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Preface

This book arises from slides and lecture notes that I have used over the years
in my courses Financial Markets and Instruments and Financial Engineering,
which were offered at Politecnico di Torino to graduate students in Mathemat-
ical Engineering. Given the audience, the treatment is naturally geared toward
a mathematically inclined reader. Nevertheless, the required prerequisites are
relatively modest, and any student in engineering, mathematics, and statistics
should be well-equipped to tackle the contents of this introductory book.1 The
book should also be of interest to students in economics, as well as junior prac-
titioners with a suitable quantitative background.

We begin with quite elementary concepts, and material is introduced pro-
gressively, always paying due attention to the practical side of things. Mathe-
matical modeling is an art of selective simplification, which must be supported
by intuition building, as well as by a healthy dose of skepticism. This is the
aim of remarks, counterexamples, and financial horror stories that the book is
interspersed with. Occasionally, we also touch upon current research topics.

Book structure

The book is organized into five parts.

1. Part One, Overview, consists of two chapters. Chapter 1 aims at get-
ting unfamiliar readers acquainted with the role and structure of finan-
cial markets, the main classes of traded assets (equity, fixed income, and
derivatives), and the main types of market participants, both in terms of
institutions (e.g., investments banks and pension funds) and roles (e.g.,
speculators, hedgers, and arbitrageurs). We try to give a practical flavor
that is essential to students of quantitative disciplines, setting the stage
for the application of quantitative models. Chapter 2 overviews the basic
problems in finance, like asset allocation, pricing, and risk management,
which may be tackled by quantitative models. We also introduce the fun-
damental concepts related to arbitrage theory, including market complete-
ness and risk-neutral measures, in a simple static and discrete setting.

2. Part Two, Fixed-income assets, consists of four chapters and introduces
the simplest assets depending on interest rates, starting with plain bonds.
The fundamental concepts of interest rate modeling, including the term

1In case of need, the mathematical prerequisites are covered in my other book: Quantitative
Methods: An Introduction for Business Management. Wiley, 2011.

xv



xvi PREFACE

structure and forward rates, as well as bond pricing, are covered in Chap-
ter 3. The simplest interest rate derivatives (forward rate agreements and
vanilla swaps) are covered in Chapter 4, whereas Chapter 5 aims at pro-
viding the reader with a flavor of real-life markets, where details like day
count and quoting conventions are relevant. Chapter 6 concludes this part
by showing how quantitative models may be used to manage interest rate
risk. In this part, we do not consider interest rate options, which require a
stronger mathematical background and are discussed later.

3. Part Three, Equity portfolios, consists of four chapters, where we dis-
cuss equity markets and portfolios of stock shares. Actually, this is not
the largest financial market, but it is arguably the kind of market that
the layman is more familiar with. Chapter 7 is a bit more theoretical
and lays down the foundations of static decision-making under uncer-
tainty. By static, we mean that we make one decision and then we wait
for its consequences, finger crossed. Multistage decision models are dis-
cussed later. In this chapter, we also introduce the basics of risk aversion
and risk measurement. Chapter 8 is quite classical and covers traditional
mean–variance portfolio optimization. The impact of statistical estima-
tion issues on portfolio management motivates the introduction of factor
models, which are the subject of Chapter 9. Finally, in Chapter 10, we
discuss equilibrium models in their simplest forms, the capital asset pric-
ing model (CAPM), which is related to a single-index factor model, and
arbitrage pricing theory (APT), which is related to a multifactor model.
We do not discuss further developments in equilibrium models, but we
hint at some criticism based on behavioral finance.

4. Part Four, Derivatives, includes four chapters. We discuss dynamic un-
certainty models in Chapter 11, which is more challenging than previous
chapters, as we have to introduce the necessary foundations of option
pricing models, namely, stochastic differential equations and stochastic
integrals. Chapter 12 describes simple forward and futures contracts, ex-
tending concepts that were introduced in Chapter 4, when dealing with
forward and futures interest rates. Chapter 13 covers option pricing in
the case of complete markets, including the celebrated and controversial
Black–Scholes–Merton formula, whereas Chapter 14 extends the basic
concepts to the more realistic setting of incomplete markets.

5. Part Five, Advanced optimization models, is probably the less standard
part of this book, when compared to typical textbooks on financial mar-
kets. We deal with optimization model building, in Chapter 15, and op-
timization model solving, in Chapter 16. Actually, it is difficult to draw
a sharp line between model building and model solving, but it is a fact
of life that advanced software is available for solving quite sophisticated
models, and the average user does not need a very deep knowledge of the
involved algorithms, whereas she must be able to build a model. This is
the motivation for separating the two chapters.
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Needless to say, the choice of which topics should be included or omit-
ted is debatable and based on authors’ personal bias, not to mention the need
to keep a book size within a sensible limit. With respect to introductory text-
books on financial markets, there is a deeper treatment of derivative models. On
the other hand, more challenging financial engineering textbooks do not cover,
e.g., equilibrium models and portfolio optimization. We aim at an intermediate
treatment, whose main limitations include the following:

We only hint at criticism put forward by behavioral finance and do not
cover market microstructure and algorithmic trading strategies.
From a mathematical viewpoint, we pursue an intuitive treatment of fi-
nancial engineering models, as well as a simplified coverage of the re-
lated tools of stochastic calculus. We do not rely on rigorous arguments
involving self-financing strategies, martingale representation theorems, or
change of probability measures.
From a financial viewpoint, by far, the most significant omission concerns
credit risk and credit derivatives. Counterparty and liquidity risk play
a prominent role in post-Lehman Brothers financial markets and, as a
consequence of the credit crunch started in 2007, new concepts like CVA,
DVA, and FVA have been introduced. This is still a field in flux, and the
matter is arguably not quite assessed yet.
Another major omission is econometric time series models.

Adequate references on these topics are provided for the benefit of the interested
readers.

My choices are also influenced by the kind of students this book is mainly
aimed at. The coverage of optimization models and methods is deeper than
usual, and I try to open readers’ critical eye by carefully crafted examples and
counterexamples. I try to strike a satisfactory balance between the need to il-
lustrate mathematics in action and the need to understand the real-life context,
without which quantitative methods boil down to a solution in search of a prob-
lem (or a hammer looking for nails, if you prefer). I also do not disdain just a bit
of repetition and redundancy, when it may be convenient to readers who wish
to jump from chapter to chapter. More advanced sections, which may be safely
skipped by readers, are referred to as supplements and their number is marked
by an initial “S.”

In my Financial Engineering course, I also give some more information on
numerical methods. The interested reader might refer to my other books:

P. Brandimarte, Numerical Methods in Finance and Economics: A MAT-
LAB-Based Introduction (2nd ed.), Wiley, 2006
P. Brandimarte, Handbook in Monte Carlo Simulation: Applications in
Financial Engineering, Risk Management, and Economics, Wiley, 2014
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Part One

Overview





Chapter One

Financial Markets: Functions,
Institutions, and Traded
Assets

Providing a simple, yet exhaustive definition of finance is no quite easy task,
but a possible attempt, at least from a conceptual viewpoint, is the following:1

Finance is the study of how people and organizations allocate scarce
resources over time, subject to uncertainty.

This definition might sound somewhat generic, but it does involve the two es-
sential ingredients that we shall deal with in practically every single page of this
book: Time and uncertainty. Appreciating their role is essential in understand-
ing why finance was born in the past and is so pervasive now. The time value of
money is reflected in the interest rates that define how much money we have to
pay over the time span of our mortgage, or the increase in wealth that we obtain
by locking up our capital in a certificate of deposit issued by a bank. It is com-
mon wisdom that the value of $1 now is larger than the value of $1 in one year.
This is not only a consequence of the potential loss of value due to inflation.2

A dollar now, rather than in the future, paves the way to earlier investment op-
portunities, and it may also serve as a precautionary cushion against unforeseen
needs. Uncertainty is related, e.g., to the impossibility of forecasting the return
that we obtain from investing in stock shares, but also to the risk of adverse
movements in currency exchange rates for an import/export firm, or longevity
risk for a worker approaching retirement. As we show in Chapter 2, we may
model issues related to time and uncertainty within a mathematical framework,
applying principles from financial economics and tools from probability, statis-
tics, and optimization theory. Before doing that, we need a more concrete view

1This definition is taken from [2].
2This holds under common economic conditions; the exception to the rule is deflation, which is
(at the time of writing) a possibility in Euroland. In this book, we will assume that the standard
economic conditions prevail.

1



2 CHAPTER 1 Financial Markets: Functions, Institutions, and Traded Assets

in order to understand how financial markets work, which kinds of assets are
exchanged, and which actors play a role in them and what their incentives are.
We pursue this “institutional” approach to get acquainted with finance in this
chapter. Some of the more mathematically inclined students tend to consider
this side of the coin modestly exciting, but a firm understanding of it is neces-
sary to put models in the right perspective and to appreciate their pitfalls and
limitations.

In Section 1.1, we discuss the role of time and uncertainty in a rather ab-
stract way that, nevertheless, lays down some essential concepts. A more con-
crete view is taken in Section 1.2, where we describe the fundamental classes of
assets that are traded on financial markets, namely, stock shares, bonds, curren-
cies, and the basic classes of derivatives, like forward/futures contracts and op-
tions. In order to provide a proper framework, we also hint at the essential shape
of a balance sheet, in terms of assets, liabilities, and equity, and we empha-
size the difference between standardized assets traded on regulated exchanges
and less liquid assets, possibly engineered to meet specific client requirements,
which are traded over-the-counter. In Section 1.3, we describe the classes of
players involved in financial markets, such as investment/commercial banks,
common/hedge/pension funds, insurance companies, brokers, and dealers. We
insist on the separation between the institutional form and the role of those play-
ers: A single player may be of one given kind, in institutional terms, but it may
play different roles. For instance, an investment bank can, among many other
things, play the role of a prime broker for a hedge fund. Furthermore, depending
on circumstances, players may act as hedgers, speculators, or arbitrageurs. The
exact organization of financial markets is far from trivial, especially in the light
of extensive use of information technology, and a full description is beyond the
scope of this book. Nevertheless, some essential concepts are needed, such as
the difference between primary and secondary markets, which is explained in
Section 1.4. There, we also introduce some trading strategies, like buying on
margin and short-selling, which are essential to interpret what happens on finan-
cial markets in practice, as well as to understand some mathematical arguments
that we will use over and over in this book. Finally, in Section 1.5 we con-
sider market indexes and describe some basic features explaining, for instance,
the difference between an index like the Dow Jones Industrial Average and the
Standard & Poor 500.

1.1 What is the purpose of finance?

If you are reading this book, chances are that it is because you would like to
land a rewarding job in finance. Even if this is not the case, one of the reasons
why we aim at finding a good job is because we need to earn some income in
order to purchase goods and services, for ourselves and possibly other people
we care about. Every month (hopefully) we receive some income, and we must
plan its use. The old grasshopper and ant fable teaches that we should actually
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FIGURE 1.1 Shifting consumption forward and backward in time.

plan ahead with care. Part of that income should be saved to allow consumption
at some later time. Sometimes, we might need to use more income than we
are earning at present, e.g., in order to finance the purchase of our home sweet
home.

Now, imagine a world in which we cannot “store” money, and we have to
consume whatever our income is immediately, no more, no less, just like we
would do with perishable food, if no one had invented refrigerators and other
conservation techniques. This unpleasing situation is depicted in Fig. 1.1(a).
There, time is discretized in T = 3 time periods, indexed by t = 1, . . . , T .3 The
income during time period t is denoted by It, and it is equal to the consumption
Ct during the same period:

It = Ct, t = 1, . . . , T.

3Sometimes, time discretization requires careful thinking about events. Do we earn income
at the beginning or at the end of a time period? In other words, is income earned during time
period t immediately available for consumption during the same time period? We may argue that
income during time period t is available for consumption only during time period t+1. We shall
discuss more precise notation and concepts in Section 2.1.2. Here, for the sake of simplicity,
we assume that every event during a time period is concentrated at some time instant. We
sometimes use the rather awkward term epoch to refer to a specific point in time. We also often
use the term time bucket to refer to a time period delimited by two time instants.
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This state of the matter is not quite satisfactory, if we have excess income in
some period and would like to delay consumption to a later time period. In
Fig. 1.1(b), part of income I2, denoted by L2,3, is shifted forward from time
period 2 to time period 3. This results in an increase of C3 and a decrease of
C2. The amount of income saved can be regarded as money invested or lent to
someone else. By a similar token, we might wish to anticipate consumption to
an earlier time period. In Fig. 1.1(c), consumption C2 is increased by shifting
income backward in time from time period t = 3, which means borrowing an
amount of money B3,2, to be used in time period t = 2 and repaid in time pe-
riod t = 3. Savers and borrowers may be individuals or institutions, and we
may play both of these roles at different stages of our working life. Clearly, all
of this may happen if there is a way to match savers and borrowers, so that all of
them may improve their consumption timing. This is one of the many roles of
financial markets; more specifically, we use the term money markets when the
time span of the loan is short. In other cases, the investment may stretch over a
considerable time span, especially if savers/borrowers are not just households,
but corporations, innovative startups, or public administrations that have to fi-
nance the development of a new product, the building of a new hospital, or an
essential infrastructure. In this case, we talk about capital markets.

Needless to say, if we accept to delay consumption, it is because we expect
to be compensated in some way. Informally, we exchange an egg for a chicken;
formally, we earn some interest rate R along the time period involved in the
shift.4 We may interpret the shift as a flow of money over a network in time
but, unlike other network flows involved in transportation over space, we do not
have exact conservation of flows. With reference to Fig. 1.1(b), we have the
following flow balance equations at nodes 2 and 3:

C2 = I2 − L2,3,

C3 = I3 + L2,3(1 +R),

stating that we give up an amount L2,3 of consumption at time 2 in exchange
for an increase (1 + R)L2,3 in later consumption. The factor 1 + R is a gain
associated with the flow of money along the arc connecting node t = 2 to node
t = 3. This is what the time value of money is all about. The exact value of the
interest rate R, as we shall see in Chapter 3, may be related to the possibility
of default (i.e., the borrower may not repay the full amount of his debt) and to
inflation risk, among other things.

Clearly, there must be another side of the coin: The increase in later con-
sumption must be paid by a counterparty in an exchange. We delay consump-
tion while someone else anticipates it. With reference to Fig. 1.1(c), we have

4In financial practice, whenever an interest rate is quoted, it is always an annual rate. For now,
let us associate the rate with an arbitrary time period.
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the following flow balance equations at nodes 2 and 3:

C2 = I2 +
B3,2

1 +R
,

C3 = I3 −B3,2.

Note that we are expressing the borrowed amount B3,2 in terms of the money at
time t = 3, when the debt is repaid; in other words B3,2 is a flow out of node 3.
This is not essential at all: If we use money at time t = 2, i.e., we consider the
flow B∗3,2 into node 2, the flow balance would simply read

C2 = I2 +B∗3,2,

C3 = I3 −B∗3,2(1 +R).

The two sides of the coin must be somehow matched by a market mechanism.
In practice, funds are channeled by financial intermediaries, which must be
compensated for their job. In fact, there is a difference between lending and
borrowing rates, called bid–ask (or bid–offer) spread, which applies to other
kinds of financial assets as well. Lending and borrowing money through a bank
is what we are familiar with as individuals, whereas a large corporation and a
sovereign government have the alternative of raising funds by issuing securi-
ties like bonds, typically promising the payment of periodic interest, as well
as the refund of the capital at some prespecified point in time, the maturity of
the bond. Corporations may also raise funds by issuing stock shares. Buying
a stock share does not mean that we lend money to a firm; hence, we are not
entitled to the payment of any interest. Rather, we own a share of the firm and
may receive a corresponding share of earnings that may be distributed in the
form of dividends to stockholders. However, the amount that we will receive is
random and no promise is made about dividends, as they depend on how well
the business is doing, as well as the decision of reinvesting part of the earning
in new business ventures, rather than distributing the whole of it.

After being first issued, securities like bonds and stock shares may be ex-
changed among market participants, at prices that may depend on several under-
lying risk factors. Since the values of these factors are not known with certainty,
the future prices of bonds and stock shares are random. In fact, time is inter-
twined with another fundamental dimension in finance, namely, uncertainty.
When we lend or borrow money at a given interest rate, the future cash flows
are known with certainty, if we do not consider the possibility of a default on
debt. However, when we buy a stock share at time t = 0 and plan to sell it
at time t = T , randomness comes into play. Let us denote the initial price by
S(0).5 The future price S(T ) is a random variable, which we may denote
as S(T, ω) to emphasize its dependence on the random outcome (scenario) ω.
We recall that, in probability theory, a random variable is a function mapping
underlying random outcomes, corresponding to future scenarios or states of na-
ture, to numeric values. Let ωi, i = 1, . . . ,m, denote the i-th outcome, which

5Depending on notational convenience, we shall write S(t) or St, as no ambiguity should arise.
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FIGURE 1.2 Representing uncertain states of the world by a scenario fan.

occurs with probability πi. For the sake of simplicity, we are considering a dis-
crete and finite set of possible outcomes, whereas later we will deal extensively
with continuous random variables. A simple way to depict this kind of discrete
uncertainty is by a scenario fan like the one depicted in Fig. 1.2. Therefore,
S(T, ω) is a random variable, and we associate a future price S(T, ωi) with each
future state of the world. The corresponding holding period return is defined as
follows.

DEFINITION 1.1 (Holding period return) Let us consider a holding period
[0, T ], where the initial asset price is S(0) and the terminal random asset price
is S(T, ω). We define the holding period return as

R(ω)
.
=
S(T, ω)− S(0)

S(0)
(1.1)

and the holding period gain as

G(ω)
.
=
S(T, ω)

S(0)
= 1 +R(ω). (1.2)

The gain and the holding period return (return for short) are clearly related. A
return of 10% means that the stock price was multiplied by a gain factor of 1.10.

Remark. The term gain is not so common in finance textbooks. Usually, terms
like total return or gross return are used, rather than gain. On the contrary, terms
like rate of return and net return are used to refer to (holding period) return. The
problem is that these terms may ring different bells, especially to practitioners.
We may use the qualifier “total” when we want to emphasize a return includ-
ing dividend income, besides the capital gain related to price changes. Terms
like “gross” and “net” may be related with taxation issues, which we shall al-
ways disregard. This is why we prefer using “gain,” even though this usage
is less common. We shall not confuse gain, which is a multiplicative factor,


