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Foreword

Subdivision surface is a popular modeling technique in the field of computer-aided
design (CAD) and computer graphics (CG) for its strong modeling capabilities for
meshes of any topology. This book makes a comprehensive introduction to sub-
division modeling technologies, the focus of which lies in not only fundamental
theories but also practical applications. In theory aspect, this book seeks to make
readers understand the contacts between spline surfaces and subdivision surfaces
and makes the readers master the analysis techniques of subdivision surfaces. In
application aspect, it introduces some typical modeling techniques, such as inter-
polation, fitting, fairing, intersection, trimming and interactive edit. By studying this
book, readers can grasp the main technologies of subdivision surface modeling and
use them in software development. This knowledge also benefits understanding of
CAD/CG software operations.

Due to flexible topology adaptivity and strong modeling capability, subdivision
surface modeling technology has developed quickly in the field of CAD, CG, and
geometric modeling since its appearance during the 1970s. Many famous 3D
modeling software, such as 3DMax, Maya, and Meshlab, has involved subdivision
surface as a modeling tool. Subdivision modeling technology has been successfully
applied in making characters of games and special effects of movies. As the saying
goes, “Give a man a fish; you have fed him for today. Teach a man to fish; and you
have fed him for a lifetime.” On the one hand, the book has done a detailed
exposition to the basic theory of subdivision surfaces and strives to make readers to
achieve the mastery. On the other hand, although the contents of the book are
limited, we make a remarks about the main topic at the end of each chapter and list
the closely related references for readers to self-improve. We believe that by
learning through this book, readers will have a capability of researching and
developing with subdivision surfaces independently.

The book was planned by Prof. Wenhe Liao, and most materials came from
doctorial dissertations supervised by him. Associate Professor Hao Liu complied
this book and wrote Chaps. 1–6 and Sects. 10.1 and 10.2. Dr. Tao Li arranged the
rest of the book. He wrote Chap. 8, and Sects. 7.3, 10.3 and revised Sects. 7.1, 7.2
and Chaps. 9, 11. Chapter 9 was taken from Gang He’s doctorial dissertation, and
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Dr. He revised the English manuscript of this chapter. Sections 7.1 and 7.2 and
Chap. 11 came from Xiangyu Zhang’s doctorial dissertation, and Dr. Zhang revised
the corresponding English manuscript. Graduate Wei Fan made a lot of work for the
final proof. The authors thank Dr. He, Dr. Zhang and Graduate Wei Fan for their
contributions to this book.

This book is suitable for graduate students, teachers, and technical personals
majoring in CAGD, CAD/CG, and other related fields as a reference book on
surface modeling. Due to the limitation of our knowledge, there are inevitably some
drawbacks in this book. If any flaw found, we are grateful for your contact with us
(liuhao-01@nuaa.edu.cn).
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Table of Symbols

Notation

Our general approach to notation is to accord to traditional convention meanwhile
precisely to express our intentions. Consequently, we try to use traditional notation
as far as possible. At the same time, some special notation is introduced; for
example, M[i,j] denotes the entry of a matrix M in the ith row and in the jth row.
The highlights of this notation are the following:

• Function application is denoted using parentheses (), for example pðuÞ, pðu; vÞ;
a combinational number is also be denoted using parentheses (), for example
5
3

� �
¼ 5!

3!ð5�3Þ!. Diploid or triple is also denoted using parentheses (), for

example K ¼ ðV ;E;FÞ.
• Vectors and matrices are created by enclosing their members in square brackets,

for example U = [u0:u1; u2; � � �], M =
v e f
0 0 e
0 e 0

2
4

3
5. These members are scalars.

Conversely, the ith entry of the vector U is denoted by U[i]. The entry in the ith
row and in the jth row is denoted by M[i,j]. If members of a vector are also

vectors, we especially denote the vector as �!. For example E
!
=

e0
e1
..
.

en�1

2
6664

3
7775. When

a vector denotes a coordinate of a point, we also directly use name of compo-
nents. For example for R = [x,y,z], R½x� denote the x component. We also use a
vector to denote a form of a Lave tiling, for example [4,6,12] Lave tiling.

• Sets are created by enclosing their members in curly brackets {}. We arrange
that indices of members of a vector, matrix, or a set start from 0.
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• The expression @ s@ tpðx;yÞ
@ sx½i�@ ty½ j� denotes the sth partial derivative with respect to x½i� and

the tth partial derivative with respect to y½i� of the function p(x,y). For conve-
nience, we also use fuðu; vÞ to denote the partial derivative of f ðu; vÞ with respect
to u; f 0ðuÞ denote derivative of the function f(u) with respect to the variable u.

We also follow several important stylistic rules when assigning variable names.
We assign any variable name to be denoted by italics, for example U, M, a, b, k.
Bold italics denote vectors or matrices, while italics denote scalar variables or
names of geometric shapes. Often, a same letter probably has both a bold italic
version and an italic version denoting different meanings. For example,M denotes a
mesh, while M denotes a matrix.

Roman

Notation of points and vertices does most probably cause confusions. The high-
lights of these familiar letter notations are the following:

• p, q, point on continuous curves or surfaces.
• V, E, F, vertex of polygon or mesh or grid. Note that V also denotes a knot

vector for spline surfaces;
• v, e, f , vertex of subpolygon or submesh.
• ~V, ~E, ~F,~e,~f , vector formed by vertices.
• ~v, ~e, ~f , vertex after Fourier transformation for v, e, f .

For other some familiar notations, we give their meanings as the following:

• i, j, integer indices
• u, v, continuous parameter variables
• U ¼ ½u0; u1; . . .�, V ¼ ½v0; v1; . . .�, knot vector for spline curves or knot vectors

for spline surfaces.
• r, s, t, k, l, temporary variables; k usually used as level of subdivision; degree of

polynomial; degree of continuity; size of a generation vector. r usually used as
multiplicity of a knot ui in a knot vector U or variable for integer index in a
sequence;

• sðu; vÞ or sðs; tÞ, a part of a subdivision surface
• Ck, Gk , k degree derivative continuity and k degree geometric continuity
• m, n, size of grid, mesh, polygon, matrix, or vector; n also denotes valence of

vertex.
• M, Mk, mesh and mesh on kth level of subdivision;
• Ni,k(u), Ni(u), B-spline basic function
• di, ei, parameters of vertices or edges in polygons or meshes
• f ðÞ, gðÞ, pðÞ, qðÞ, hðÞ, scalar functions
• d, differential operator
• T , subdivision operator

viii Table of Symbols



• x, y, z continuous domain variables. Usually denote coordinates of points or
vertices

• si, ti. generation vector for a grid. It is a unit vector
• Dk, generation vector group formed by generation vectors. It is a set.
• GD

k , grid formed the vector group Dk

• i = (i0,i1), or i = (i0,i1,i2), integer coordinates in a grid
• x, y, real coordinates in a grid
• NDk ðxÞ, box spline basic function
• C(z), generating function for ND(x):

• X,X
s
, X
sþ

, X
sþ

, parameter mesh of a manifold patch and sth side of X, extension of

X
s
, rectangular mesh mapped from X

sþ
.

• csi;j, a chart in the parameter mesh X
s
,

• w, weight for vertex in a mesh
• TC, the non-uniform subdivision operator
• T, the skirt-removed operator
• TRC, non-uniform skirt-removed scheme
• TCT, non-uniform subdivision operator constructing subdivision surface inter-

polating mesh corner vertices
• C(•) denotes the operator taking the continuity degree
• E, energy of curve or surface
• M, subdivision matrix
• K, picking matrices
• S, a usual name for a surface
• S(∙,∙), S(∙) or S, a surface equation or any a point on a surface or a mapping from

parameter region to a space or a set formed by all points in the surface S.

Greek Letters

a, b, a, b, coefficients or vector formed by coefficients
c, aperture factor
u, /, functions or mappings
lðyÞ, a mapping constructing the basic curve in parameter regions
j slope of line
Hs A set formed by all related vertices of x in Xs

e, temporary variables, usually denote very little real number
f, a given vector function that represent imposed loads
n, eigenvector
N denotes a matrix formed by eigenvectors
R, plane
X, parameter region
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Miscellaneous

D
Z, Z2, Z2/2, set of integers, set of integer pairs. Set of integer pairs divided by 2
R, R2, real number space, and two-dimension real number space
�, convolution operator of two functions or Kronecker product of matrices
k, curvature

Functions

suppðDkÞ, support region of a vector group Dk

OðsuppðDkÞÞ or OðnkÞ, an open set which is the inner region of suppðDkÞ or a
polynomial of nk

span(Dk), space spanned by Dk

Uðx; eÞ a e neighborhood of p
edges(M) set of a mesh M
max{•}, the maximum element of a set denoted by •
min{•}, the minimum element of a set denoted by •
|•|, the valence of a vertex or element number of a set or a vector
a%b, the remainder after a divided by b
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Chapter 1
Introduction

Surface modeling is a fundamental realm of CAD and greatly affects the
development of CAD compared with NURBS. Subdivision is a subsequently
emerged surfacemodeling technique. It can be regarded as a bridge between continu-
ousmodeling and discretemodeling. Subdivisionmodeling has a verywide prospect.
Just as what DeRose has predicted [1], subdivision will largely supplant B-splines
in many application domains in the coming years. This chapter firstly describes the
surfacemodeling. And then, a review for achievements of subdivision surfaces is pro-
vided. Lastly, some surveys and books on subdivision modeling are recommended,
and meanwhile, the main idea of this book is presented.

1.1 Surface Modeling

Surface modeling generally refers to free-form surface modeling. Different from
the analytic surface, the shape of which is determined by an equation, the shape of
a free-form surface can vary according to designers’ intention. Surface modeling
is derived from the aeronautics industry because shapes of airplanes are complex
and it is difficult to express these shapes by using analytical surfaces. So far, it has
become one of the most important fundamental technologies of CAD/CAM and the
most important part of CAGD. It is also the fundamental technologies of many other
fields, such as computer graphics, computer animation, computer vision.

Surface modeling mainly researches the representation, design, analysis, and ren-
dering of surfaces in computer graphic systems [2]. These technologies on design,
rendering, and analysis depend on representation methods of surfaces. For example,
for the point interpolating technique, its implementing algorithms are probably dif-
ferent under different representation methods. Consequently, after a new surface rep-
resentation appears, people will usually research the technologies of design, analysis,
and rendering of the new representation.

© Springer Nature Singapore Pte Ltd. and Higher Education Press 2017
W. Liao et al., Subdivision Surface Modeling Technology,
DOI 10.1007/978-981-10-3515-9_1

1



2 1 Introduction

From the middle ages of last century to present, parameter spline method, Coons
method, Bézier method, B-spline method, and NURBS method [3–5] have been
adopted as main methods of the surface representations. Nowadays, NURBSmethod
is a method that is mostly used. Bézier method and B-spline method can be regarded
as special cases of NURBS method. Subdivision method is different from NURBS
method. Subdivision surfaces do not have expressions, and they are defined by limits
ofmesh sequences. T-splinemethod is another surface representationmethod that can
be regarded as an extension of B-spline method. Due to achievements of operating
abilities and memories of PCs, the polygon mesh has become an important shape
representation method. A complex shape can be accurately represented by a polygon
mesh with hundreds or thousands of polygons.

The polygon mesh is a discrete representation, whereas the NURBS surface and
the T-spline surface are continuous representations. A polygonmeshmeans that their
face elements are polygons, for example, triangles, quadrangles, pentagons. The
subdivision surface is a representation between the discrete representation and the
continuous representation.Because controlmeshes of spline surfaces and subdivision
surfaces are polygon meshes, the polygon mesh is usually mentioned in this book.
In this book, polygon mesh is simply called as mesh. When we use polygon meshes
to represent surfaces, especially in the case of meshes with dense vertices, polygon
mesh is also called as themesh surface. The geometric model expressed by a polygon
mesh is called as the polygon model or the mesh model.

Surface design is a comprehensive topic. We discuss it in two parts: modeling
methods and operation methods. Approximation, interpolation, and fitting are three
fundamental modeling methods. Figure1.1 gives explanations for these three mod-
eling methods. There are also other modeling methods, such as skinning, sweeping,
extrusion, revolution.

Intersection, trimming, and union are fundamental surface operations that are
called Boolean operations. Other surface operations, such as deformation, blending,
fairing, reconstruction, simplification, conversion, offset and multiresolution analy-
sis, have been increasingly focused on since the 80s of last century [5, 6].

Surface analysis involves the classical differential geometric properties of sur-
faces, such as continuity, curvature, principle directions. Surface analysis estimates

Fig. 1.1 Three fundamental modeling methods
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the qualities of surfaces and abilities ofmodelingmethods. It can guidemodifications
of surface shapes and constructions of modeling methods.

Surface rendering involves drawing, color, light, texture, etc.. Hardware rendering
is an important research area of subdivision surfaces. In order to rapidly render sub-
division surfaces, an efficient method is to subdivide control meshes using hardware.

1.2 Concept of Subdivision Surfaces

Although NURBS has become the industry standard of data exchange of geometric
information in computers and is widely applied in industry and animation modeling,
it still has some disadvantages. Just as what DeRose [7] has pointed out, a single
NURBS surface cannot express a complex surface with arbitrary topology, for exam-
ple, surfaces in human animation modeling. Patchwork of trimmed NURBS is the
most commonly adopted way to model complex smooth surfaces. However, this way
does have at least two difficulties: (1) Trimming is expensive and prone to numerical
error; (2) it is difficult to maintain smoothness, or even approximate smoothness, at
the seams of the patchwork as the model is animated.

Subdivision surfaces have the potential to overcome these problems: They do not
require trimming, and smoothness of the model is automatically guaranteed, even as
the model animates. They have advantages of mesh surfaces and spline surfaces.

What is subdivision? Subdivision densifies vertices of meshes by a set of given
rules. The process of densifying vertices of meshes is also called refinement. A mesh
sequence is obtained when we recursively subdivide a mesh. The limit of the mesh
sequence is called a subdivision surface if the mesh sequence is convergent. Any
mesh in the sequence is called a subdivision mesh. If a mesh has the same topology
as that of a subdivision mesh, we call that the mesh has subdivision connectivity. A
set of subdivision rules is called a subdivision scheme. In applications, we usually
replace the subdivision surface by using the subdivisionmesh on a certain subdivision
level. Figure1.2 gives a construction process of a subdivision surface. In this case,
the pipeline is expressed by an entire surface without trimmings and joins.

(a) Initial mesh; (b) Subdivide once; (c) Subdivide twice

Fig. 1.2 Construction process of a subdivision surface
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(a) Initial mesh; (b) C-C subdivision scheme; (c) Doo-Sabin subdivision 
scheme

Fig. 1.3 Different subdivision schemes produce different subdivision surfaces for the same initial
mesh

Fig. 1.4 Relations between splines and subdivision schemes

Subdivision is closely related to box spline theories. How is it related to box
splines? A box spline surface has a control mesh. For convenience, we call the sub-
division of controlmeshes of spline surfaces as refinement. Box spline theories define
refinement rules for control meshes. The limit surface is the box spline surface when
we refine a control mesh. We obtain a subdivision scheme if we generalize these
refinement rules to arbitrary meshes. It is one of the subdivision scheme construc-
tion methods to generalize refinement rules to arbitrary topology meshes. Different
subdivision schemes can be obtained based on different types of box spline surfaces.
For the same mesh, different subdivision surfaces can be obtained by using different
subdivision schemes, which is shown in Fig. 1.3. Another subdivision schemewill be
produced if we alter some of the subdivision rules of a subdivision scheme, which is
regarded as anothermethod to construct new subdivision schemes. Relations between
splines and subdivision schemes are shown in Fig. 1.4. From the figure, it should be
noticed that B-spline is a special case of box splines.

As a generalization of spline surfaces, subdivision surfaces can be regarded as
bridges between continuous surfaces and discrete surfaces. On the one hand, we can
replace the subdivision surface by using the subdivisionmesh on a certain subdivision
level. On the other hand, we can analyze geometric properties of subdivision surfaces



1.2 Concept of Subdivision Surfaces 5

in the view of continuous surfaces. Generally, subdivision elegantly addresses many
issues that are confronted in computer graphics [8]:

Arbitrary Topology: Subdivision generalizes classical spline surface approaches to
arbitrary topology. This implies that there is no need for trimming curves or awkward
constraint management between patches.
Scalability: Because of its recursive structure, subdivision naturally accommodates
level-of-detail rendering and adaptive approximation with error bounds. The result
let us be able to make the best use of limited hardware resources, such as those found
on low-end PCs.
Uniformity of Representation: Many of traditional modeling methods use either
polygon meshes or spline patches. Subdivision spans the spectrum between these
two extremes. Surfaces can behave as if they are made of patches, or they can be
treated as if consisting of many small polygons.
Numerical Stability: The meshes produced by subdivision have many of the nice
properties finite element solvers require. As a result, subdivision representations are
also highly suitable for many numerical simulation tasks which are important in
engineering and computer animation settings.
Code Simplicity: Subdivision is simple to implement and very efficient to execute.

1.3 Development of Subdivision Surfaces

Though subdivision surfaces have prevailed since the late 1990s, the basic ideas
behind subdivision are very old indeed and can be traced as far back as the early
1950s when De Rham G. used “corner cutting” to describe smooth curves. However,
the application in geometric modeling starts with the proposal of Chaikin [9], who
devised amethod of generating smooth curves for plotting in themiddle 1970s. In the
limit, Chaikin’s algorithm produced uniform quadratic B-spline curves. In 1978, Cat-
mull and Clark [10], and Doo and Sabin [11] generalized refinement rules of control
meshes of biquadratic and bicubic B-spline surfaces to meshes of arbitrary topol-
ogy, which indicates that subdivision formally becomes one of the surface modeling
methods. The generalization of biquadratic B-spline surfaces is called Doo–Sabin
subdivision surfaces, and their subdivision rules are called Doo–Sabin subdivision
scheme. Similarly, we have Catmull–Clark subdivision scheme that is usually simply
called as C-C subdivision scheme.

The number of mesh vertices exponentially increases when a mesh is subdivided.
For example, there are totallym vertices on a mesh. If the mesh is subdivided k times
and a vertex becomes n vertices after a subdivision step, there are approximatelymnk

vertices on the mesh. Limited to computers’ abilities of operation and memories,
subdivision has not been focused on until the 90s of last century. Before the 90s
of last century, most researchers mainly have paid attention to NURBS surfaces.
The theoretical system of NURBS became mature. However, subdivision techniques
also constantly grew in this period. The growth was embedded in two aspects. One is
construction of subdivision schemes and the other is analysis of subdivision surfaces.
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Fig. 1.5 Subdivision papers, plotted by year

For construction of subdivision schemes, there are also two big ideas. One is called
Loop subdivision scheme and the other is the four-point scheme. Loop subdivision
scheme was described in Loop’s Masters thesis [12] in 1987, and it was defined
over a grid of triangles. The four-point scheme was presented by Dyn, Levin, and
Gregory [13] in 1987. It was a subdivision scheme of curves. That is, we subdivide a
polygon and then obtain a curve by using the subdivision scheme. Different from the
previous approximating subdivision schemes, it was an interpolating scheme. The
generalization of the four-point scheme began in 1990 [14]. The subdivision scheme
is called Butterfly scheme that is also defined over a triangular grid.

For the analysis of subdivision surfaces, we pay attention to convergence of subdi-
vision mesh sequences and continuity of subdivision surfaces. For simplicity, we call
them convergence and continuity of subdivision schemes, respectively. In this period,
the main method of subdivision surface analysis is the eigenanalysis of subdivision
matrices. In 1978, Doo and Sabin [11] gave the famous eigenanalysis method—
discrete Fourier transformation. In later eigenanalysis analysis, Fourier transforma-
tion was always used without exception. As the development and application of Doo
and Sabin’s idea, Ball and Story considered a more general form of the algorithm of
Doo and Sabin [15]. Loop also gave eigenanalysis of his Loop subdivision surfaces
when constructing the subdivision scheme. Ball et al.’s work and Loop’s work show
that the eigenanalysis of subdivision matrices could be used explicitly in the original
design of a scheme.

After 1990, especially in the late 1990s and early 2000s, subdivision modeling
techniques have developed rapidly. The opinion is reflected by the statistics in [16].
The statistics is given in Fig. 1.5. We summarize these achievements in the following
ten aspects:

(1) Subdivision surface analysis. A representative work was given by Reif [17]
in 1995. He identified that we could not ensure that the subdivision surfaces were
G1 continuous only by using properties of subdivision matrices. Consequently, he
constructed the characteristic map and gave sufficient and necessary conditions for
G1 continuity of subdivision surfaces. By using the theory, Reif [18] showed that
the attempts to make a G2 variant without flat points for a C-C surface will not
succeed, which evoked many discussions on how to construct G2 continuous subdi-
vision surfaces in later years. General criteria to constructGk continuous subdivision
surfaces were given by Zorin in his Phd thesis [19] in 1998. By using these criteria,
he designed an algorithm to verify G1 continuity of subdivision surfaces. Prautzsch
[20] generalizes results in Reif [17] and gave the sufficient and necessary conditions
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forGk continuity of subdivision surfaces. As a shape analysis method, Peter [21, 22]
considered the differential geometric properties of subdivision surfaces, such as the
fundamental forms, theWeingartenmap, the principal curvatures, the principal direc-
tions in 2004. By relating the shape properties to the subdivision matrices, they
obtained some conditions for the construction of high-quality subdivision schemes.

(2) New subdivision schemes.Methods to construct subdivision schemes are clas-
sified into two types: One is to design new subdivision schemes, and the other
is to alter old subdivision schemes to improve continuity of subdivision surfaces,
especially to obtain G2 continuous subdivision surfaces, in light of subdivision sur-
face analysis. For the first type, Kobbelt [23] presented an interpolating subdivision
scheme over quadrilateral grids. The scheme is a generalization of product of the
four-point scheme for curve subdivisions. Peters and Reif [24] presented the “sim-
plest” scheme that was also midpoint subdivision scheme. The midpoint subdivision
surface was in fact a generalization of a box spline surface. Sederberg [25] gave the
non-uniform subdivision schemes by generalizing non-uniform quadratic and cubic
B-spline surfaces. Kobbelt [26] described a

√
3 subdivision scheme defined over a

grid of triangles. Comparedwith the Loop scheme, the number of faces of subdivision
meshes produced by a

√
3 subdivision scheme increases slowly. When a subdivision

step is executed, the number of faces has an increase of a
√
3 multiple. The theme on

the increase rate leads toVelho’s 4–8 scheme [27]. Based on 4–8 scheme, Li [28] gave
a

√
2 subdivision scheme. Dyn [29] introduced a hexagon subdivision scheme that

constructed interpolating convexity-preserving subdivision surfaces. Different from
Dyn’s hexagon subdivision scheme, Zhang’s hexagon subdivision scheme [30] was
an approximating scheme. For the second type, Zorin [8, 31] gave new subdivision
rules for Butterfly subdivision scheme. The improved Butterfly subdivision scheme
can construct C1 continuous subdivision surfaces. By using the sufficient and nec-
essary conditions for Gk continuity of subdivision surfaces, Prautzsch and Umlauf
[32–34] altered the subdivision rules of C-C subdivision scheme, Loop subdivision
scheme, and Butterfly subdivision scheme. After altering the subdivision rules, C-C
subdivision surfaces and Loop subdivision surfaces are G2 continuous and Butter-
fly subdivision surfaces are G1 continuous. It is a character of the period that new
subdivision schemes bloomed up, which was due to two reasons. One is that the rela-
tions between box splines and subdivision are opened out. Because every box spline
has a set of refinement rules, we can generalize these refinement rules to arbitrary
meshes and obtain new subdivision schemes. Of course, each such scheme would
have to have its extraordinary point rules invented. The other is that the construction
of subdivision schemes has the directions of subdivision surface analysis. Subdi-
vision surface analysis is helpful to invent extraordinary point rules of subdivision
schemes.

(3) Classifications of subdivision schemes. It is an important task to classify
these subdivision schemes since there are so many subdivision schemes. In fact, we
have used some classification methods in above discussions, such as interpolating
subdivision and approximating subdivision, Zorin et al. [8] enumerated some basic
classification methods. The topic was profoundly researched after 2000. Ivrissimtzis
et al. [35] gave a classification system for subdivision schemes by using similarity
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transformations of grids. The classification is a generalization ofAlexa’ classification
[36]. The classification shows that subdivision schemes with low incensement ratio
of mesh elements (vertices, edges, and faces) come at the expense of symmetry and
uniformity. It is a natural idea to relate classification and unification of subdivision
schemes. Stam [37] presented a class of subdivision surfaces which generalized
uniform tensor product B-spline surfaces of any bi-degree to meshes of arbitrary
topology. In the class, Doo–Sabin subdivision scheme and C-C subdivision scheme
become two special cases. Zorin [38] gave an analogous work almost at the same
time. Similar to the generalization of B-spline surfaces of any bi-degree, Oswald
[39] presented a new family for a

√
3 subdivision. After inserting new vertices into

meshes, there are smooth iterative steps. When iterative times increase, the resulting
surfaces become smoother at regular vertices. As a further generalization of the new
family, they also introduced a wider class of composite subdivision schemes suitable
for arbitrary topologies and topology rules of subdivisions.

(4) Parameter evaluation. After taking a pair of parameters (u, v), can we compute
the coordinates of S(u, v)? Parameter evaluation can answer this question. Except
for coordinates of points, parameter evaluation methods can usually compute partial
derivatives of subdivision surfaces. Consequently, we can compute some differential
geometric variables, such as normals, curvature, and principle directions, if these
variables exist. Stam’s method [40] is perfect in theory, and it can evaluate sub-
division surfaces generalized from spline surfaces [41]. Based on Stam’s method,
Wang [42] gave a parameter evaluation method for non-uniform C-C subdivision
scheme. Different from Stam’s method, Lai [43] gave another evaluation method that
employed less eigenbasis functions. Halstead et al. [44] gave formulas to compute
limit positions and limit normals of mesh vertices of subdivision surfaces. Though
their methods cannot be regarded as parameter evaluation methods, those formulas
are convenient to compute limit properties of mesh vertices.

(5) Interpolation. The interpolating methods based on subdivision surfaces can be
classified into two categories: interpolation of vertices and interpolation of curves.
The interpolation of vertices falls into two topics: interpolating subdivision and
approximating subdivision. The famous interpolating subdivision scheme—Butterfly
scheme appeared in 1990. Two sets of improved rules of Butterfly scheme were,
respectively, given by Zorin [8, 31] and Prautzsch and Umlauf [20, 32]. Kobbelt’s
interpolating subdivision scheme was a generalization of the four-point scheme and
was given in 1996 [23]. Except for these schemes generalized from the four-point
scheme, there are some schemes obtained by altering approximating schemes. Labisk
and Greiner [45] gave an interpolating

√
3 subdivision scheme. Li et al. [46] gave

an interpolating
√
2 subdivision scheme. Zhang [47] gave push-back interpolating

subdivision schemes for C-C subdivision scheme, Doo–Sabin subdivision scheme,
and Loop subdivision scheme. For algorithms based on approximating subdivision
schemes, Nasri [48] noticed that Doo–Sabin subdivision surfaces interpolate the
center of each face of meshes. Consequently, control vertices can be computed
by linear systems. Based on the idea, Nasri [49] presented a method to construct
Doo–Sabin subdivision surfaces interpolating given points and normals. Similar to
Nasri’s method, Li et al. [50] discussed the method of interpolation of points and
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normals based on C-C subdivision scheme. Zheng et al.’s method [51] was similar
to Li’s method while Zheng considered the fairing of C-C subdivisions. In order
to improve the fairing of subdivision surfaces, Zheng adjusted control vertices by
using local optimization models. By using shape similarity, Lai [52] also gave an
interpolating method of C-C subdivision surfaces. Helatead’s fairing interpolating
method [44] was very representative, and he used physics energy model to com-
pute control vertices. Helatead’s method was a global method. It was an interesting
phenomenon that interpolations of points are always related to interpolations of nor-
malswhen people construct interpolating surfaces using approximating subdivisions.
For the interpolation of curves, the representative algorithm was Levin’s combined
subdivision schemes [53] and the algorithm was also applied in trimming of subdivi-
sion surfaces, filling of holes, and blending of surfaces [54–56]. By using polygonal
complexes, Nasri [57] researched the curve interpolations of Doo–Sabin subdivision
surfaces and C-C subdivision surfaces. Zhang et al.’s method [58] can be regarded as
developments of the polygonal complex method. In Zhang’s method [58], polygonal
complexes are called “symmetric zonal meshes.”

(6) Fitting. Fitting is a key of reverse engineering. It is usually called the sur-
face reconstruction that fits unstructured triangle meshes or points clouds by using
subdivision surfaces. Fitting can mainly be classified into two categories: local para-
meterization method [59] and circularly adjusting-vertices method [60, 61]. The first
method constructs harmonic maps between a coarse polygon model and the fitted
original surface. The process of constructing harmonic maps is also the process of
parameterization. By using harmonic maps, we sample the original surfaces. These
samples form a mesh with subdivision connectivity. That is, these meshes are not
obtained by subdivisions while they have topologies of subdivision meshes. The sec-
ond method adjusts vertices of meshes after each subdivision step in order that the
shape of subdivision meshes or limit surfaces is as close as possible to the shape of
original surfaces. Ma’s method [62] does not fall into the above two categories. After
parameterizing the original surface, he computes control vertices by the least square
method. Since shapes in the real world are not all smooth and they probably have
some sharp characters, such as creases, darts, sharp points, some special subdivision
rules have to be designed for existing subdivision schemes in order to truly fit these
sharp characters [63].

(7) Multiresolution analysis of subdivision surfaces. For a mesh Mk with subdivi-
sion connectivity, how should another mesh Mk−1 with the subdivision connectivity
in a lower subdivision level be chosen to approximate the shape? How do we restore
the shape of Mk from Mk−1? Multiresolution analysis of subdivision surfaces asks
the question. Wavelet is an important tool of multiresolution analysis of subdivision
surfaces. Wavelet transformation of subdivision surfaces is originally explored by
Lounsbery et al. [64]. Based on lifting scheme for B-spline wavelets, Martin [65,
66] presented a construction method of lifted biorthogonal wavelets for meshes with
C-C subdivision connectivity. Their algorithm can be executed in linear time. Not
using wavelet transformations, Zorin [67] described a multiresolution representation
for meshes based on subdivision. Based on the representation, they built a scalable
interactive multiresolution editing system.
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(8) Boolean operations. Intersection and trimming of surfaces are the basis of
Boolean operations. Litke [54] researched the trimming of subdivision surfaces by
using the combined subdivision scheme. The combined subdivision scheme ensured
the surfaces after trimming accurately interpolate trimming curves. Using the union
operation as an example, Biermann [68] discussed the Boolean operation of subdi-
vision surfaces defined on triangle meshes. In Biermann’s method, it is important
to construct multiresolution meshes for resulting surfaces of union operations. Hui
[69] presented an algorithm for blending of subdivision surfaces. Zhou [70] also
researched the intersection and trimming operations of Loop subdivision surfaces.
Generally, it is the key of Boolean operations to control the precision of operation
results.

(9) Rendering. How do we rapidly render a subdivision surface? This is a problem
on evaluation of subdivision surfaces [71]. The evaluation methods of subdivision
surfaces can be classified into two categories: software evaluation and hardware eval-
uation. Recursive subdivision is the most direct software evaluation method. Since
ordinary recursive subdivision results in exponential increase of elements of meshes,
adaptive subdivisions are considered by many researchers. Different from ordinary
recursive subdivisions, adaptive subdivision results in such resulting meshes: There
are higher subdivision levels on regions with larger curvatures. Kobbelt [23] is one
of the researchers that first used the adaptive subdivision. The adaptive subdivision
scheme is given for quadrilateral subdivisions. The Y-split technique in the adaptive
subdivision is a famous tackle to repair holes between regions with different subdi-
vision levels. Kobbelt [26] also presented an adaptive subdivision method for a

√
3

subdivision scheme. The adaptive subdivision method still focused on eliminating
gaps between regions with different subdivision levels. Most literature on adaptive
subdivisions appeared in the 2000s and late of 1990s. Li [72] presented a survey
for adaptive subdivisions. He considered that there were three topics for adaptive
subdivisions: criteria to determine regions that should have high subdivision lev-
els, methods to eliminate gaps between regions with different subdivision levels, and
rules to compute coordinates of vertices.By combiningC-C subdivisionwithT-spline
method, Sederberg [73] presented T-NURCC subdivision scheme that can also be
regarded as an adaptive subdivision scheme. The topic on the hardware evaluation
focuses on balancing the workload between CPU and GPU (graphics processing
unit). These algorithms take advantage of parallel execution streams in program-
mable graphics hardware. This is an interesting topic after 2000. In 2000, Bischoff
et al. [74] proposed a hardware solution for Loop subdivision surface rendering. The
pretabulated basis function composition method explored by Bolz [71] is a represen-
tative hardware rendering method for C-C subdivision surfaces. Unfortunately, the
tabulated evaluation limits flexibility and can increase downstream complexity, and
it is probably troublesome to produce some sharp characters. By contrast, Shiue’s
GPU subdivision kernel [75] generated the subdivision mesh at different levels on
the GPU so that all evaluation work rested with GPU shaders.

(10) Applications. It is a milestone that the animation short filmGeri’s game suc-
ceeded in 1998. Its dramatis personaemodel is made by using subdivision techniques
[7]. So far, some leading animation software, such as Maya, 3D-Max, has used the
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subdivision as a main modeling method. The 16th part of the MPEG4 standard—
DAFX(Animation Framework extension)—also introduces the subdivision as amain
modeling method. The first AFX version was released in the beginning of 2003. In
2006, a new AFX version was released.

Generally, every topic about surface modeling is almost referred in the researches
of subdivision surfaces after 2000. Except for the above topics, there are also some
other topics, such as mixed subdivision [16, 70], surface deformation [76], surface
conversion [77, 78], surface offset [79–81].

1.4 Idea of This Book

So far, subdivision surface modeling techniques have formed a perfect system from
theories to applications. Furthermore, applications of subdivision surfaces have
reached great success in the animation field. Subdivision surfaces have become data
exchange standards of 3D animations. Practices show that the subdivision is a power-
ful modeling tool and has the powerful potential. Consequently, it is a significant task
to sum up existing researching results and generalize them. However, these achieve-
ments on subdivision surfaces are abundant and profound. It is impossible for this
book to involve all these achievements. Consequently, this book aims at gathering
achievements in aspect of applications. Some contents that the authors think are dif-
ficult, such as conditions for Gk continuity [19, 20, 32–34], variational subdivision
[82, 83], Loudbery’s wavelet transformation [64], hardware rendering [71, 74, 75],
will not be introduced in this book. We hope that this book can lead beginners to the
subdivision modeling field.

This book is not the first work that summarizes achievements of subdivision
modeling. There have been some surveys and books on subdivision before this book.
Literatures [8, 16, 86] are all-around surveys. The survey [8] summarizes achieve-
ments before 1998 based on the following topics: relations between subdivision and
B-splines, analysis of convergence and continuity of subdivision surfaces. Discus-
sions of the survey [8] are very detailed and can be considered as explanations for
original literatures. The survey [86] summarizes achievements of subdivision sur-
faces before 2004. The survey puts emphasis on relations between subdivisions and
refinements of B-splines. Some common issues on subdivision surface modeling are
also addressed. Several key topics, such as subdivision scheme construction, subdivi-
sion surface property analysis, parametric evaluation, and subdivision surface fitting,
are discussed. Some other important topics are also summarized for potential future
research and development. Compared with the above surveys, The survey [16] con-
tains the most comprehensive contents. He summarized achievements before 2003
and reviewed those new ideas and new methods after 1995. Except for reviews of
new subdivision schemes and classification methods, he still referred to multivari-
ate subdivision and face-valued subdivision and discusses non-uniform subdivision,
non-stationary subdivision, mixed subdivision etc., as new ideas. For subdivision
surface analysis, shape tuning and the parameter evaluation, he gives advantages
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and disadvantages of some main methods. For applications of subdivision surfaces,
he discusses finite element, data compression, and reverse engineering. The survey
[87] gathers these achievements of subdivision surfaces before 2006 in two parts:
fundamental theories and application techniques. Compared with the above surveys,
he still discusses hardware rendering techniques and applications in animations.

The literature [1] is a monograph on subdivision surfaces and discusses achieve-
ments before 2001. This book mainly discusses the fundamental theories of subdivi-
sions. It points out that subdivision may be viewed as the synthesis of two previously
distinct approaches to modeling shape: functions and fractals. Construction of subdi-
vision schemes is amain content of the book. Analysis of convergence and continuity
of subdivision surfaces are also discussed as a “hot” topic in that period. There are
other some monographs [6, 88, 89] on surface modeling that introduce some knowl-
edge of subdivision surfaces. However, only several classical subdivision schemes
and basic principles of subdivision surface analysis are discussed in those books.

The outline of this book is designed according to the idea of [87] and consists
of roughly two parts: fundamental theories and applied techniques. The first part
includes relations between subdivision and splines, introductions of some main sub-
division schemes, and theories of subdivision surface analysis. Different from other
surveys and books, this book directly starts from the recursive definition of B-spline
and hopes that give readers a concise cognition of spline theories. Themethod to con-
struct subdivision schemes from box splines is amain content of this part. The second
part includes n-side patches, optimization modeling interpolation, fitting, deforma-
tions, intersection and trimming, mesh editing. Those technologies are necessary to
construct geometric models using subdivision surfaces.

Remarks

This chapter gives a review for the development of subdivision surfaces. This review
focuses on the stationary subdivision scheme though there are also some literatures
on the non-stationary subdivision [82, 83, 90]. Stationary subdivision schemes cur-
rently are the most frequently applied subdivision schemes. Discussions in this book
will also focus on stationary subdivision schemes. As far as expressions of geomet-
ric shapes are concerned, there are three forms: univariate, bivariate, and trivariate
which are, respectively, fits for curves, surfaces, and volumes. There are probably
expressions of higher dimensions [16]. However, our discussions are also limited to
bivariate subdivision schemes, i.e., subdivision schemes to construct surfaces. Sur-
faces are the most frequently applied geometric shapes. A majority of researches
on subdivision modeling are researches of subdivision surfaces. Topics involved by
researches of subdivision surfaces are very extensive. These topics discussed in this
book are only several ones. However, we try to enumerate other topics and literatures
so that the readers can know them. For meshes, there are manifold meshes and non-
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manifold meshes. This book also refers to two-manifold meshes because a single
surface is a two-manifold in the differential geometric.

In this chapter, there are probably some concepts that are not known by beginners.
We have given simple descriptions for some elementary concepts such as mesh,
subdivision scheme, triangle subdivision. Strict definitions will be given in later
chapters. It is a good idea for a beginner to directly read the second chapter if he or
she does not have a clear understanding of those elementary concepts. After reading
the second chapter, you may read the introduction again. We want to give readers a
comprehensive cognition for subdivision surfaces by the introduction.

Note: In some literatures, Ck continuity of subdivision surfaces is discussed,
while Gk continuity of subdivision surfaces is discussed in other literatures. In the
view of derivations, Ck continuity and Gk continuity are different. That is to say,
Ck continuity is a concept related to expressions of curves and surfaces, while Gk

continuity is related to geometric variables. However, it is easy to know that a surface
must beGk continuous if it isCk continuous. Consequently, for geometric shapes, we
do not use the concept of Gk continuity except special requirements. For functions
whose values are scalar, we do use the concept of Ck continuity.

Exercises

1. What is the polygon mesh? Why is a polygon mesh able to represent a complex
shape?

2. What is the subdivision surface? Why is a single subdivision surface able to
represent a complex shape but why a single NURBS surface hasn’t the ability?

3. Why do most of the polygons of a mesh have the similar shape after the mesh is
subdivided several times?



Chapter 2
Splines and Subdivision

Most subdivision schemes are derived from refinement methods of control meshes of
spline curves and surfaces. This chapter mainly discusses various refinement meth-
ods for control meshes of spline curves and surfaces. Firstly, definitions and basic
properties of spline functions are introduced; secondly, refinement rules of spline
functions are deduced based on their definitions and basic properties; lastly, refine-
ment rules of control meshes of spline curves and surfaces are deduced based on
refinement rules of spline functions. In next chapter, we will generalize these refine-
ment rules of control meshes to arbitrary 2-manifold meshes to construct subdivision
surfaces.

2.1 B-Splines

There are many definitions for B-splines. The recursive definition is the most com-
monly used one in computational field. Its discovery is attributed to de-Boor, Cox,
and Mansfield [3, 4].

Definition 2.1 Given a non-decreasing sequence of the real u-axis:

U = [· · · , u−2, u−1, u0, u1, u2, · · · ], where ui � ui+1.

B-splines (or B-spline basic functions) can be defined as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ni,0(u) =
{
1, i f ui � u < ui+1

0, otherwise

Ni,k(u) = u − ui
ui+k − ui

Ni,k−1(u) + ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1(u)

assume 0/0 = 0.

(2.1)
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