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Preface 

Overview 

For over a decade now, wavelets have been and continue to be an evolving 
subject of intense interest. Their allure in signal processing is due to many 
factors, not the least of which is that they offer an intuitively satisfying 
view of signals as being composed of little pieces of wa'ues. Making this 
concept mathematically precise has resulted in a deep and sophisticated 
wavelet theory that has seemingly limitless applications. 

This book and its supplementary hands-on electronic: component are 
meant to appeal to both students and professionals. Mathematics and en­
gineering students at the undergraduate and graduate levels will benefit 
greatly from the introductory treatment of the subject. Professionals and 
advanced students will find the overcomplete approach to signal represen­
tation and processing of great value. In all cases the electronic component 
of the proposed work greatly enhances its appeal by providing interactive 
numerical illustrations. 

A main goal is to provide a bridge between the theory and practice of 
wavelet-based signal processing. Intended to give the reader a balanced look 
at the subject, this book emphasizes both theoretical and practical issues 
of wavelet processing. A great deal of exposition is given in the beginning 
chapters and is meant to give the reader a firm understanding of the basics 
of the discrete and continuous wavelet transforms and their relationship. 
Later chapters promote the idea that overcomplete systems of wavelets are 
a rich and largely unexplored area that have demonstrable benefits to offer 
in many applications. 

In addition to the text, there is also supporting MATLAB based software 
that is graphically oriented and provides a computational platform for ex­
ploration and illustration of many of the ideas and algorithms presented 
here. The software includes comprehensive graphical interfaces for high 
level interaction as well as hundreds of low-level object-oriented methods 
for general signal processing. 



xvi Preface 

Organization and Features 

The book while written for senior or beginning graduate students in mathe­
matics or engineering, is also accessible to professionals and practitioners in 
the signal processing community. Technical prerequisites include an under­
graduate level knowledge of linear algebra, linear systems theory, Fourier 
transform theory, and a working knowledge of MATLAB basic functional­
ity. Additional familiarity with operator theory and real analysis is helpful 
but not required. 

Beginning chapters are expository in nature and describe basic notation, 
concepts, orthonormal wavelets, and frames. Later chapters depart slightly 
from the mainstream of wavelet theory and instead emphasize overcomplete 
representations of signals as opposed to the more widely used orthonormal 
representations associated with the discrete wavelet transform. Finally, the 
presentation becomes more numerically oriented in the last chapters where 
the benefits of overcomplete wavelet representations are explored in various 
applications. These numerical explorations are fully reproducible and ex­
tensible using the available software. The impatient and/or curious reader 
is encouraged to start there. 

This work is geared towards practical application and numerical imple­
mentation of wavelet-based algorithms supported by a solid mathematical 
foundation. Some of its main features are listed as follows. 

• An expository treatment of the following topics are included: 

continuous and discrete Fourier transforms, 
orthonormal and biorthogonal bases, 
frames, wavelet frames, and reconstruction, 
discrete wavelet transform and orthonormal wavelets, 
classical sampling theorem, and 
regular and irregular sampling and reconstruction. 

• A frame-based theory of the discretization and reconstruction of ana­
log signals is developed in terms of the sampling of a continuous 
transform. 

• The continuous wavelet and Gabor transforms are introduced in a 
unified group-theoretic setting. 

• Concepts and techniques are numerically demonstrated through 

software reproducible examples, 
interactive graphical user interfaces, and 
over 120 traditional static figures. 

• Problem exercises are given at the end of each major chapter to re­
inforce concepts and ideas. 

• A new and efficient overcomptete wavelet transform is introduced and 
applied to the tasks of 
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- noise suppression, 
- compression, 
- digital communication, and 
- identification. 

Chapter 1 describes the motivations and objectives of the entire book and 
provides an overall perspective to the material. Chapter 2 introduces the 
notation and basic mathematical concepts used throughout the text. Chap­
ter 3 discusses mathematical frames and their use as signal representations 
as well as algorithms for reconstruction of signals from their frame represen­
tations. Chapter 4 presents the continuous wavelet and Gabor transforms 
and also provides a unified view of them in terms of frame representations. 
Chapter 5 reviews the discrete wavelet transform, multiresolution analysis, 
and the construction of compactly supported orthonormal wavelet bases. 
The fast wavelet transform is also described there. Chapter 6 introduces 
the overcomplete wavelet transform, its inverse, and their filter bank imple­
mentations. Chapter 7 presents several applications of wavelet-based signal 
processing including noise suppression, signal compression, and identifica­
tion. Finally, Chapter 8 describes the supporting object-oriented MATLAB 
code which has been used to numerically illustrate the material. 

Computational Aspects 

Numerical examples presented in this book have all been computed using a 
suite of object-oriented tools developed in MATLAB 5 called the Wavelet 
Signal Processing Workstation (WSPW). The material includes a demon­
stration copy of the WSPW and is available through the Internet. This 
object-oriented wavelet signal processing software (MATLAB) is available 
at the Web site 

www.birkhauser.com/book/ISBN/0-8176-3909-8 

The software requires MATLAB version 5.0 or later to run and has been 
tested on operating systems including Windows 95 and the various flavors 
of UNIX and LINUX. 
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Introduction 

1.1 Motivation and Objectives 

Although the theory of wavelet analysis is a relatively new and still evolv­
ing discipline, there is a deep and sophisticated body of work currently 
available. Much of this work, however, requires a fairly in-depth knowledge 
of several areas of advanced mathematics and hence limits its accessibility. 
It is a main objective of this work to strike a balance between accessibil­
ity and mathematical rigor that sacrifices as little as possible of both. To 
help achieve this goal, the dissemination of the material is provided by a 
hybrid combination of traditional (text) and nontraditional (Internet and 
electronic) media. 

Despite the project's multifaceted nature, the traditional text compo­
nent is designed as the primary vehicle for delivery of the material. This 
has been done with the intent that the text be useful as a standalone refer­
ence. Supporting the text is the electronic component of the material that 
provides a dynamic and interactive aspect. It consists of both software and 
(Web-accessible) hypertext documents. In this way interactive illustration 
of signal processing concepts and techniques are provided in an effective, 
compelling, and practically useful way. 

An underlying goal of the material presented in this work is to provide a 
bridge between the theory and practice of signal processing with particular 
emphasis on generally overcomplete wavelet techniques. Despite the fact 
that the practice of signal processing is a wide and varied one, the term 
practical signal processing is used in the context of this material with a very 
specific meaning: the numerical implementation of techniques for signal 
manipulation on a finite precision digital machine. 

1.2 Core Material and Development 

A main thread of this work is the idea that overcomplete systems of wavelets 
are a rich and largely unexplored area that have great benefits to offer in 
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many applications. Starting from the continuous wavelet transformation, a 
mathematically sound theory of the discretization of analog signals is de­
veloped. The development yields a rich family of signal representations and 
leads naturally to computer implementations. The discussion is at that of a 
senior or beginning graduate student level and is accessible to professionals 
in the signal processing community. 

Numerical illustration of concepts and techniques are facilitated through 
software reproducible examples, interactive graphical user interfaces, as 
well as traditional static figures in the text. This work is geared towards 
practical application and numerical implementation of wavelet-based al­
gorithms. As such it includes working interactive software demonstrations 
available from the Internet-accessible Web site: 

www.birkhauser.com/book/ISBN/0-8176-3909-8 

1.3 Hybrid Media Components 

This text is but one piece of a larger body of material presented in a 
hybrid media form consisting of print, electronic, and software components. 
Specifically the material consists of 

• an expository theoretical treatment of the discrete and continuous 
wavelet transformations with an emphasis on discretization through 
sampling of the continuous wavelet transform; 

• an applications-oriented presentation illustrated via numerical exam­
ples on synthetic and real data; and 

• an electronic component in the form of an Internet-accessible Web 
page that includes down-loadable MATLAB-based code with the fol­
lowing capabilities: 

(i) reproducing examples presented in the text, 

(ii) conducting numerical experiments as suggested in the text, 

(iii) applying algorithms described in the text on data provided by 
the user, and 

(iv) designing new algorithms from component modules on user­
defined signal processing tasks. 

Despite the fact that this text is just part of the entire hybrid media work, 
it is meant to be a self-contained document. The electronic components, 
however, are an invaluable supplement to the text and shall be updated 
and modified continually. 

www.birkhauser.com/book/ISBN/0-8176-3909-8
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1.4 Signal Processing Perspective 

1. 4.1 Analog Signals 

A main philosophy adhered to in this book is the idea that the fundamental 
underlying objects of interest are analog (as opposed to discrete or digital) 
signals. 

In most real-world applications the fundamental signals of interest are 
analog in nature. For example, the variation in air pressure caused by a 
sound source or the intensity of electromagnetic energy reflected by an 
object illuminated by an active source may be considered as analog signals. 
An analog signal is one whose domain has no measurable gaps, for example, 
f(t) where t may take arbitrary values over the whole real line. In contrast 
a discrete signal is one whose domain is restricted to a countable set of 
points, for example, f(tn) where n is restricted to be an integer. 

Whether signals come from the audio, visible and/or infrared, or mi­
crowave areas of the electromagnetic spectrum, signal processing generally 
involves a prescribed manipulation in order to achieve some useful goal such 
as communication, compression, or information extraction. Depending on 
the area of the electromagnetic spectrum of interest, such manipulations 
may be identified with sound, image, and radar signal processing. 

1.4.2 Digital Processing of Analog Signals 

Although the signals of interest in many applications are inherently ana­
log in nature, digital platforms have fast become the primary vehicle for 
implementation of signal processing algorithms and techniques. This sit­
uation is due not only to the proliferation and ever-increasing computa­
tional power to cost ratio of digital platforms, but also to the established 
and demonstrable benefits of digital processing. Perhaps the best exam­
ple of this comes from the audio (voice and music) reproduction industries 
([Gib93]) in which the superiority of digital coding for both communication 
and archival (via compact disc) has been firmly established. Reproductions 
bast>d on digital techniques attain a level of fidelity unsurpassed by for­
mer analog techniques. Other benefits associated with digital based signal 
processing include the abilities to 

• manipulate signals via digital processors, 

• ::;tore/ archive signals on digital media, 

• propagate signal::; via digital networks (e.g., the Internet), and 

• achieve a high degree of noise robustness. 

Digital techniques and processing offer a host of desirable qualities. On 
the other hand, signals of interest are fundamentally analog in nature. 
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Clearly, there exists a gap that must be bridged in order to process analog 
signals via digital platforms. In order to manipulate a signal via a digital 
platform it is not only necessary to discretize the domain and range of 
the signal, but also to restrict the extent of those discretizations to some 
finite interval. The process of doing so yields a discrete representation of 
the underlying analog signal. 

In practice, the analog-to-digital gap is routinely bridged by the direct 
digital sampling of analog signals. Theoretically, the direct sampling and 
reconstruction (of bandlimited signals) is completely understood via the 
classical sampling theorem (viz. Theorem 2.6 on page 23); and what's more, 
the theory is successfully and widely implemented in practical systems. 

Because of these facts there is strong justification for focusing attention 
purely on the digital domain processing of discrete signals under the three­
step processing model of 

1. sample all analog signals as prescribed by the sampling theorem 
(A/D), 

2. manipulate data in the digital domain, and, 

3. (possibly) transform back to the analog domain (D/ A). 

Taking this view necessarily has the consequence of ignoring the analog 
origins of the signals. A contention held here is that there are both practical 
benefits and theoretical insights to be gained by considering the process as 
a whole from its analog domain of origin. From a theoretical point of view, 
in many respects, it is easier to deal directly with the original analog space 
than its discrete counterpart. In fact, there is a wealth of existing theory 
and understanding associated with analog spaces, for example, spaces of 
bandlimited or finite energy functions. 

In this more general context, methods other than direct sampling may 
be considered for discretizing an analog signal. One drawback of direct 
digital sampling is that a fixed frequency extent (bandwidth) is supposed 
on the signal over its (infinite) duration. Accordingly, the sampling the­
orem requires that the signal be (uniformly) sampled at a rate inversely 
proportional to this fixed frequency extent. 

Thus, both periods of high frequency content and low frequency content 
are sampled at a rate that is governed by the highest frequency content of 
the signal. This leads to the intuitively unappealing situation that many 
signals may be "oversampled" over most of their duration. As an example, 
consider a signal that has a burst of high frequency energy highly concen­
trated in time. The direct sampling of this signal is deficient in the sense 
that the sampling rate is required to be constant, resulting in critical sam­
pling over the burst and oversampling elsewhere. Stated succinctly, direct 
sampling is insensitive to fluctuations over time in the frequency content 
of a signal. 
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Signals that exhibit structured time-frequency behaviors abound in nat­
ural and manmade systems. For such signals the fluctuation of their fre­
quency content over time varies coherently. As an example consider the 
sound of a gong or steam engine whistle. In both cases their characteristic 
sound may be understood in terms of a coherent fluctuation of frequency 
content over time. Similar statements can be made for speech, radar, and 
many signals generated by mechanical means. Such signals are said to be 
time-frequency coherent. 

For the discretization (and processing) of time-frequency coherent sig­
nals, the wavelet transform offers itself as a natural tool. For one-dimensional 
signals the (continuous) wavelet transform yields a two dimensional func­
tion of time and frequency. At any fixed value of time, the magnitude of 
the wavelet transform indicates the frequencies present in the signal. In this 
way, a wavelet transform has the ability to expose the time-frequency con­
tent of a signal. An alternative to the direct sampling of a. time-frequency 
coherent signal is to first (in the analog domain) continuously wavelet trans­
form the signal and then sample the wavelet transform. Sampling strategies 
may then be prescribed that are sensitive to the signal's time-frequency 
content. 

1.4.3 Time-Frequency Limitedness 

A basic assumption of direct sampling is that the analog signal to be sam­
pled is bandlimited. On the one hand, it is intuitive that practical signals 
can have neither infinite duration nor infinite bandwidth; yet, on the other 
hand, fundamental mathematical considerations preclude the existence of 
simultaneously timelimited and bandlimited signals. This is the so-called 
paradox of simultaneously timelimited and bandlimited signals. One cause 
of this paradox comes from the very concept of limitedness itself, that is, 
the idea that a signal is exactly zero outside some finite interval. From a 
practical viewpoint, it is not possible to measure a signal to enough accu­
racy to determine if it is exactly zero and, hence, assuming so is nothing 
more than a mathematical convenience. An assumption of limitedness has 
ramifications that may lead to various paradoxes and must therefore be 
used with caution. Even so, it is undeniable that real-world signals are of 
finite duration. A possible resolution to this dilemma may be attained by 
taking a more practical, less stringent, definition of duration that allows 
the signal to be nonzero outside a finite interval yet requires that the most 
significant portion of the signal be resident in a finite interval. 

Such a view is presented by David Slepian in [Sle76] who introduces the 
idea of £-distinguishability between two signals. In particular, two signals 
of time f(t) and g(t) are distinguishable if their difference has sufficient 
energy; that is, I: lf(t)- g(t)J 2 >E. 
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This concept leads, in turn, to obvious definitions of E timelimitedness and 
bandlimitedness (cf. Section 7.3.4). In this realm, the prolate spheroidal 
wave functions ([SP61J,[SL61]) play a key role. The interested reader is 
referred to [Sle76]. 


