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Preface

Overview

For aver a decade now, wavelets have been and continue te be an evolving
subject of intense inierest. Their allure in signal processing is due to many
tactors, not the least of which is that they offer an intuitively satisfying
view of signals s being composed of [l#tle pleces of wuves. Making this
concept mathematically precise has resulted in a deep and sophisticated
wavelet theory that has seemingly limitless applications.

T'his book and its supplementary hands-on electronic component are
meant to appeal to both students and professionals. Mathematics and en-
gineering students at the undergraduate and graduate levels will benefit
greatly from the introductory treatment of the subject. Professionals and
advanced students will ind the overcomplete approach te signal represen-
tation and processing of great value. In all cases the electronic component
of the proposed work greatly enhances its appeal by providing interactive
numerical illustrations.

A main goal is to provide a bridge between the theory and practice of
wavelet-based signal processing, Intended to give the reader a balanced look
at the subject, this book emphasizes bath theoretical and practical issues
of wavelet processing. A great deal of exposition is given in the beginning
chapters and s meant to give the reader a firm understanding of the basics
of the discrete and continuous wavelet transforms and their relationship.
Later chapters promote the idea that overcomplete systems of wavelets are
a rich and largely unexplored area that have demonstrable benefits to offer
in many applications.

In addition to the text, there is also supporting MATLAB based software
that is graphically oriented and provides a computetional platiorm for ex-
ploration and illustration of many of the ideas and algorithms presented
here. The software includes comprehensive graphical interfaces for high
level interaction as well as hundreds of low-level object-oriented methods
for general signal processing.

XV
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Organization and Features

The book while written for senior or beginning graduate students in mathe-
mabics or engineering, is also accessible to professionals and practitioners in
the signal processing community. Technical prerequisites include an under-
graduate level knowledge of linear algebra, linear systems theory, Fourler
transfonn theory, and a working knowledge of MATLAB basic functional-
ity. Additional familiarity with operator theory and real enalysis is helptul
but not required.

Beginning chapters are expository in nature and deseribe basic notation,
concepts, orthonormal wavelets, and frames. Later chapters depart slightly
from the mainstream of wavelet theory and instead emphasize overcomplete
representations of sipnals as opposed to the more widely used orthonormnal
representations associated with the discrete wavelet transform. Finally, the
presentation becomes more numerically oriented in the last chapters where
the benefits of overcomplete wavelel representations are explored in various
auplications. These numerical explorations are fully reproducible and ex-
tengible using the available software. The impatient and/er curious reader
is encoursged to start there.

Uhis work is geared towards practical application and numerical imple-
mentation of wavelet-based algorithms supported by a solid mathematical
foundation. Sume of its main fratures are listed as follows.

e An expository treatment of the following topics are included:

— continuous and discrete Fourier transtorins,

— orthonormal and biorthogonal bases,

- frawes, wavelet frames, and reconstruction,

— discrete wavelet transform and orthonormeal wavelets,
— classical sampling thecrem, and

— regular and irregular sampling and reconstruction.

e A frame-based theory of the discretization and reconstruction of ana-
log signals is develaped in terms of the sampling of a continuous
transform.

e The continucus wavelet and Gahor transforms are intreduced in a
unified zroup-theoretic setting.

e Concepts and techniques are numerically demonstrated through

— software reproducible examples,
~ interactive graphical user interfaces, and
— over 120 traditional static figures.

e Problem exsrcises are given at the end of each major chapter to re-
inforce concepts and ideas.

o A new and efficient overromplete wavelet translorm is introduced and
applied to the tasks of
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— noise suppression,

- compression,

- digital communication, and
— identification.

Chapter 1 describes the motivations and objectives of the entire book and
pravides an overall perspective to the material. Chapter 2 introduces the
notation and basic mathematical concepts used throughout the text. Chap-
ter 3 discusses mmathematical frames and their use as signal representations
as well as algorithms for reconstruction of signals from their frame represen-
tations. Chapter 4 presents the continuous wavelet and Gabor transforms
and also provides a unified view of them in terms of frame representations.
Chapter 5 reviews the discrete wavelet transform, multiresolution analysis,
and the construction of compactly supported orthonormal wavelet hases.
The fast wavelet transform is also described there. Chapter § imtroduces
the overcomplete wavelet transform, its inverse, and their filter bank imple-
mentations. Chapter 7 presents several applications of wavelet-hased signal
processing including noise suppression, signal compression, and identifica-
tion. Finally, Chapter 8 describes the supporting object-oriented MATLAD
code which has been used to numerically ilustrate the material.

Computational Aspects

Numerical examples presented in this book have all been computed using a
suite of object-oriented tools developed in MATLAB 5 called the Wavelet
Signal Processing Workstation (WSPW). The material includes a demon-
stration copy of the WSPW and is available through the Internet. This
object-oriented wavelet signal processing software (MATLAR) is available
at the Web site

wyw . birkhauser. com/book/ISBN/Q0-8176-3909-8

The software requires MATLAB version 5.0 or later to run and has been
tested on operating systems including Windows 85 and the various flavors
of UNIX and LINUX.
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Introduction

1.1 Motivation and Objectives

Although the theory of wavelet analysis is a relatively new and still evolv~
ing discipline, there is & deep and sophisticated body of work currently
available. Much of this work, however, requires a fairly in-depth knowledge
of several areas of advanced mathematics and hence limits its accessibility.
It is a main objective of this work to strike a balance between accessibil-
ity and mathematical rigor that sacrifices ag little as possible of both. To
help achieve this goal, the dissemination of the material is provided by a
hybrid combination of traditional (text) and nontraditional {Internet and
electronic) media.

Despite the project’s multifaccted nature, the traditional text compo-
nent is designed as the primary vehicle for delivery of the material. This
has been done with the intent that the text be useful as a standalone refer-
ence. Supporting the text is the electronic component of the material that
provides a dynamic and interactive aspect. [t consists of both software and
(Web-accessible) hypertext documents. In this way interactive Hlustration
of signal processing concepts and technigues are provided in an effective,
compelling, and practically useful way.

An underlving goal of the material presented in this work is to provide a
bridge between the theory and practice of signal processing with particular
emphasis on generally overcomplete wavelet techniques. Despite the fact
that the preclice of signel processing is o wide and varied one, the Lerm
practical signal processing is used in tlie context of this material with a very
specific meaning: the nuicerical implementation of techuiques for signal
wmanipulation on a fivite precision digitsl machine.

1.2 Core Material and Development

A main thread of this work is the idea that overcomplete systems of wavelets
are a rich and largely unexplored area that have great benefits to offer in

© Springer International Publishing AG 2017 1
A. Teolis, Computational Signal Processing with Wavelets,
Modern Birkhéuser Classics, DOI 10.1007/978-3-319-65747-9 1



2 1. Introduction

many applications. Starting from the continuous wavelet transformation, a
mathematically sound theory of the discretization of analog signals is de-
veloped. The developruent viclds a rich family of signal representations and
leads naturally to computer implementations. The discussion s at that of a
seniar ot begianing graduate student level and is accessible to professionals
in the signal processing commurity.

Numerival illustration of concepts and techniques are facilitated through
software reproducible examples, interactive graphical user interfaces, as
well as traditional static figures in the text. This work is geared towards
practical application and vumerical hmplementation of wavelet-based al-
gorithms. As such it includes working interactive sottware demonstrations
available from the Internet-accessible Web site:

www.birkhauser.com/book/ISBN/0-8176-3505-8

1.3 Hybrid Media Components

This rext is but one plece of a larger body of material presented in a
hybrid media form consisting of print, clectronic, and software components.
Specifically the material consists of

® an expository theoretical treatment of the discrete and continuous
wavelet transforrnations with an emphasis on discretization through
sampling of the continuous wavelet transform;

e an applications-vriented presentation ilustrated via numerical exam-
ples on synthetic and real data; and

o an alectronic component in the lor of an Inlernet-accessible Web
page that includes down-loadable MATLAB-based code with the fol-
lowing capabilities:

(i} reproducing examples presented in the text,
{ii) conducting numerical experiments as suggested in the text,

{iil) applylng algorithms described in the text on data provided by
tho user, and

(iv) designing new algorithms from component. modules on user-
defined signal processing tasks.

Despite the fact that this text is just part of the entire hybrid media work,
it is meant o be a self-contained document. The electronic components,
however, are an invaluable supplement to the text and shall be updated
and modified continually.


www.birkhauser.com/book/ISBN/0-8176-3909-8
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1.4 Signal Processing Perspective

1.4.1  Andlog Signals

A main philosophy adhered to in this book is the idea that the fundamental
underlying objects of interest are analog (as opposed to discrete or digital)
signals.

In most real-world applications the fundamental signals of interest are
analog in nature. For example, the variation in air pressure caused by a
sound source or the intensity of electromagnetic energy reflected by an
object illuminated by an active source may be considered as analog signals.
An analog signal is onc whose domain has no measurable gaps, for example,
F(t) where { may take arbitrary values over the whole real line. In contrast
a discrete signal is one whose domain is restricted to a countable set of
points, for cxample, f{t,) where » is restricted to be an integer.

Whether signals come from the audio, visible and/or infrared, or mi-
crowave areas of the electromagunetic spectrum, signal processing generally
involves a prescribed mmanipulation in order to achieve some useful goal such
as communication, compression, or infoymation extraction. Depending on
the area of the electromagnetic spectrum of interest, such manipulations
may be identified with sound, image, and radar signal processing.

1.4.2  Digital Processing of Analog Swgnals

Although the signals of interest in many applications are inherently ana-
log in nature, digital platforms have fast become the primary vehicle for
itnplementation of signal processing algorithms and techniques. This sit-
uation is due not only to the proliferation and ever-increasing computa-
tional power to cost ratio of digital platfornis, but also to the established
and demonstrable benefits of digital processing. Perhaps the bhest oxam-
ple of this comes from the audio (voice and music) reproduction industries
(IGib53)) in which the supericrity of digital coding for both communication
and archival {via compact disc) has been firmly established. Reproductions
based on digitel techniques attain a lovel of fidelity unsurpassed by for-
mer analog techniques. Other benefits associated with digital based signal
pracessing include the abilities to

» menipulate signals via digital processors,

e store/archive signals on digital media,

» propagate signals via digital networks (e.g., the Internet), and
¢ achieve a high degree of noise robustness.

Digital technigues and processing offer a host of desirable yualities. On
the other hand, signals of interest are fundamentally analog in nature.
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Clearly, there exists a gap that must be bridged in order to process analog
signals via digital platforms. In order to manipulate a signal via a digizal
platform it is not only necessary to discretize the domain and range of
the signal, but alvo to restrict the extent of those discretizations to some
finite interval. The process of doing so vields a discrete representation of
the underlying analog signal.

In practice, the analog-to-digital gap is routinely bridged by the direct
digital sampling of analog signals. Theoretically, the direct sampling and
reconstruetion (of bandlimited signals) is cownpletely understood via the
classical sampling theorem (viz. Theorem 2.6 on page 23); and what's more,
the theory is successfully and widely implemented in practical systems.

Because of these facts there is strong justification for focnsing attention
purcly on the digital domain processing of discrete signals under the three-
atep processing model of

1. sample all snalog signals as prescribed by the sampling theorem

(:"\.J'HD)‘
2. manipulate data i the digital domain, and,
3. (possibly) transform back to the analog domain (D/A).

Taking this view necessarlly bas the consequence of ignoring the analog
origins of the signals. A contention held here is that there are both practical
benefits and theoretical msights to be gained by considering the process as
a whole from its analog domain of origin. From a theoretical point of view,
in many respects, it is easier to deal directly with the original analog space
than its discrete counterpart. In fact, there is a wealth of existing theory
and understanding associated with analog spaces, for example, spaces of
bandlimited or Bnite energy functions.

In this more general context, methods other than direct sampling way
be considered for discretizing an analeg signal. One drawback of direct
digital sumpling is that a fixed frequency extent (bandwidth) is supposed
on the signal over its (infinite) duration. Accordingly, the sampling the-
orem recuires that the signal be {uniformly) sampled at a rate inversely
proportional to this fixed frequency extent.

Thus, both periods of high frequency content and low frequency content
are sampled at a rate that is governed by the highest frequency content of
the signal. This leads to the intuitively unappealing situation that many
signals may be “oversampled” over most of their duration. As an example,
consider a signal that has a burst of high frequency energy highly concen-
trated in time. The direct sampling of this signal is deficient in the sense
that the sampling rate is required to be constant, resulting in critical sam-
pling over the burst and oversmmpling elsewhere. Staved succinctly, direct
sampling is ingensitive to fluctuations over time in the frequency coentent
of & signal.
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Signals that exhibit structured time-frequency behaviors abound in nat-
ural and manmade svstems. For such signals the Huctuation of their fre-
quency content over time varies cohercntly. As an example consider the
gound of a gong or steamn engine whistle. In both cases their characteristic
sound may be understood in terms of o coherent fluctuation of frequency
content over time. Shmnilar stutements can be made for speech, radar, and
many signals generated by mechanical means. Such signals are said to be
time~frequency coherent.

For the discretization {and processing) of time-frequency coherent sig-
nals, the wavelet transform offers itself as o natural tool. For one-dimensional
signals the {continuous) wavelet transform yields a two dimensional func-
tion of time and frequency. At any fixed value of time, the magnitude of
the wavelet transform indicates the frequencies present in the signal, In this
way, a wavelet transform has the ability to expose the time-frequency con-
tent of a signal. An alternative to the direct sampling of a time-frequency
coherent signal ts to first {in the analog domain) continuousty wavelet trasns-
form the signal and then sample the wavelet transform. Sampling strategies
may then be prescribed that are sensitive to the signal’s time-frequency
content.

1.4.3  Twme-Frequency Limiledness

A bhasic assumption of direct sampling is that the analog signal to be sam-
pled is bandlimited. On the one hand. ic is intuitive that practical signals
can have neither infinite duration nor infinite bandwidth; yet, on the other
hand, fundamental mathematical considerations preclude the existence of
simultaneously timelimited and bandlimited signals. This is the so-called
paradox of simultaneously timelimited and bandlimited signals. One cause
of this paradox comes from the very concept of limitedness itself, that is,
the idea that a signal is eructly sero ocutside some finite intervai, From a
practical viewpoint, it is not possible to measure a signal to enough accu-
racy to determine if it is exactly zero and. hence, assuming so is nothing
more than a mathematical convenience. An assumption of limitedness has
ramifications that may lead to various paradoxes and must therefore be
used with caution. Even so, it is undeniable that real-world signals are of
finite duration. A paossible resolution to this dilemma may be attained by
taking a more practical, less stringent, definition of duration that allows
the signal to be nonzero cutside a finite interval yet requires that the most
significant portion of the signal be resident in o Bnite interval.

Such a view is presented by David Slepian in [Sle76] who introduces the
idea of e-distinguishability between two signals. In particular, two signals
of time f(t} and g(t) are distinguishable if their difference has sufficient
energy: that is,

[ e g > e

-
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This concept leads. in tarn, to obvicus definitions of € timelimitedness and
bandlimitedness (cf. Section 7.3.4). In this realm, the prolate spheroidal
wave functions {[SP61],;SL61]} play & key role. The interested reader is
referred to [Sle76].



