It must also be noted that it can be proved that the admitted
successors only need to be calculated for intervals of the form 0 + ε.k, and then
suitably transposed for the remaining intervals.
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3 Extending Counterpoint Symmetries

Let (Xn/Yn) be a strong dichotomy in Zn where

g1 = eε.t1(u1 + ε.u1v1) : Zn[ε] → Zn[ε]

is a contrapuntal symmetry for the consonant interval ε.y ∈ Xn[ε], with pn = er1w1

the polarity of (Xn/Yn). This means that if s ∈ Xn and pn[ε] = eε.r1w1 is the induced
quasipolarity then

t1 = y − u1 pn(s) and pn[ε](ε.t1) = g1(ε.r1),

as it is proved in [3, p. 652]. If a : Xn ↪→ Xan : x �→ ax is an embedding of
dichotomies, then

pan ◦ a = a ◦ pn

(where pan = er2w2 is the polarity of (Xan/Yan)) and, evidently,

pan[ε] ◦ a = a ◦ pn[ε].

In particular, ar1 = r2.
Suppose there is a symmetry

g2 = eε.t2(u2 + ε.u2v2) : Zan[ε] → Zan[ε]

such that a ◦ g1 = g2 ◦ a, then

t2 = at1 and au2 = au1.

From this we deduce

t2 = at1 = ay − au1 p1(s)

= ay − u2apn(s)

= ay − u2 pan(as)

where as ∈ Xan , and

pan[ε](ε.t2) = pan[ε](ε.at1)
= apn[ε](ε.t1) = ag1(ε.r1)

= g2(ε.ar1) = g2(ε.r2).
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This means that g2 is almost a contrapuntal symmetry for ε.ay, except for the
maximization of the intersection g2Xan[ε] ∩ Xan[ε]. Now we can define a extended
counterpoint symmetrywith respect the embeddinga as a symmetry g2 ∈ −→

GL(Zan[ε])
that satisfy

1. a ◦ g1 = g2 ◦ a with g1 a (extended or not) contrapuntal symmetry for ε.y, and
2. g2Xan[ε] ∩ Xan[ε] has the maximum cardinality among the symmetries with the

above property.

Note that extended counterpoint symmetries preserve the admitted successors
of ε.y ∈ Zn[ε], since otherwise the restriction g2|Zn [ε] of a extended counterpoint
symmetry would be a symmetry such that the intersection g2|Zn [ε]Xn[ε] ∩ Xn[ε] is
bigger than the corresponding intersection for any counterpoint symmetry. This is a
contradiction.

Remark 1 In particular, extended counterpoint symmetries always exist in the case
of the embedding 2 : Zn → Z2n , because all the elements of GL(Zn) are coprime
with 2. Thus, for any ε.y ∈ limk→∞ X2k ·n[ε], there exist a extended contrapuntal
symmetry in the limit limk→∞ Z2k ·n[ε] which is the limit of extended counterpoint
symmetries.

Example 1 Let X6 = {0, 2, 3} ⊆ Z6. The consonant interval ε.2 ∈ Z6[ε] has eε.3

(1 + ε.3) as its only counterpoint symmetry and 15 admitted successors. The
extended counterpoint symmetries of ε.4 ∈ X12 = {0, 1, 4, 5, 6, 9} ⊆ Z12 with
respect to the embedding 2 are eε.6.(1 + ε.6) and eε.6.(7 + ε.6). The number of
extended admitted successors is 48.

4 A More Detailed Example

In Example 4.11 of [1], it is shown that there exists a strong dichotomy in Z24 that
can be extended progressively (via the embedding Lemma 4.5 of [1]) towards a dense
dichotomy in S1 with polarity x �→ xeiπ , which is the antipodal map. Analogously,
the dichotomy

U0 = {0, 1, 3, . . . , 7, 10}

in Z16 can be completed in each step using the dichotomy

Vi = {0, . . . , |Ui | − 1},

so we have the inductive definition

Ui+1 = 2Ui ∪ (2Vi + 1), i ≥ 1,
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which is a strong dichotomy of Z24+i , in each case with polarity e2
3+i
. Note that the

injective limit of the Ui in S1 is dense in one hemisphere.
The standard counterpoint symmetries for U0 and successively extended coun-

terpoint symmetries for Z512 are listed in Table1. With “successively extended” we
mean that they are those who commute with the extended counterpoint symmetries
of Z256, which in turn commute with those of Z128, and so on down to Z16. In most
cases the linear part is −1, and in fact it is remarkable that all of them have no dual
component.

5 A Possible Continuous Counterpoint

The previous calculations suggest the following constructions that enable a contin-
uous and compositionally useful counterpoint. First, we consider the space S1 ⊆ C

(which represents the continuum of intervals modulo octave), with the action of the
group G = R/Z � Z2 given by

Table 1 A set of consonances in Z16, their respective counterpoint symmetries and number of
admitted successors, and their extended counterpoint symmetries when embedded in Z512, with the
corresponding number of extended admitted successors

Interval Symmetries
for Z16

|gX [ε] ∩ X [ε]| Extended symmetries
for Z512

|gX [ε] ∩ X [ε]|

0 eε53 96

eε613

eε1115 eε352511 82432

1 eε1015 112 eε320511 98816

3 eε25 96

eε911

eε1115 eε352511 82432

4 7 112 7 75264

439

5 eε13 96

eε613

eε715 eε244511 124416

6 eε313 112 eε96205 76800

7 eε15 112 eε165 76800

10 eε25 96

eε511

eε715 eε244511 124416
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etv(x) =
{
x exp(2πi t), v = 1,

x exp(2πi t), v = −1.

We define the set of consonances (K/D) as the image of [0, 1
2 ) under the map

φ : [0, 1] �→ S1 : t �→ e2iπt , which musically means that we consider as consonant
any interval greater or equal than the unison but smaller than the tritone (within an
octave). Apart from the identity, no element of G leaves (K/D) invariant, thus it is

strong and its polarity is e
1
2 .

Now, for counterpoint, we consider the torus T = S1 × S1, with the first compo-
nent for the cantus firmus and the second for the discantus interval. Let G act on T
in the following manner:

etv(x, y) = (vx, etvy);

this action is suggested by the fact that all the linear parts of the affine symmetries
of counterpoint intervals have no dual component.

Thus the set of consonant intervals is (K [ε]/D[ε]) = (S1 × K/S1 × D), the self-
complementary function for any ξ ∈ T which fixes its tangent space is e1/21, and
it commutes with any element of G ′. Also ξ = (0, k) ∈ g(D[ε]) for a g ∈ G ′ if and
only if

g = et1, t ∈ (k, k + 1/2] or g = et (−1), t ∈ [k − 1/2, k).

And here comes a delicate point. If we wish to preserve the idea of cardinality
maximization, it would be reasonable to ask the set of infinite admitted successors to
attain certain maximum. A possibility is to gauge these sets in terms of the standard
measure in T since, for instance, the affine morphisms

g =
{
ek−1/2(−1), k ∈ φ([0, 1/4]),
ek−1/21, k ∈ φ([1/4, 1/2]),

maximize the measure of the intersection (gX [ε]) ∩ X [ε]. The musical meaning of
this alternative is that the admitted successors of consonant intervals below the minor
third are all the consonant intervals above it, and vice versa. Theminor third is special,
because it has any consonant interval as an admitted successor.

But, in terms of the new perspective of homology introduced by Mazzola in [4],
we observe first that T is homeomorphic to T itself with respect to the Kuratowski
closure operator induced by the quasipolarity e1/21. This is so because, for in each
section x × S1, the self-complementary function is the antipodal morphism, thus
each x × S1 is homeomorphic to the projective line, which in turn is homeomorphic
to x × S1 itself [2, p. 58]. Furthermore, any g ∈ G ′ which leaves ξ out of g(X [ε])
is such that (g(X [ε])) ∩ X [ε] is homotopically equivalent to S1, except when such


