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Foreword

This book gives a complete and self-contained proof of Langlands’ conjecture
concerning the representations of GL(2) of a non-Archimedean local field.
It has been written to be accessible to a doctoral student with a standard
grounding in pure mathematics and some extra facility with local fields and
representations of finite groups. It had its origins in a lecture course given
by the authors at the first Beijing-Zhejiang International Summer School on
p-adic methods, held at Zhejiang University Hangzhou in 2004. We hope this
is found a fitting response to the efforts of the organizers and the enthusiastic
contribution of the student participants.

King’s College London and
Université de Paris-Sud.
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Introduction

We work with a non-Archimedean local field F which, we always assume, has
finite residue field of characteristic p. Thus F is either a finite extension of
the field Qp of p-adic numbers or a field Fpr ((t)) of formal Laurent series, in
one variable, over a finite field. The arithmetic of F is encapsulated in the
Weil group WF of F : this is a topological group, closely related to the Galois
group of a separable algebraic closure of F , but with rather more sensitive
properties. One investigates the arithmetic via the study of continuous (in
the appropriate sense) representations of WF over various algebraically closed
fields of characteristic zero, such as the complex field C or the algebraic closure
Q� of an �-adic number field.

Sticking to the complex case, the one-dimensional representations of WF

are the same as the characters (i.e., continuous homomorphisms) F× → C×:
this is the essence of local class field theory. The n-dimensional analogue of
a character of F× = GL1(F ) is an irreducible smooth representation of the
group GLn(F ) of invertible n× n matrices over F . As a specific instance of a
wide speculative programme, Langlands [55] proposed, in a precise conjecture,
that such representations should parametrize the n-dimensional representa-
tions of WF in a manner generalizing local class field theory and compatible
with parallel global considerations.

The excitement provoked by the local Langlands conjecture, as it came to
be known, stimulated a period of intense and widespread activity, reflected in
the pages of [8]. The first case, where n = 2 and F has characteristic zero,
was started in Jacquet-Langlands [46]; many hands contributed but Kutzko,
bringing two new ideas to the subject, completed the proof in [52], [53]. Sub-
sequently, the conjecture has been proved in all dimensions, first in positive
characteristic by Laumon, Rapoport and Stuhler [58], then in characteristic
zero by Harris and Taylor [38], also by Henniart [43] on the basis of an earlier
paper of Harris [37].



2 Introduction

Throughout the period of this development, the subject has largely re-
mained confined to the research literature. Our aim in this book is to provide
a navigable route into the area with a complete and self-contained account of
the case n = 2, in a tolerable number of pages, relying only on material readily
available in standard courses and texts. Apart from a couple of unavoidable
caveats concerning Chapter VII, we assume only the standard representation
theory for finite groups, the beginnings of the theory of local fields and some
very basic notions from topology.

In consequence, our methods are entirely local and elementary. Apart from
Chapter I (which could equally serve as the start of a treatise on the represen-
tation theory of p-adic reductive groups) and some introductory material in
Chapter VII, we eschew all generality. Whenever possible, we exploit special
features of GL(2) to abbreviate or simplify the arguments.

The desire to be both compact and complete removes the option of appeal-
ing to results derived from harmonic analysis on adèle groups (“base change”
[57], [1]) which originally played a determining rôle. This particular constraint
has forced us to give the first proof of the conjecture that can claim to be com-
pletely local in method.

There is an associated loss, however. The local Langlands Conjecture is just
a specific instance of a wide programme, encompassing local and global issues
and all connected reductive algebraic groups in one mighty sweep. Beyond
the minimal gesture of Chapter XIII, we can give the reader no idea of this.
Nor have we mentioned any of the geometric methods currently necessary
to prove results in higher dimensions. Fortunately, the published literature
contains many fine surveys, from Gelbart’s book [32], which still conveys the
breadth and excitement of the ideas, to the new directions described in [4].

The approach we take is guided by [46] and [50–53], but we have re-
arranged matters considerably. We have separated the classification of repre-
sentations from the functional equation. We have imported ideas of Bernstein
and Zelevinsky into the discussion of non-cuspidal representations. While the
treatment of cuspidal representations is essentially that of Kutzko, it is heavily
informed by hindsight. We have given precedence to the Godement-Jacquet
version of the functional equation and so had to treat the Converse Theorem
in a novel manner, owing something to ideas of Gérardin and Li. There is also
some degree of novelty in our treatment of the Kirillov model and the relation
between the functional equation it gives and that of Godement and Jacquet.
We have given a quick and explicit proof of the existence of the Langlands
correspondence, in the case p �= 2, at an early stage.

The case p = 2 has many pages to itself. The method is essentially that
of Kutzko, but we have had to bring a new idea to the closing pages (the
treatment of the so-called octahedral representations) to avoid an appeal to
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base change. We regard this case as being particularly important. It remains
the one instance of the local conjecture in which the detail is sufficiently
complex to be interesting, yet sufficiently visible to illuminate the miracle
that is the Langlands correspondence. Even after 25 years, it stands as a
sturdy corrective to over-optimistic attitudes to more general problems.

As light relief, we have broadened the picture with some discussion of �-adic
representations, since these provide a forum in which the correspondence finds
much of its application.

The final Chapter XIII stands outside the main sequence. There, D is the
quaternion division algebra over F . The irreducible representations of D× =
GL1(D) can be classified by a method parallel to that used for GL2(F ). The
Jacquet-Langlands correspondence provides a canonical connection between
the representation theories of D× and GL2(F ). We include it as an indication
of further dimensions in the subject. Given the experience of GL2(F ), it is a
fairly straightforward matter which we have left as a sequence of exercises.

Acknowledgement. The final draft was read by Corinne Blondel, whose acute
comments led us to remove a large number of minor errors and obscurities,
along with a couple of more significant lapses. It is a pleasure to record our
debt to her.

Notation

We list some standard notations which we use repeatedly, without always
recalling their meaning.

F = a non-Archimedean local field;
o = the discrete valuation ring in F ;
p = the maximal ideal of o;
k = o/p; p = the characteristic of k; q = |k|;
UF = the group of units of o; Un

F = 1+pn, n � 1.

(Thus the characteristic of F is 0 or p: we never need to impose any further
restriction.) In addition, υF : F× → Z is the normalized (surjective) additive
valuation and ‖x‖ = q−υF (x). We denote by µF the group of roots of unity in
F of order prime to p.

If E/F is a finite field extension, we use the analogous notations oE , pE ,
etc. The norm map E× → F× is denoted NE/F , and the trace E → F

is TrE/F . The ramification index and the residue class degree are e(E|F ),
f(E|F ) respectively. The discriminant is dE/F = pd+1, d = d(E|F ).

The symbol tr is reserved for the trace of an endomorphism, such as a
matrix or a group representation, and det is invariably the determinant.

If R is a ring with 1, R× is its group of units and Mn(R) is the ring of
n×n matrices over R. When R is commutative, GLn(R) (resp. SLn(R)) is the
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group of n × n matrices over R which are invertible (resp. of determinant 1).
We use the notation B, T , N , Z for the subgroups of GL2 of matrices of the
form (

∗ ∗
0 ∗

)
,

(
∗ 0

0 ∗

)
,

(
1 ∗
0 1

)
,

(
a 0

0 a

)

respectively. Unless otherwise specified, A = M2(F ) and G = GL2(F ).

Notes for the reader

Prerequisites. We assume the beginnings of the representation theory of
finite groups, including Mackey theory: the first 11 sections of [77] cover it
all, bar a couple of results requiring reference to [26]. Of non-Archimedean
local fields, we need general structure theory as far as the discriminant and
structure of tame extensions, plus behaviour of the norm in tame or quadratic
extensions. Practically everything can be found in [30] or the first two parts
of [76], while [87] is the source of many of the ideas here. From topology and
measure theory, beyond the most elementary concepts, we cover practically
everything we need.

All this material is commonly available in many books: we mention only
personal favourites.

From Chapter VII onwards, we rely on local class field theory. No detail
is involved, so we have been able to take an axiomatic approach. The reader
might consult the compact [68] or [74], [76]. More serious is the treatment in
§30 of the existence of the Langlands-Deligne local constant. This depends
on an interplay between local and global fields using some deep (but classi-
cal) theorems. The reader could again take an axiomatic approach. We have
included a brief account which is complete modulo the classical background.
(The requisite material is in [68] or [54].)

Navigation. Sections are numbered consecutively throughout the book.
Each section is divided into (usually) short paragraphs, numbered in the form
y.z. A reference y.z Proposition means the (only) proposition in paragraph y.z.

Chapter I stands alone, and could serve as an introduction to much wider
areas. Chapter II is elementary, and could be read first. Parts of Chapters VII
and X can be read independently. Chapter XIII could be read directly after
Chapter VI. Otherwise, the logical dependence is linear and fairly rigid.

Principal series (or non-cuspidal) representations form a distinct sub-
theme. At a first reading, this could be edited out or pursued exclusively,
according to taste. (For a different approach, emphasizing non-cuspidal rep-
resentations and their importance for L-functions, see Bump’s book [10].)
Another “short course” option would be to stop at the end of Chapter VIII,
by which stage the argument is complete for all but dyadic fields F .
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Exercises. A few exercises are scattered through the text. These are
intended to illuminate, entertain, or to indicate directions we do not follow.
Only the simpler ones ever make a serious contribution to the main argument.

Notes. We have appended brief notes or comments to some chapters, to in-
dicate further reading or wider perspectives. They tend to pre-suppose greater
experience than the main text.

History. We have written an account of the subject, not its history: that
would be a separate project of comparable scope. We have made no attempt
at a complete bibliography. We have cited sources of major importance, and
those we have found helpful in the preparation of this volume. We have also
mentioned a number of recent works, along with older ones that, in our opin-
ion, remain valuable to one learning the subject.



1

Smooth Representations

1. Locally profinite groups

2. Smooth representations of locally profinite groups

3. Measures and duality

4. The Hecke algebra

This chapter is introductory and foundational in nature. We define a class
of topological groups, the locally profinite groups, and study their smooth
representations on complex vector spaces. These representations are often
infinite-dimensional, but smoothness imposes a drastic continuity condition.
Nontheless, this class of objects is quite wide: it includes, for example, all
representations of discrete groups.

We start by recalling some standard facts. We then develop the elemen-
tary aspects of smooth representation theory, very much guided by the or-
dinary representation theory of finite groups. We occasionally turn to non-
Archimedean local fields as a source of examples. The topic of Haar measure
and integration on topological groups necessarily enters the picture. Since we
have only to deal with locally profinite groups, this is a straightforward matter
of which we give just as much as we need.

While we will ultimately be concerned only with non-Archimedean local
fields F and associated groups like GL2(F ), there is nothing to be gained from
specialization at this stage. Looking beyond the confines of the present book,
there is much to be lost. We therefore work, throughout this chapter, in quite
extreme generality.
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1. Locally Profinite Groups

In this section, we introduce and briefly discuss the notion of a locally profinite
group. We concentrate on showing how this framework accommodates the
non-Archimedean local fields and some associated groups and rings. We give
very few proofs in the first four paragraphs: it is more a case of gathering
together the pre-requisite threads.

We conclude the section with a couple of paragraphs about various char-
acters associated with a non-Archimedean local field F . We make unceasing
use of this material in the later chapters. More immediately, it gives us some
examples to illuminate the general theory of the following sections.

1.1.

Definition. A locally profinite group is a topological group G such that
every open neighbourhood of the identity in G contains a compact open sub-
group of G.

For example, any discrete group is locally profinite. A closed subgroup of a
locally profinite group is locally profinite. The quotient of a locally profinite
group by a closed normal subgroup is locally profinite.

A locally profinite group is locally compact. If it is compact, it is profinite
in the usual sense, that is, the limit of an inverse system of finite discrete
groups. In fact, if G is a compact locally profinite group, it is not hard to
show directly that the obvious map

G −→ lim
←−

G/K

is a topological isomorphism, where K ranges over the open normal subgroups
of G.

In general, any open neighbourhood of 1 in a locally profinite group G

contains a compact open subgroup K of G. As we have just seen, K is profinite:
the terminology is therefore apt.

Remark. A locally profinite group is locally compact and totally discon-
nected. In the converse direction, it is known that a compact, totally dis-
connected topological group is profinite. Likewise, a locally compact, totally
disconnected group is locally profinite, but we shall make no use of that fact.

1.2. Let F be a non-Archimedean local field. Thus F is the field of fractions
of a discrete valuation ring o. Let p be the maximal ideal of o and k = o/p

the residue class field. We will always assume that k is finite, and we will
generally denote the cardinality |k| by q.
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Let � be a prime element of F , that is, an element such that �o = p.
Every element x ∈ F× can be written uniquely as x = u�n, for some unit
u ∈ o× = UF , and some n ∈ Z. (We use the notation n = υF (x).) The field F

carries an absolute value

‖x‖ = q−n = q−υF (x), ‖0‖ = 0,

giving a metric on F , relative to which F is complete. In the metric space
topology, F is a topological field. The fractional ideals

pn = �no = {x ∈ F : ‖x‖ � q−n}, n ∈ Z,

are open subgroups of F and give a fundamental system of open neighbour-
hoods of 0 in F .

Combining the definition of the topology with the completeness property,
one sees that the canonical map

o −→ lim
←− n�1

o/pn

is a topological isomorphism. Since k is finite, each group o/pn is finite, and
the limit is compact. Each fractional ideal pn, n ∈ Z, is isomorphic to o and
so is compact. We conclude:

Proposition. The additive group F is locally profinite, and F is the union of
its compact open subgroups.

1.3. The multiplicative group F× is likewise a locally profinite group: the
congruence unit groups Un

F = 1+pn, n � 1, are compact open, and give a
fundamental system of open neighbourhoods of 1 in F×.

1.4. Let n � 1 be an integer. The vector space Fn = F × · · · × F carries the
product topology, relative to which it is a locally profinite group. As a special
case, the matrix ring Mn(F ) is a locally profinite group under addition, in
which multiplication of matrices is continuous.

The group G = GLn(F ) is an open subset of Mn(F ); inversion of matrices
is continuous, so G is a topological group. The subgroups

K = GLn(o), Kj = 1 + pjMn(o), j � 1,

are compact open, and give a fundamental system of open neighbourhoods of
1 in G. Thus G = GLn(F ) is a locally profinite group.

More generally, let V be an F -vector space of finite dimension n. The choice
of a basis gives an isomorphism V ∼= Fn, which we use to impose a topology
on V . This topology is independent of the choice of basis. The remarks above
apply equally to the algebra EndF (V ) and the group AutF (V ).
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1.5. Let V be an F -vector space of finite dimension n. An o-lattice in V is a
finitely generated o-submodule L of V such that the F -linear span FL of L

is V .

Proposition. Let L be an o-lattice in V . There is an F -basis {x1, x2, . . . , xn}
of V such that L =

∑n
i=1 oxi.

Proof. By definition, L has a finite o-generating set. Choose a minimal such
set {y1, y2, . . . , ym}: we show that this is an F -basis of V . It certainly spans
V . Suppose it is linearly dependent over F :

∑
1�i�m

aiyi = 0,

with ai ∈ F , not all zero. We can multiply through by an element of F× and
assume that all ai ∈ o and that at least one of them, aj say, is a unit of o.
Thus yj is an o-linear combination of the other yi, contrary to the minimality
hypothesis. ��

In particular, an o-lattice L is a compact open subgroup of V . The o-lattices
in V give a fundamental system of open neighbourhoods of 0 in V .

More generally, a lattice in V is a compact open subgroup of V . Here we
have:

Lemma. Let L be a subgroup of V ; then L is a lattice in V if and only if
there exist o-lattices L1, L2 in V such that L1 ⊂ L ⊂ L2.

Proof. Suppose L1 ⊂ L ⊂ L2, where the Li are o-lattices. Since L contains
L1, it is open and hence closed. Since L is contained in L2, it is compact.

Conversely, if L is a lattice in V , it must contain an o-lattice (since L is
an open neighbourhood of 0), and so FL = V . In the opposite direction, we
choose a basis {x1, . . . , xn} of V . The image of L under the obvious projection
V → Fxi is a compact open subgroup of Fxi. It is therefore contained in a
group of the form aixi, for some fractional ideal ai = pai of o. Thus L ⊂ oL ⊂∑

i aixi, and this is an o-lattice. ��

1.6. Let G be a locally profinite group.

Proposition. Let ψ : G → C× be a group homomorphism. The following are
equivalent:

(1) ψ is continuous;
(2) the kernel of ψ is open.

If ψ satisfies these conditions and G is the union of its compact open sub-
groups, then the image of ψ is contained in the unit circle |z| = 1 in C.



1. Locally Profinite Groups 11

Proof. Certainly (2) ⇒ (1). Conversely, let N be an open neighbourhood of 1
in C. Thus ψ−1(N ) is open and contains a compact open subgroup K of G.
However, if N is chosen sufficiently small, it contains no non-trivial subgroup
of C× and so K ⊂ Ker ψ.

The unit circle S1 is the unique maximal compact subgroup of C×. If K

is a compact subgroup of G, then ψ(K) is compact, and so it is contained in
S1. The final assertion follows. ��

We define a character of a locally profinite group G to be a continuous ho-
momorphism G → C×. We usually write 1G, or even just 1, for the trivial
(constant) character of G.

We call a character of G unitary if its image is contained in the unit circle.

1.7. We will later make frequent use of another property of the local field F .
The set of characters of F is a group under multiplication; we denote it F̂ .

Since F is the union of its compact open subgroups pn, n ∈ Z, all characters
of F are unitary (1.6 Proposition).

If ψ is a character and ψ 	= 1, there is a least integer d such that pd ⊂ Ker ψ.

Definition. Let ψ ∈ F̂ , ψ 	= 1. The level of ψ is the least integer d such that
pd ⊂ Ker ψ.

If we fix d, the set of characters of F of level � d is the subgroup of ψ ∈ F̂

such that ψ | pd = 1.

Proposition (Additive duality). Let ψ ∈ F̂ , ψ 	= 1, have level d.

(1) Let a ∈ F . The map aψ : x 
→ ψ(ax) is a character of F . If a 	= 0, the
character aψ has level d−υF (a).

(2) The map a 
→ aψ is a group isomorphism F ∼= F̂ .

Proof. Part (1) is immediate, and a 
→ aψ is an injective group homomorphism
F → F̂ .

Let θ ∈ F̂ , θ 	= 1, and let l be the level of θ. Let � be a prime element of F ,
and u ∈ UF . The character u�d−lψ has level l, and so agrees with θ on pl. The
characters u�d−lψ, u′�d−lψ, u, u′ ∈ UF , agree on pl−1 if and only if u ≡ u′

(mod p). The group pl−1 has q−1 non-trivial characters which are trivial on
pl. As u ranges over UF /U1

F , the q−1 characters u�d−lψ | pl−1 are distinct,
non-trivial, but trivial on pl. Therefore one of them, say u1�

d−lψ | pl−1,
equals θ | pl−1.

Iterating this procedure, we find a sequence of elements un ∈ UF such
that un�d−lψ agrees with θ on pl−n and un+1 ≡ un (mod pn). The Cauchy
sequence {un} converges to some u ∈ UF and we have θ = u�d−lψ. ��

Exercise. Let L be a lattice in F and let χ be a character of L (in the sense
of 1.6). Show there exists a character ψ of F such that ψ | L = χ.
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1.8. We turn to the multiplicative group F×. Let χ be a character of F×. By
1.6 Proposition, χ is trivial on Um

F , for some m � 0.

Definition. Let χ be a non-trivial character of F×. The level of χ is defined
to be the least integer n � 0 such that χ is trivial on Un+1

F .

We use the same terminology for characters of open subgroups of F×.
Observe that a character of F× need not be unitary: for example, the map

x 
→ ‖x‖ is a character. Note also that, in a related contrast to the additive
case, F× has a unique maximal compact subgroup, namely UF .

The structure of the group of characters of F× is more subtle than that
of F̂ . However, we shall make frequent use of a partial description in additive
terms. Let m,n be integers, 1 � m < n � 2m. The map x 
→ 1+x gives an
isomorphism pm/pn ∼= Um

F /Un
F . This gives an isomorphism of character groups

(pm/pn)̂ ∼= (Um
F /Un

F )̂ , and we can use 1.7 to describe the group (pm/pn)̂ .
For this purpose, it is convenient to fix a character ψF ∈ F̂ of level 1. For

a ∈ F , we define a function

ψF,a : F −→ C×,

ψF,a(x) = ψF (a(x−1)). (1.8.1)

Proposition 1.7 then yields:

Proposition. Let ψ ∈ F̂ have level 1. Let m,n be integers, 0 � m < n �
2m+1. The map a 
→ ψF,a | Um+1

F induces an isomorphism

p−n/p−m ≈
−−−−−→

(
Um+1

F /Un+1
F )̂ .

Observe that, viewed as a character of Um+1
F , the function ψF,a has level

−υF (a). Also, the condition relating m and n can be re-formulated as
[

n
2

]
�

m < n, where x 
→ [x] denotes the greatest integer function.

Terminology. We will use analogues of the notion of level, as defined in this
paragraph, in many contexts where we study representations of groups with a
filtration indexed by the non-negative integers. As we shall see, it is very con-
venient. From this more general viewpoint, the definition in 1.7 for characters
of F appears anomalous. This version is forced on us by a variety of historical
conventions: the only point on which these agree is that a character of F of
level zero must be trivial on o but not on p−1. This is so firmly established
that it would be confusing to change it now.
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2. Smooth Representations of Locally Profinite Groups

In this section, we introduce the notion of a smooth representation of a locally
profinite group G. We develop the basic theory, along lines familiar from the
ordinary representation theory of finite groups. New phenomena do arise, but
the general outline is very similar to that of the standard theory.

2.1. Let G be a locally profinite group, and let (π, V ) be a representation of
G. Thus V is a complex vector space and π is a group homomorphism G →
AutC(V ). The representation (π, V ) is called smooth if, for every v ∈ V , there
is a compact open subgroup K of G (depending on v) such that π(x)v = v,
for all x ∈ K. Equivalently, if V K denotes the space of π(K)-fixed vectors in
V , then

V =
⋃
K

V K ,

where K ranges over the compact open subgroups of G.
In practice, we will usually have to deal with representations of infinite

dimension.
A smooth representation (π, V ) is called admissible if the space V K is

finite-dimensional, for each compact open subgroup K of G.
Let (π, V ) be a smooth representation of G; then any G-stable subspace of

G provides a further smooth representation of G. Likewise, if U is a G-subspace
of V , the natural representation of G on the quotient V/U is smooth. One
says that (π, V ) is irreducible if V 	= 0 and V has no G-stable subspace U ,
0 	= U 	= V .

For smooth representations (πi, Vi) of G, the set HomG(π1, π2) is just the
space of linear maps f : V1 → V2 commuting with the G-actions:

f ◦ π1(g) = π2(g) ◦ f, g ∈ G. (2.1.1)

With this definition, the class of smooth representations of G forms a category
Rep(G). We remark that the category Rep(G) is abelian.

We say that two smooth representations (π1, V1), (π2, V2) of G are iso-
morphic, or equivalent, if there exists a C-isomorphism f : V1 → V2 satisfying
(2.1.1).

Example 1. A character χ of G (1.6) can be viewed as a representation χ :
G → C× = AutC(C). The representation (χ, C) is smooth. A one-dimensional
representation of G is smooth if and only if it is equivalent to a representation
defined by a character of G. Indeed, the set of isomorphism classes of one-
dimensional smooth representations of G is in canonical bijection with the
group of characters of G.
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Example 2. Suppose that G is compact, hence profinite. Let (π, V ) be an ir-
reducible smooth representation of G. The space V is then finite-dimensional.
For, if v ∈ V , v 	= 0, then v ∈ V K , for an open subgroup K of G. The index
(G : K) is necessarily finite, and the set {π(g)v : g ∈ G/K} spans V . Further,
if K ′ =

⋂
g∈G/K gKg−1, then K ′ is an open normal subgroup of G of finite

index, acting trivially on V . Thus V is effectively an irreducible representation
of the finite discrete group G/K ′.

In this more general context, one can still define the group ring C[G] as
the algebra of finite formal linear combinations of elements of G. A smooth
representation V of G is then a C[G]-module. However, an arbitrary C[G]-
module need not provide a smooth representation of G, and so the group ring
is not an effective tool for analyzing smooth representations. For this purpose,
one has to replace C[G] by a different algebra. We discuss this in §4 below.

2.2. We recall a standard concept in the present context.

Proposition. Let G be a locally profinite group, and let (π, V ) be a smooth
representation of G. The following conditions are equivalent:

(1) V is the sum of its irreducible G-subspaces;
(2) V is the direct sum of a family of irreducible G-subspaces;
(3) any G-subspace of V has a G-complement in V .

Proof. We start with the implication (1) ⇒ (2). We take a family {Ui : i ∈ I}
of irreducible G-subspaces Ui of V such that V =

∑
i∈I Ui. We consider the

set I of subsets J of I such that the sum
∑

i∈J Ui is direct. The set I is non-
empty; we show it is inductively ordered by inclusion. For, suppose we have a
totally ordered set {Ja : a ∈ A} of elements of I. Put J =

⋃
a∈A Ja. If the sum∑

j∈J Uj is not direct, there is a finite subset S of J for which
∑

j∈S Uj is not
direct. Since S must be contained in some Ja, this is impossible. Therefore
J ∈ I. We can now apply Zorn’s Lemma to get a maximal element J0 of I.
For this set, we have

V =
⊕
a∈J0

Ui,

as required for (2).
In (3), let W be a G-subspace of V . By (2), we can assume that V =⊕

i∈I Ui, for a family (Ui) of irreducible G-subspaces of V . We consider the
set J of subsets J of I for which W ∩

∑
i∈J Ui = 0. Again, the set J is

nonempty and inductively ordered by inclusion. If J is a maximal element
of J , the sum X = W +

⊕
j∈J Uj is direct. If X 	= V , there is i ∈ I with

Ui 	⊂ X, so the sum X +Ui is direct, and J ∪{i} ∈ J , contrary to hypothesis.
Thus (2) ⇒ (3).

Suppose now that (3) holds. Let V0 be the sum of all irreducible
G-subspaces of V and write V = V0 ⊕ W , for some G-subspace W of V .
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Assume for a contradiction that W 	= 0. By its definition, the space W has
no irreducible G-subspace. However, there is a non-zero G-subspace W1 of
W which is finitely generated over G. By Zorn’s Lemma, W1 has a maximal
G-subspace W0, and then W1/W0 is irreducible. We have V = V0 ⊕ W0 ⊕ U ,
for some G-subspace U of V , and hence a G-projection V → U . The image of
W1 in U is an irreducible G-subspace of U , hence an irreducible subspace of
V which is not contained in V0. This is nonsense, so V = V0 and (3) ⇒ (1).

��

One says that (π, V ) is G-semisimple if it satisfies the conditions of the propo-
sition. Interesting locally profinite groups G usually have many representations
which are not semisimple. However, the property can be employed in a slightly
different context:

Lemma. Let G be a locally profinite group, and let K be a compact open
subgroup of G. Let (π, V ) be a smooth representation of G. The space V is the
sum of its irreducible K-subspaces.

Proof. Let v ∈ V . As in 2.1 Example 2, v is fixed by an open normal subgroup
K ′ of K, and it generates a finite-dimensional K-space W on which K ′ acts
trivially. Thus W is effectively a finite-dimensional representation of the finite
group K/K ′ and so is the sum of its irreducible K-subspaces. Since v ∈ V

was chosen at random, the lemma follows. ��

The lemma says that V is K-semisimple.

2.3. Again let G be a locally profinite group and K a compact open subgroup
of G.

Let K̂ denote the set of equivalence classes of irreducible smooth represen-
tations of K. If ρ ∈ K̂ and (π, V ) is a smooth representation of G, we define
V ρ to be the sum of all irreducible K-subspaces of V of class ρ. We call V ρ

the ρ-isotypic component of V . In particular, V K is the isotypic subspace for
the class of the trivial representation 1 of K.

Proposition. Let (π, V ) be a smooth representation of G and let K be a
compact open subgroup of G.

(1) The space V is the direct sum of its K-isotypic components:

V =
⊕

ρ∈K̂

V ρ.

(2) Let (σ,W ) be a smooth representation of G. For any G-homomorphism
f : V → W and ρ ∈ K̂, we have

f(V ρ) ⊂ W ρ and W ρ ∩ f(V ) = f(V ρ).
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Proof. We use 2.2 to write
V =

⊕
i∈I

Ui,

for a family of irreducible K-subspaces Ui of V . We let U(ρ) be the sum of
those Ui of class ρ. We then have

V =
⊕

ρ∈K̂

U(ρ).

If W is an irreducible K-subspace of V of class ρ, then W ⊂ U(ρ): otherwise,
there would be a non-zero K-homomorphism W → Ui, for some Ui of some
class τ 	= ρ. We deduce that V ρ = U(ρ) and (1) follows.

In (2), the image of V ρ is a sum of irreducible K-subspaces of W , all
of class ρ and therefore contained in W ρ. Moreover, f(V ) is the sum of the
images f(V τ ), τ ∈ K̂, and f(V τ ) ⊂ W τ . Since the sum of the W τ is direct,
f(V ) is the direct sum of the f(V τ ) and the second assertion follows. ��

We frequently use part (2) of the Proposition in the following context:

Corollary 1. Let a : U → V , b : V → W be G-homomorphisms between
smooth representations U , V , W of G. The sequence

U a−−−−−→V b−−−−−→W

is exact if and only if

UK a−−−−−→V K b−−−−−→WK

is exact, for every compact open subgroup K of G.

If H is a subgroup of G, we define

V (H) = the linear span of {v−π(h)v : v ∈ V, h ∈ H}. (2.3.1)

In particular, V (H) is an H-subspace of V .

Corollary 2. Let G be a locally profinite group, and let (π, V ) be a smooth
representation of G. Let K be a compact open subgroup of G. Then

V (K) =
⊕

ρ∈ K̂,
ρ �= 1

V ρ, V = V K ⊕ V (K),

and V (K) is the unique K-complement of V K in V .
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Proof. The sum W =
⊕

V ρ, with ρ not trivial, is a K-complement of V K in
V . There is therefore a K-surjection V → V K with kernel W . Clearly, V (K)
is contained in the kernel of any K-homomorphism V → V K ; we conclude
that W contains V (K). On the other hand, if U is an irreducible K-space of
class ρ 	= 1, then U(K) = U , so V ρ ⊂ V (K). ��

Exercises.

(1) Let (π, V ) be an abstract (i.e., not necessarily smooth) representation of
G. Define

V ∞ =
⋃
K

V K ,

where K ranges over the compact open subgroups of G. Show that V ∞

is a G-stable subspace of V . Define a homomorphism

π∞ : G −→ AutC(V ∞)

by π∞(g) = π(g) | V ∞. Show that (π∞, V ∞) is a smooth representation
of G.

(2) Let (π, V ) be a smooth representation of G and (σ,W ) an abstract rep-
resentation. Let f : V → W be a G-homomorphism. Show that f(V ) ⊂
W∞, and hence HomG(V,W ) = HomG(V,W∞).

(3) Let

0 → U a−−−−−→V b−−−−−→W → 0

be an exact sequence of G-homomorphisms of abstract G-spaces. Show
that the induced sequence

0 → U∞ a−−−−−→V ∞ b−−−−−→W∞

is exact. Show by example that the map b : V ∞ → W∞ need not be
surjective.

2.4. We now consider the notion of an induced representation.
Let G be a locally profinite group, and let H be a closed subgroup of G.

Thus H is also locally profinite.
Let (σ,W ) be a smooth representation of H. We consider the space X of

functions f : G → W which satisfy

(1) f(hg) = σ(h)f(g), h ∈ H, g ∈ G;
(2) there is a compact open subgroup K of G (depending on f) such that

f(gx) = f(g), for g ∈ G, x ∈ K.
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We define a homomorphism Σ : G → AutC(X) by

Σ(g)f : x 
−→ f(xg), g, x ∈ G.

The pair (Σ,X) provides a smooth representation of G. It is called the rep-
resentation of G smoothly induced by σ, and is usually denoted

(Σ,X) = IndG
H σ.

The map σ 
→ IndG
H σ gives a functor Rep(H) → Rep(G).

There is a canonical H-homomorphism

ασ : IndG
H σ −→ W,

f 
−→ f(1).

The pair (IndG
H , α) has the following fundamental property:

Frobenius Reciprocity. Let H be a closed subgroup of a locally profinite
group G. For a smooth representation (σ,W ) of H and a smooth representa-
tion (π, V ) of G, the canonical map

HomG(π, IndG
H σ) −→ HomH(π, σ),

φ 
−→ ασ ◦ φ,

is an isomorphism that is functorial in both variables π, σ.

Proof. Let f : V → W be an H-homomorphism. We define a G-homomorphism
f� : V → Ind σ by letting f�(v) be the function g 
→ f(π(g)v). The map
f 
→ f� is then the inverse of (2.4.2). ��

A simple, but very useful, consequence is that ασ(V ) 	= 0, for any non-zero
G-subspace V of IndG

H σ.
We will also need a less formal property:

Proposition. The functor IndG
H : Rep(H) → Rep(G) is additive and exact.

Proof. For a smooth representation (σ,W ) of H, temporarily let I(σ) denote
the space of functions G → W satisfying the first condition f(hg) = σ(h)f(g)
of the definition above. Thus I is a functor to the category of abstract rep-
resentations of G; it is clearly additive and exact, while IndG

H(σ) = I(σ)∞.
Thus IndG

H is surely additive, and 2.3 Exercise (3) shows it to be left-exact.
To prove it is right-exact, let (σ,W ), (τ, U) be smooth representations of

H and let f : W → U be an H-surjection. Take φ ∈ I(τ)∞, and choose a
compact open subgroup K of G which fixes φ. The support of φ is a union
of cosets HgK, and the value φ(g) ∈ U must be fixed by τ(H ∩ gKg−1).
By 2.3 Corollary 1 (applied to the group H and the trivial representation
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of its compact open subgroup H ∩ gKg−1), there exists wg ∈ W , fixed by
σ(H ∩ gKg−1), such that f(wg) = φ(g). We define a function Φ : G → W to
have the same support as φ and Φ(hgk) = σ(h)wg, for each g ∈ H\suppφ/K.
The function Φ is fixed by K, and hence lies in I(σ)∞. Its image in I(τ)∞ is φ,
as required. ��

2.5. There is a variation on this theme. With (σ,W ) and X as in 2.4, consider
the space Xc of functions f ∈ X which are compactly supported modulo H:
this means that the image of the support supp f of f in H\G is compact or,
equivalently, supp f ⊂ HC, for some compact set C in G. The space Xc is
stable under the action of G and provides another smooth representation of
G. It is denoted c-IndG

H σ, and gives a functor

c-IndG
H : Rep(H) −→ Rep(G).

One calls it compact induction, or smooth induction with compact supports.

Exercise 1. Show that the functor c-IndG
H is additive and exact.

In all cases, there is a canonical G-embedding c-IndG
H σ → IndG

H σ. Put
another way, there is a morphism of functors c-IndG

H → IndG
H . This is an

isomorphism if and only if H\G is compact. On the other hand, for specific
G, H, σ, the map c-IndG

H σ → IndG
H σ can be an isomorphism even when H\G

is not compact. Significant examples of this phenomenon arise in 11.4 below.
This construction is mainly (but not exclusively) of interest when the

subgroup H is open in G. In this case, there is a canonical H-homomorphism

αc
σ : W −→ c-Indσ,

w 
−→ fw, (2.5.1)

where fw ∈ Xc is supported in H and fw(h) = σ(h)w, h ∈ H.

Exercise 2. Suppose H is open in G. Let φ : G → W be a function, compactly
supported modulo H, such that φ(hg) = σ(h)φ(g), h ∈ H, g ∈ G. Show that
φ ∈ Xc.

Lemma. Let H be an open subgroup of G, and let (σ,W ) be a smooth repre-
sentation of H.

(1) The map αc
σ : w 
→ fw is an H-isomorphism of W with the space of

functions f ∈ c-IndG
H σ such that supp f ⊂ H.

(2) Let W be a C-basis of W and G a set of representatives for G/H. The
set {gfw : w ∈ W, g ∈ G} is a C-basis of c-Ind σ.
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Proof. In (1), surely αc
σ is an H-homomorphism to the space of functions

supported in H; the inverse map is f 
→ f(1).
The support of a function f ∈ c-IndG

H σ is a finite union of cosets Hg−1,
for various g ∈ G, and the restriction of f to any one of these also lies in
c-Ind σ. If supp f = Hg−1, then g−1f has support contained in H, and so is a
finite linear combination of functions fw, w ∈ W. Clearly, the set of functions
gfw, w ∈ W, g ∈ G, is linearly independent, and the proof is complete. ��

For open subgroups, compact induction has its own form of Frobenius
Reciprocity property:

Proposition. Let H be an open subgroup of G, let (σ,W ) be a smooth repre-
sentation of H and (π, V ) a smooth representation of G. The canonical map

HomG(c-Ind σ, π) −→ HomH(σ, π),

f 
−→ f ◦ αc
σ,

is an isomorphism which is functorial in both variables.

Proof. Let φ be an H-homomorphism W → V . There is a unique G-homomor-
phism φ∗ : c-Indσ → V such that φ∗(fw) = φ(w), w ∈ W . The map φ 
→ φ∗
is then inverse to (2.5.2). ��

Remark . Suppose for the moment that G is finite. The coincident definitions
of induction above are then equivalent to the standard one: this is easily
proved directly. Alternatively, the version (2.5.2) of Frobenius Reciprocity is
the same as the usual one for finite groups and one can use uniqueness of
adjoint functors.

2.6. It is convenient to introduce a technical restriction on the group G. From
now on, we assume that:

Hypothesis. For any compact open subgroup K, the set G/K is countable.

We remark that, if G/K is countable for one compact open subgroup K of G,
then G/K ′ is countable for any compact open subgroup K ′ of G. For, K ∩K ′

is compact, open, and of finite index in K. Thus the surjection G/(K∩K ′) →
G/K has finite fibres and G/(K ∩ K ′), hence also G/K ′, is countable.

Certain of the things we do in this section do not require the property, but
it holds for every concrete group in which we shall be interested.

The main effect of the hypothesis is:

Lemma. Let (π, V ) be an irreducible smooth representation of G. The di-
mension dimC V is countable.
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Proof. Let v ∈ V , v 	= 0, and choose a compact open subgroup K of G such
that v ∈ V K . Since V is irreducible, the countable set {π(g)v : g ∈ G/K}
spans V . ��

This enables us to generalize a familiar result, as follows.

Schur’s Lemma. If (π, V ) is an irreducible smooth representation of G, then
EndG(V ) = C.

Proof. Let φ ∈ EndG(V ), φ 	= 0. The image and the kernel of φ are both
G-subspaces of V , so φ is bijective and invertible. Therefore EndG(V ) is a
complex division algebra.

If we fix v ∈ V , v 	= 0, the G-translates of v span V so an element
φ ∈ EndG(V ) is determined uniquely by the value φ(v). We deduce that
EndG(V ) has countable dimension. However, any φ ∈ EndG(V ), φ /∈ C, is
transcendental over C, and generates a field C(φ) ⊂ EndG(V ). The subset
{(φ−a)−1 : a ∈ C} of C(φ) is linearly independent over C, so the C-dimension
of C(φ) is uncountable, and this is impossible. The only conclusion is that
EndG(V ) = C, as required. ��

Corollary 1. Let (π, V ) be an irreducible smooth representation of G. The
centre Z of G then acts on V via a character ωπ : Z → C×, that is, π(z)v =
ωπ(z)v, for v ∈ V and z ∈ Z.

Proof. By Schur’s Lemma, there is surely a homomorphism ωπ : Z → C× such
that π(z)v = ωπ(z)v, z ∈ Z, v ∈ V . If K is a compact open subgroup of G

such that V K 	= 0, then ωπ is trivial on the compact open subgroup K ∩Z of
Z. Thus ωπ is a character of Z. ��

One calls ωπ the central character of π.

Corollary 2. If G is abelian, any irreducible smooth representation of G is
one-dimensional.

Remark . If G is compact, the converse of Schur’s Lemma holds: a smooth
representation (π, V ) of G is a direct sum of irreducible representations, so
EndG(V ) is one-dimensional if and only if π is irreducible. This is false for
smooth representations of locally profinite groups in general: see 9.10 below
for a significant example.

2.7. We will sometimes need a more general version of the preceding machin-
ery. Before dealing with this, however, it is convenient to interpolate a general
lemma.

Lemma. Let G be a locally profinite group, and let H be an open subgroup of
G of finite index.
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(1) If (π, V ) is a smooth representation of G, then V is G-semisimple if and
only if it is H-semisimple.

(2) Let (σ,W ) be a semisimple smooth representation of H. The induced
representation IndG

H σ is G-semisimple.

Proof. Suppose that V is H-semisimple, and let U be a G-subspace of V .
By hypothesis, there is an H-subspace W of V such that V = U ⊕ W . Let
f : V → U be the H-projection with kernel W . Consider the map

fG : v 
−→ (G:H)−1
∑

g∈G/H

π(g) f(π(g)−1v), v ∈ V.

The definition is independent of the choice of coset representatives and it
follows that fG is a G-projection V → U . We then have V = U ⊕Ker fG and
Ker fG is a G-subspace of V . Thus V is G-semisimple (cf. 2.2 Proposition).

Conversely, suppose that V is G-semisimple. Thus G is a direct sum of
irreducible G-subspaces (2.2), and it is enough to treat the case where V is
irreducible over G. As representation of H, the space V is finitely generated
and so admits an irreducible H-quotient U . Suppose for the moment that
H is a normal subgroup of G. By Frobenius Reciprocity (2.4.2), the H-map
V → U gives a non-trivial, hence injective, G-map V → IndG

H U . As represen-
tation of H, the induced representation IndG

H U = c-IndG
H U is a direct sum of

G-conjugates of U (cf. 2.5 Lemma). These are all irreducible over H, so Ind U

is H-semisimple. Proposition 2.2 then implies that V ⊂ Ind U is H-semisimple.
In general, we set H0 =

⋂
g∈G/H gHg−1. This is an open normal subgroup

of G of finite index. We have just shown that the G-space V is H0-semisimple;
the first part of the proof shows it is H-semisimple.

This completes the proof of (1), and (2) follows readily from the same
arguments. ��

We first apply this in the following context. Let Z be the centre of G, and fix
a character χ of Z. We consider the class of smooth representations (π, V ) of
G which admit χ as central character, that is,

π(z)v = χ(z)v, v ∈ V, z ∈ Z.

Proposition. Let (π, V ) be a smooth representation of G, admitting χ as a
central character. Let K be an open subgroup of G such that KZ/Z is compact.

(1) Let v ∈ V . The KZ-space spanned by v is of finite dimension, and is a
sum of irreducible KZ-spaces.

(2) As representation of KZ, the space V is semisimple.
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Proof. The vector v is fixed by a compact open subgroup K0 of K. The set
KZ/K0Z is finite, so the space W spanned by π(KZ)v has finite dimension.
Surely W is K0Z-semisimple; the lemma implies it is KZ-semisimple. Since
v was chosen arbitrarily, assertion (2) follows. ��

In practice, the open subgroup K will contain Z, with K/Z compact. The
discussion is equally valid if Z is a closed subgroup of the centre Z(G) of G.

2.8. The notion of duality, for smooth representations of a locally profinite
group, is both more subtle and more significant than it is for representations
of finite groups. We examine it in some detail.

Let (π, V ) be a smooth representation of the locally profinite group G.
Write V ∗ = HomC(V, C), and denote by

V ∗ × V −→ C,

(v∗, v) 
−→ 〈v∗, v〉,

the canonical evaluation pairing. The space V ∗ carries a representation π∗ of
G defined by

〈π∗(g)v∗, v〉 = 〈v∗, π(g−1)v〉, g ∈ G, v∗ ∈ V ∗, v ∈ V.

This is not, in general, smooth. We accordingly define

V̌ = (V ∗)∞ =
⋃
K

(V ∗)K ,

where K ranges over the compact open subgroups of G. Thus (cf. 2.3 Exercise
(1)) V̌ is a G-stable subspace of V ∗, and provides a smooth representation

π̌ = (π∗)∞ : G −→ AutC(V̌ ).

The representation (π̌, V̌ ) is called the contragredient, or smooth dual, of (π, V ).
We continue to denote the evaluation pairing V̌ × V → C by (v̌, v) 
→ 〈v̌, v〉.
Therefore

〈π̌(g)v̌, v〉 = 〈v̌, π(g−1)v〉, g ∈ G, v̌ ∈ V̌ , v ∈ V. (2.8.1)

Let K be a compact open subgroup of G. We recall that V K has a
unique K-complement V (K) in V (2.3). If v̌ ∈ V̌ is fixed under K, we have
〈v̌, V (K)〉 = 0, by the definition of V (K). Thus v̌ ∈ V̌ K is determined by its
effect on V K .

Proposition. Restriction to V K induces an isomorphism V̌ K ∼= (V K)∗.

Proof. One can extend a linear functional on V K to an element of V̌ K by
deeming that it be trivial on V (K). ��


