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PREFACE

When a sphere is put into the path of a streaming fluid,
one would expect an upstream stagnation point and a
downstream wake region. One would also, at least to the
first order, expect the diversion of the flow to be fairly
rotationally symmetric about the flow direction. However,
in the case of planetary bodies placed in the stream of
solar-wind particles emanating from the Sun, there are a
number of processes that can break this symmetry. Obser-
vations have shown that most planetary magnetospheres
possess more or less pronounced dawn-dusk and north-
south asymmetries in behavior and properties. Some
of the asymmetries can be attributed to pure mechanics
of the planets’ celestial motion, the combined effects of
a planet’s orbital motion about the Sun and rotation
around its own axis, but the added complication of the
plasma-physical interaction between the planets and the
solar wind mean that many cannot.

Some of the most intriguing sets of asymmetries arise
due to properties of space itself. The universe is permeated
by hot, highly turbulent magnetized plasma, while plane-
tary bodies can have an intrinsic or induced magnetic
field. These two factors give rise to another set of asym-
metries, largely governed by electromagnetic forces, and
far more unpredictable and dynamic than those caused
by celestial mechanics.

The present volume is the outcome of a project initi-
ated by a core group some years ago aiming to identify
and quantify fundamental processes responsible for
dawn-dusk asymmetries in planetary plasma environ-
ments. The work started out with a series of science ses-
sions at the American Geophysical Union (AGU) fall
meetings and an international team under the auspices
of International Space Science Institute (ISSI) in Bern,
Switzerland.

xi

Both the contributors to the AGU sessions and the
ISSI team members found the idea of compiling a volume
dedicated to dawn-dusk asymmetries compelling, and
agreed to contribute. Later during the process, additional
specialists in the field were asked to contribute. The result-
ing volume contains 26 chapters authored and coauthored
by more than 60 leading specialists and discusses observa-
tions, theories, and simulations of dawn-dusk asymmetries
in planetary plasma environments.

In terms of organization, the volume starts out with
asymmetries related to the interaction between the inter-
planetary space and the planetary magnetosphere,
followed by asymmetries inside the magnetosphere. Most
of our knowledge about dawn-dusk asymmetries stems
from observations and simulations of the terrestrial
magnetosphere. This is also reflected in many of the con-
tributions, which focus on asymmetries in the terrestrial
magnetosphere. However, many of the fundamental
processes are universal, and apply to any planet. Three of
the chapters are specifically dedicated to asymmetries
in other planets. Although the book utilizes cross refer-
encing, each chapter can be read as a stand-alone paper
focusing on a specific aspect of dawn-dusk asymmetries.

This volume covers many of the key aspects of dawn-
dusk asymmetries throughout the solar system, however
there are still many unanswered questions. As our under-
standing of dawn-dusk asymmetries improves, we unlock
new insights into the physical processes that drive and
control planetary systems. As new missions, in particular
to the outer planets, are realized and more sophisticated
modeling possibilities evolve, new insight about our space
environment, including asymmetries, can be expected.
Color figures are available in the electronic version of
this book.

Stein Haaland
Andrei Runov
Colin Forsyth
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The Magnetosphere of the Earth under Sub-Alfvénic Solar Wind
Conditions as Observed on 24 and 25 May 2002

Emmanuel Chané’', Joachim Saur?, Joachim Raeder?, Fritz M. Neubauer?,
Kristofor M. Maynard?®, and Stefaan Poedts’

ABSTRACT

On 24 and 25 May 2002, the solar wind density was so low (<0.1 cm™), that the flow became sub-Alfvénic for
intervals that lasted as long as 4 h (the Alfvén Mach number was as low as 0.4). The magnetosphere changed
dramatically and (according to simulations and theory) became very asymmetric: the bow shock disappeared
and two Alfvén wings formed on the flanks of the magnetosphere (the wings were 600 R long, the decelera-
tion 30% in one wing and 60% in the other). Geotail’s data suggest that it crossed one of these wings multiple
times. The magnetosphere was geomagnetically extremely quiet, showed no substorm activity and almost no
auroral activity. Simulations show that the closed field line region was very symmetric, extending to 20 R, on
the dayside and on the nightside. The open field lines became highly asymmetric: the field lines emanating
from the Northern Hemisphere all pointed along the dawn Alfvén wing (around 8:00 LT), the field lines from
the Southern Hemisphere all pointed along the other wing (around 22:00 LT). Between 28 November 1963
and 27 September 2015, there were 16 recorded sub-Alfvénic solar wind intervals, lasting for more than 1 h
and caused by low solar wind density. Considering the uneven data coverage, these events occur, on average,

every 2.2 years.

1.1. INTRODUCTION

Under typical solar wind conditions, the structure of
Earth’s magnetosphere can be characterized as follows:
(1) compressed approximately dipolar magnetic field
lines on the dayside that typically extend up to ~11 R,
(2) elongated dipolar field lines on the nightside that form
the magnetotail, and (3) the bow shock, located a few R,
upstream of the magnetopause, where the superfast
(i.e., faster than the speed of the fast waves) solar wind
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plasma is abruptly decelerated, compressed, and heated.
On very rare occasions (less than 20 times since 1969), the
solar wind becomes sub-Alfvénic (i.e., slower than the
speed of the Alfvén waves), and thus subfast, for a few
hours. This is usually associated with periods where the
density of the solar wind is very low. As a result, the con-
figuration of the magnetosphere changes drastically: the
bow shock disappears, the magnetopause standoff dis-
tance increases, and Alfvén wings form on both sides of
the magnetosphere. Alfvén wings are tubular structures,
that can be hundreds of R long, where the incoming
plasma is slowed down, and where the magnetic field
experiences a rotation [see Drell et al., 1965; Neubauer,
1980, 1998]. Alfvén wings are caused by standing Alfvén
waves generated by an obstacle within a sub-Alfvénic
plasma flow. The existence of Alfvén wings in the Earth
environment was generally considered possible, but very
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unlikely, until Chané et al. [2012] presented the first obser-
vational evidence of Alfvén wings at Earth, which occurs
during a sub-Alfvénic solar wind event in May 2002.
A sketch of the Alfvén wings at Earth during that event is
given in Figure 1.1. One wing is located on the dusk
flank, whereas the other wing is on the dawn flank. Since
the two wings are very different (e.g., orientation, plasma
speed, magnetic field strength and orientation), they
introduce a strong dawn-dusk asymmetry in the mag-
netosphere. The IMF almost always introduces an
asymmetry in the magnetosphere, but the asymmetry is
stronger when the solar wind Alfvén Mach number is
low, and even stronger when the solar wind is sub-
Alfvénic. Asymmetries in the magnetosphere during
low-Alfvén-Mach-number solar wind intervals have
been studied by Lavraud et al. [2007, 2013], Lavraud and
Borovsky [2008], and Nishino et al. [2008] (although these
studies did not consider the sub-Alfvénic case). Nishino
et al. [2008] showed that drastic dawn-dusk asymmetries
arose in the magnetosheath (also in the tail). Lavraud et al.
[2007] showed that the magnetopause was asymmetric
during low-Alfvén-Mach-number solar wind periods.
They also showed that strong plasma acceleration could
be present in the magnetosheath during these periods
and that these accelerations were also not symmetric.
Lavraud and Borovsky [2008] showed that low-Alfvén-
Mach-number solar wind intervals generated asymmetric
magnetosheath flows, as well as asymmetric shapes for
the magnetopause and for the magnetotail. We will see in

Figure 1.1 Three dimensional sketch of the Alfvén wings on 24
and 25 May 2002 showing: magnetic field lines (lines with
arrows), the two Alfvén wings and the closed field line region
(semitransparent areas). These regions are projected on three
planes (X=-210R_, Y=-180 R, and Z=-95 R, in GSE) to show
the geometry of the wings. The direction of the incoming solar
wind is shown by the flat arrow.

the present chapter how the dawn-dusk asymmetries are
even more pronounced and how the configuration of the
magnetosphere changes drastically once the solar wind
becomes sub-Alfvénic.

Although Alfvén wings are extremely uncommon at
Earth, they may be less rare at Mercury, since the
Alfvén and fast Mach number in the solar wind are
usually lower at the orbit of Mercury [see Sarantos and
Slavin, 2009]. Alfvén wings are also expected to be pre-
sent at numerous exoplanets [see Shkolnik et al., 2003;
Saur et al., 2013] and can even magnetically connect the
planet and its parent star (which then produces an
auroral footprint on the star, see Preusse et al., 2007;
Kopp et al., 2011). Alfvén wings are also found in the
solar system, at moons possessing an ionosphere and
which are embedded in the magnetosphere of their par-
ent planet (e.g., lo, Europa, Ganymede, Callisto, and
Titan; see Kivelson et al., 2004). The Alfvén wings of
these moons are known very well thanks to in situ
measurements (obtained by the Galileo spacecraft at
Jupiter, and by the Cassini spacecraft at Saturn), to the-
oretical studies, as well as numerical simulations. For
objects without intrinsic dynamo fields such as To and
Europa, see Linker et al. [1988], Saur et al. [1999], Frank
and Paterson [2000], Schilling et al. [2008], for objects
with dynamo fields, that is, Ganymede see Jia et al.
[2009] and Duling et al. [2014]. The Alfvén wings of
these moons can generate a localized auroral spot
(called footprint) in the ionosphere of their parent
planet. These auroral footprints have been observed by
the Hubble Space Telescope for lo, Europa, and
Ganymede [Clarke et al., 2002; Gérard et al., 2002,
2006; Bonfond et al., 2007, 2008] as well as for Enceladus
[Pryor et al., 2011].

In the present chapter, we will show how the Earth’s
magnetosphere changes when the solar wind is sub-
Alfvénic and when Alfvén wings are present. In section 1.2,
the concept of Alfvén wings is introduced in more detail:
how are they generated? How do they affect the incom-
ing plasma? How fast do they expand? In section 1.3,
the prevalence of sub-Alfvénic conditions in the solar
wind just upstream of the Earth is studied. Observational
evidence of the presence of Alfvén wings at Earth on
24 and 25 May 2002 is presented in section 1.4. This
event is then studied via MHD numerical simulations
in section 1.5. Our concluding remarks are then pre-
sented in section 1.6.

1.2. ALFVEN WINGS: THEORY

When an obstacle (e.g., the Earth, To, Enceladus) is
embedded in a plasma flow (e.g., the solar wind, Jupiter’s
or Saturn’s plasma sheet), plasma waves are generated by
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the momentum exchange between the obstacle and the
plasma (e.g., fast, slow, and Alfvén waves). The fast waves
propagate in all directions, although slightly faster when
propagating perpendicularly to the magnetic field. In
case of a superfast incoming flow, the fast waves are
responsible for the formation of the bow shock.

On the other hand, the group velocity of the Alfvén
waves is directed purely along the magnetic field lines
(in both directions); this velocity is v, = B/(,p)’ in the
rest frame of the unperturbed plasma. Here B is the
magnetic field, p is the plasma mass density, and g, is
the vacuum permeability. These waves are also advected
by the plasma flow at a velocity v, in the rest frame of the
obstacle the Alfvén waves propagate in the directions
C, =vtv,, which are called the Alfvén characteristics.
The Alfvén waves thus form a stationary wave field along
the Alfvén characteristics called the Alfvén wings.

The wings can be affected by other waves (e.g., fast or
slow waves) generated, for instance, by the bow shock or
by the ionosphere. Pure Alfvén wings are therefore only
present in regions where the fast waves and the slow waves
can be neglected. This is not the case close to the bow
shock, which is why pure Alfvén wings are only present
when the incoming flow is subfast. This is also not the
case close to the ionosphere (which also generates slow
waves and fast waves). The region where the Alfvén waves
are affected neither by the slow waves (because they
propagate in a different region of space), nor by the fast
waves (because sufficiently far from the region where fast
waves are generated, their amplitude is very low) is called
the far field region. Note that in the case of a sub-Alfvénic
flow with a high plasma f, the slow waves and the Alfvén
waves would propagate in the same direction and there
would be no far field region. This situation is extremely
unlikely to happen in the solar wind at the orbit of the
Earth, but it might arise if the sub-Alfvénic flow would
be caused by a very low plasma speed, for instance. We
here consider ideal Alvén wings in a homogeneous and
time-stationary plasma flow.

Because the Alfvén waves only propagate in one
direction, their amplitude does not decrease during
propagation (in contrast to fast waves), Alfvén wings are
therefore translation invariant and can be very long
structures. The wings propagate with the velocity C,,
which is typically hundreds of km/s in the solar wind, and
can thus, even for short periods of sub-Alfvénic incoming
flow, acquire a considerable length.

As an example, let us consider an incoming plasma
flow with a speed of 400km/s and an Alfvén speed of
690km/s, and where the magnetic field is perpendicular
to the direction of propagation of the incoming flow. The
Alfvén Mach number is then ~0.58. In this case, the angle
between the wings and the direction of propagation of
the incoming flow is the same for both wings. (Note that

this is the symmetric case, since v and B are perpendicular
in the solar wind. This is thus very different from the
May 2002 event.) It is given by arctan(v,/v) = 60°. In this
example, after 1 h of sub-Alfvénic incoming flow, the
Alfvén wings would already be 450 R, long.

Depending on the ionospheric conductivity of the
obstacle, the Alfvén wings can affect the incoming flow
strongly (high ionospheric conductance) or only weakly
(low ionospheric conductance). For instance, in the
hypothetical case of an infinite ionospheric Pedersen
conductance, the plasma flow perpendicular to the mag-
netic field would come to a halt inside the Alfvén wings,
and the magnetic field B and the plasma velocity v would
be perfectly aligned with the wings axis C, and C,.
Knowing the upstream conditions and the ionospheric
conductance, the analytical model of Neubauer [1980,
1998] can be used to derive the plasma velocity and the
magnetic field inside the Alfvén wings. To do so, one can
use equations (14), (15), and (26) from Neubauer [1980]
and equation (A10) from Saur et al. [1999], neglecting
the topological effects of the internal magnetic field
of the Earth as a first approximation. Inside the wings,
the plasma flow, for instance, is decreased by a factor
a=2%,/(2,+2%,), where £, and X, are the Pedersen
conductance in the ionosphere and the Alfvén conductance
in the solar wind, respectively. The Alfvén conductance
is given by 1/(/10vA\/1+Mf1 +2M , cos@), where 0 is the
angle between B and v in the solar wind. In the previous
example, the Alfvén conductance would then be 1S,
meaning that, for an ionospheric conductivity of 58S, the
flow would be 71% slower in the Alfvén wings than in the
solar wind. In this simple symmetric example, the decel-
eration is the same in the dawn and in the dusk wing,
this is not what usually happens, and not what hap-
pened during the May 2002 event. The electromagnetic
energy (i.e., the Poynting vector) radiated away from the
dawn and from the dusk wings is generally very different
depending on the orientation of the IMF (see Fig. 5 in
Saur et al., 2013).

Note that an obstacle without an ionosphere would
also create Alfvén wings for a sub-Alfvénic incoming
flow. The key property is that the obstacle perturbs the
plasma flow perpendicular to the magnetic field.

1.3. PREVALENCE OF SUB-ALFVENIC SOLAR
WIND CONDITIONS AT EARTH

For Alfvén wings to develop at Earth, the incoming
solar wind Alfvén Mach number needs to be less than
one. The Alfvén wings propagate with the Alfvén speed,
and the longer the solar wind remains sub-Alfvénic, the
longer the wings will be. A sub-Alfvénic event lasting 1 h,
for instance, would generate wings hundreds of R long,



6 DAWN-DUSK ASYMMETRIES IN PLANETARY PLASMA ENVIRONMENTS

but such events are extremely rare. They are usually associ-
ated with periods of exceptionally low solar wind plasma
density. Usmanov et al. [2005] studied the occurrence of
low-density events upstream of the Earth. After analyzing
four decades of hourly average data (between 1963 and
2003), they found 23 events where the solar wind density
was lower than 0.3 cm™. Some of these intervals are only
1 h long, while others last for tens of hours. The longest
low-density interval found lasted for 42 h. For nine of these
time intervals, sub-Alfvénic flows were measured. But one
should keep in mind that the data coverage during this
time period was only 58% on average (as high as 100% in
2002, but as low as 7% in 1964). Extending the dataset
of Usmanov et al. [2005] up to 20 August 2015, we found 16
sub-Alfvénic events caused by low solar wind density last-
ing for at least 1 h. So it seems that, on average, this kind
of event occurs every 2.2years (taking into account data
coverage). But these events are not evenly distributed. For
instance, three sub-Alfvénic events happened in 1979, and
three others in 2002, while none were measured between
1980 and 1999 (but the data coverage was low between 1983
and 1994, since it was after ISEE-3, but before WIND).

In this section, we study in detail the seven most sub-
Alfvénic of these events (i.e., the ones that reached the
lowest M ). The number density and the Alfvén Mach
number measured during these events are shown in
Figure 1.2. The two most spectacular events happened on
4 and 31 July 1979. These two events are probably linked
since there is almost exactly one Carrington rotation
(27.3 days) between them. On 4 July 1979, the solar wind
was sub-Alfvénic for almost 10 consecutive hours, with
values as low as 0.25 for M ,. During that time, the Alfvén
wings would have reached the enormous length of 4000
R} (0.17AU). The solar wind density was extremely low
during this event, most of the time below 0.1 cm™ and
sometimes as low as 0.025 cm™. It should be noted that for
this event, the dawn and dusk wings must have been very
different, introducing a strong dawn-dusk asymmetry in
the magnetosphere. Figure 1.3 shows the measured angles
between the interplanetary magnetic field and the Sun-
Earth line in the ecliptic plane for the seven events studied
here. One can see in this figure that the IMF was more or
less along the Parker spiral during this event, meaning
that the orientations of the Alfvén wings must have been
more or less the same as the one displayed in Figure 1.1.

The second event, on 31 July 1979, lasted even longer:
the solar wind was sub-Alfvénic for 15 consecutive hours
(with M , as low as 0.3). It was also caused by a low density
solar wind, with values as low as 0.03 cm ™. Again, due to
the orientation of the IMF, the wings introduced a dawn-
dusk asymmetry during this event (see Fig. 1.3).

The third sub-Alfvénic event in 1979 happened on
22 November. During this event, the solar wind was
sub-Alfvénic for several intervals that lasted as long as

50 min. In total, M, was below one for about 5 h. M, was
as low as 0.35, and # as low as 0.03 cm™. This event has
been studied by Gosling et al. [1982]. Using data from
ISEE-3 and ISEE-2, they concluded that the bow shock
never disappeared during this event. Their conclusion is
based on temperature and magnetic field strength meas-
urements: higher values at ISEE-2 seems to indicate that
the bow shock was present between the two spacecraft;
however, each time that the solar wind displayed a low
density and a low Alfvén Mach number, the magneto-
sphere expanded and ISEE-2 crossed the magnetopause,
making any statement about the presence or the absence
of the bow shock questionable.

The low-density event, which received the broadest
attention with respect to publications, is without a doubt
the day the solar wind almost disappeared [see Le et al.,
2000a, 2000b; Ohtani et al., 2000; Jordanova et al., 2001;
Smith et al., 2001; Balasubramanian et al., 2003], which
happened on 11 May 1999. But somehow surprisingly,
this event is not the most spectacular: the solar wind
density is not as low as for the other events, neither is the
solar wind Alfvén Mach number, and the event is not
particularly long. The solar wind was sub-Alfvénic for
several time periods, but none of them lasted for more
than half an hour. M, was as low as 0.7, and 7 as low as
0.07 cm™. The IMF was very close to the Parker spiral
configuration: the angle between the IMF and the Sun-
Earth line was between 40° and 45° for almost 70% of the
measurements when the solar wind was sub-Alfvénic. As
aresult, the orientation of the wings must have been simi-
lar to Figure 1.1, with a strong dawn-dusk asymmetry.

There were three sub-Alfvénic events in 2002 that may
or may not have been linked (there were approximately
two Carrington rotations between the events). The one
with the lowest density and with the lowest Alfvén Mach
number occurred on 24 and 25 May 2002. This event is
particularly interesting for several reasons. First of all,
four spacecraft located in the solar wind on this day pro-
vide consistent and independent measurements of the
low density (see Fig. 1.4). Having multiple observations
available is important to rule out measurement errors
because plasma density measurements may not be very
accurate, especially when the particle flux is low [Gosling
et al., 1982]. Having consistent measurements by four
independent spacecraft provides high confidence that the
solar wind really was sub-Alfvénic during this event. In
addition, during this event, Geotail, which was orbiting
the Earth, crossed the Alfvén wings several times, thus
providing the first direct observational evidence of Alfvén
wings at Earth. The next section is devoted entirely to this
event. As can be seen in Figure 1.3, the orientation of the
IMF was very different for these three events: close to 45°
for the event in May, close to 120° for the event in March
(meaning that Fig. 1.1 needs to be mirrored for this
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Figure 1.2 Alfvén Mach number (left panel) and number density (right panel) in the solar wind at L1 for seven
events where the solar wind was sub-Alfvénic.
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Figure 1.3 Histogram representing the different orientations of
the IMF during sub-Alfvénic intervals for the seven events stud-
ied in the present chapter. An angle of 45° means the IMF is in a
Parker spiral configuration (above or below the current sheet), an
angle of 135° means that the IMF is perpendicular to the Parker
spiral, angles of 0° or 180° means that the IMF is aligned with
the Sun-Earth line. For instance, the histogram shows that during
the March 2002 event, when the solar wind was sub-Alfvénic,
65% of the time, this angle was between 115° and 120°.

event), close to 10° in July 2002. This also means that the
event in July 2002 is the only one that does not introduce
a dawn-dusk asymmetry in the magnetosphere (or only
a slight asymmetry in comparison to the other events).
Instead, the wings would display a strong day-night
asymmetry, with one wing pointing toward the tail, and
the second one more or less in the direction of the Sun.
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Figure 1.4 In situ measurements from several different space-
craft (SOHO, ACE, WIND, and GENESIS) in the solar wind on
24 and 25 May 2002. Top panel: number density; middle
panel: Alfvén Mach number; bottom panel: plasma . The dark
background color highlights the period of very low density and
very low Alfvén Mach number (mainly less than one).

1.4. ALFVEN WINGS AT EARTH:
OBSERVATIONAL EVIDENCE

The observational aspects of the May 2002 event were
studied by Chané et al. [2012]. The solar wind density
during this event was below 0.5 cm™ for at least 40 h and
sometimes as low as 0.04 cm™ (see panel 1 of Fig. 1.4).
Due to this very low density, the Alfvén Mach number
became extremely low. M, was lower than 1 for several
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intervals lasting up to 4 h, and reached a minimum value
of 0.4 (see panel 2 of Fig. 1.4). During this event, the
solar wind speed and magnetic field were not unusual:
plasma speeds between 300 and 850 km/s were measured,
and the IMF strength was about 10 nT (with only low
amplitude fluctuations). During this event, the plasma f
was low, always between 0.003 and 0.1 (see panel 3 of
Fig. 1.4). Such low values for g imply that the fast Mach
number and the Alfvén Mach number were almost equal.

Due to the low solar wind ram pressure, the magneto-
pause expanded. Using the empirical model of Shue et al.
[1998], one finds magnetopause standoff distances as
high as 22 R .. The position of the magnetopause can also
be estimated by assuming a simple pressure balance
between, on the one hand, the magnetic pressure of the
Earth’s dipole and, on the other hand, the ram pressure
plus the magnetic pressure of the solar wind: values as
high as 18 R are then found [see Chané et al., 2012].

Based on solar wind measurements on 24 May 2002 at
23:30 UT, Chané et al. [2012] calculated that the direc-
tions of the Alfvén wings in GSE coordinates were 0.13,
—0.94, 0.32 for the dawn Alfvén wing and —0.82, 0.57, 0.03
for the dusk/tail Alfvén wing. The geometry of the wings
is illustrated with a sketch in Figure 1.1, where one can
see (1) that the wings are mostly in the equatorial plane,
(2) that the field lines rotate when they enter or exit the
wings, and (3) that all the field lines from the dawn Alfvén
wing connect to the northern ionosphere, while all the
field lines from the dusk/tail wing connect to the southern
ionosphere. Chané et al. [2012] have also calculated that,
according to theory [see Neubauer, 1980, 1998; Saur et al.,
1999], the plasma speed in the dawn and in the dusk wing
was 43% and 70% of the solar wind speed, respectively.
One can see that there is a strong difference in the orien-
tation of the wings and that the wings characteristics
(e.g., flow speed, magnetic field strength and orienta-
tion) are also very different in the two wings. This means
that the dawn-dusk asymmetries were very pronounced.
Chané et al. [2015] also estimated that the wings reached
a size of 600 R.

Chané et al. [2012] used Geotail’s measurements to
confirm that the bow shock disappeared and that Alfvén
wings were present. Geotail was located on the dusk side,
at about 30 R, during this event. The magnetic field
strength measured by Geotail was lower than the one
measured in the solar wind, thus confirming that the bow
shock was not present. The Alfvén wings crossed Geotail
36 times: the measurements show that the magnetic field
rotates, and that the plasma decelerates inside the wing,
as predicted by theory. The minimum variance analysis
[see Sonnerup and Cahill, 1967] could be applied for nine
crossings (the eigenvalue ratio was not large enough for
the other cases) and it was found that the normals to
these discontinuities were all perpendicular to the theo-

retical axis of the wings (thus confirming that Alfvén
wing crossings were observed). Chané et al. [2012] also
analyzed IMAGE WIC images and found essentially no
auroral activity during this event. Measurements from
DMSP F13 passes over the polar caps were also inspected,
revealing that electron and proton precipitation fluxes
were much lower than normal. The magnetosphere was
thus geomagnetically extremely quiet during this event.

1.5. NUMERICAL SIMULATIONS

Recently, Chané et al. [2015] performed global 3D
MHD simulations of the May 2002 event. They studied
how the transition from a super-Alfvénic to a sub-
Alfvénic solar wind affects the bow shock, the magneto-
pause, and the magnetotail; how the ionospheric currents
changed; and how the open and the closed magnetic field
lines are affected by this transition. OpenGGCM, a code
that solves the ideal MHD equations in semiconservative
form and where the ionosphere is treated as an infinitely
thin layer below the inner boundary [see Raeder et al.,
1995, 2006, 2008; Raeder, 2003], was used to perform the
simulations

Figure 1.5 shows the result of a simulation where an
incoming solar wind with the following properties was
considered: a density of 0.04 cm™, a plasma speed of
480km/s, and a magnetic field given by B =(-7.2,7.3,1.0) nT
in GSE coordinates; this corresponds to an Alfvén Mach
number of 0.4. These values were measured in the solar
wind by ACE on 24 May at 23:00 UT. In this figure, the
two Alfvén wings can clearly be seen and display a drop
in plasma speed, as well as an increase in B in the dawn
wing, and a drop of B_in the dusk wing (as expected by
theory, see Neubauer, 1980, 1998). The figure also shows
that all the open field lines of the dawn Alfvén wing are
connected to the Northern Hemisphere, and that those of
the dusk Alfvén wing are connected to the Southern
Hemisphere.

Figure 1.6 shows how the magnetic field configuration
drastically changed when the solar wind became sub-
Alfvénic. One can see, for instance, how the closed field
lines evolved from a typical super-Alfvénic (M, =4.8)
situation (elongated in the tail and compressed on the
dayside) to a sub-Alfvénic situation: the size of the mag-
netotail has shrunk and the field lines only extend up to
about 20 R instead of almost 100 R, at the beginning of
the simulation, while conversely on the dayside the field
lines have expanded from ~13 to ~20 R .. As a result, the
closed field line region became very symmetric. This is
easy to understand, since M is proportional to the ratio
between the ram pressure and the magnetic pressure.
When the solar wind Alfvén Mach number is large, the
solar wind ram pressure is much stronger than the solar
wind magnetic pressure. In this case, the magnetosphere
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Figure 1.5 Top view of the field lines and color coded B, (left panel) and color coded plasma speed (right panel)
in the equatorial plane for the simulation performed by Chané et al. [2015]. The solar wind is coming from the
right. The dot represents the position of Geotail on 24 May 2002 at 23:00 UTC. The dark line passing through this
dot shows a plane across the dusk Alfvén wing that intersects Geotail’s position.

Xase [Rel Xase [Rel

Yase [Rel
Yese [Rel

Yese [Rel
Yese [Rel

Xase [Rel Xase [Rel

Figure 1.6 Top view of the magnetic field lines in the Chané et al. [2015] global MHD simulation. Top panels:
closed magnetic field lines. Bottom panels: open magnetic field lines (only one side is connected to the iono-
sphere). Left panels: before the sub-Alfvénic flow reached the Earth’s magnetosphere. Right panels: after the
sub-Alfvénic flow reached the Earth’s magnetosphere. The colors of the magnetic field lines have no specific
meaning. The solar wind is coming from the right.
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has its typical shape (see upper left panel of Fig. 1.6)
because the solar wind ram pressure tends to compress the
magnetosphere on the dayside and to stretch it on the
nightside. On the other hand, when the solar wind Alfvén
Mach number is lower than one, the solar wind magnetic
pressure is more important than the solar wind ram pres-
sure and therefore cannot be neglected any more. And
since the solar wind magnetic pressure compresses the
field lines, not only on the dayside, but also on the night-
side, the closed field line region becomes very symmetric
as shown in the upper right panel of Figure 1.6.

The open magnetic field lines are also affected by the
transition from a super-Alfvénic to a sub-Alfvénic
regime. While the open field lines first connect to the
lobes and are then bent toward the equatorial plane to
eventually connect to the interplanetary magnetic field
in the super-Alfvénic case (bottom left panel of Fig. 1.6),
they all point in the direction of the Alfvén wings for the
sub-Alfvénic case (see bottom right panel of Fig. 1.6).
The lobes actually disappear when the solar wind turns
sub-Alfvénic, or to be more precise, the lobes are sepa-
rated and form the two Alfvén wings. The same effect
was shown by Ridley [2007] for simulations of the Earth’s
magnetosphere when the interplanetary magnetic field
strength varies from 5 nT up to 100 nT, causing the solar
wind to become sub-Alfvénic (see Fig. 7 from his article).
In the Ridley [2007] case, dawn-dusk asymmetries are not
present because the IMF in his simulations is perpen-
dicular to the solar wind plasma flow, but our case is
strongly asymmetric.

Chané et al. [2015] also investigated with their simula-
tions how the field aligned currents change when
the solar wind becomes sub-Alfvénic. They found that
the currents were approximately 50% weaker in the sub-
Alfvénic case, which is consistent with the disappearance
of auroral activity during the May 2002 event reported by
Chané et al. [2012]. In their simulation the transition from
a super-Alfvénic solar wind to a sub-Alfvénic one was
obtained by decreasing the solar wind density (similar
to the conditions during the May 2002 event) while the
interplanetary magnetic field was kept constant. If the sub-
Alfvénic conditions had been caused by a strengthening of
the interplanetary magnetic field, an enhancement of the
field aligned currents would have been observed (as dem-
onstrated by the simulations of Ridley [2007]).

Chané et al. [2015] also checked whether the sign of B,
in the solar wind had an important effect for the May
2002 event. They performed another simulation where
they flipped B_in the solar wind. They found almost no
difference with the first simulation, although the night-
side downward currents were approximately 30% weaker,
indicating an higher (but still very weak) reconnection
rate in the tail. Changing the sign of B_ in the solar
wind resulted in only a 10° shift in the orientation of the

interplanetary magnetic field (which was mostly in the
direction of the Parker spiral), which explains why it had
so little effect on the magnetosphere.

1.6. CONCLUSIONS

Long periods of sub-Alfvénic solar wind conditions at
Earth are rare (once every 2.2 years in average) and are usu-
ally caused by a drastic drop in the solar wind density.
During these events, the Earth loses its bow shock, the mag-
netosphere expands on the dayside and shrinks on the night-
side, and two Alfvén wings are generated. Inside the Alfvén
wings, the plasma speed drops and the magnetic field experi-
ences a rotation. Usually, these sub-Alfvénic events intro-
duce a strong dawn-dusk asymmetry in the magnetosphere,
with the two wings pointing in widely different directions
and having different properties (e.g., different plasma
speeds). During the 24-25 May 2002 event, the solar wind
Alfvén Mach number was as low as 0.4. It was estimated
that the wings reached the size of 600 R (in the directions
of the Alfvén characteristics C; sketched in Fig. 1.1) and
that the plasma speeds in the dawn and in the dusk Alfvén
wings were 43% and 70% of the solar wind speed, respec-
tively. During this event, the Geotail spacecraft crossed the
Alfvén wings multiple times. IMAGE WIC images showed
that there was almost no auroral activity during this event.

The May 2002 event has been studied in detail (mostly
because of the abundance of in situ measurements avail-
able during these 2 days) but other events were more
spectacular. For instance, during 4 July 1979, the Earth
would theoretically have Alfvén wings 4000 R, long under
the assumption of steady-state homogeneous solar wind
conditions (note that the Alfvén wings might have run into
a denser plasma farther upstream while the interaction was
still sub-Alfvénic at Earth). New sub-Alfvénic solar wind
conditions at Earth are bound to happen again. Hopefully,
in situ measurements at suitable position will be available
to better understand Alfvén wings at Earth and the transi-
tion from a superfast to a sub-Alfvénic interaction.

It should also be noted that even if we understand that
sub-Alfvénic periods in the solar wind are most of the
time caused by a low density in the solar wind, why the
solar-wind density becomes so low during these events
remains an open question.
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