
Advances in Intelligent Systems and Computing 648

Patricia Melin
Oscar Castillo
Janusz Kacprzyk
Marek Reformat
William Melek    Editors 

Fuzzy Logic 
in Intelligent 
System Design
Theory and Applications



Advances in Intelligent Systems and Computing

Volume 648

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl



About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India

e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba

e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain

e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK

e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA

e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan

e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia

e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico

e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil

e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland

e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong

e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156


Patricia Melin • Oscar Castillo
Janusz Kacprzyk • Marek Reformat
William Melek
Editors

Fuzzy Logic in Intelligent
System Design
Theory and Applications

123



Editors
Patricia Melin
Division of Graduate Studies and Research
Tijuana Institute of Technology
Tijuana, Baja California
Mexico

Oscar Castillo
Division of Graduate Studies and Research
Tijuana Institute of Technology
Tijuana, Baja California
Mexico

Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
Warsaw
Poland

Marek Reformat
Department of Electrical and Computer
Engineering

University of Alberta
Edmonton, AB
Canada

William Melek
Laboratory of Computational Intelligence
and Automation

University of Waterloo
Waterloo, ON
Canada

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-67136-9 ISBN 978-3-319-67137-6 (eBook)
DOI 10.1007/978-3-319-67137-6

Library of Congress Control Number: 2017952851

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

We describe in this book recent advances on the use of fuzzy logic in design of
hybrid intelligent systems based on nature-inspired optimization and their appli-
cation in areas such as intelligent control and robotics, pattern recognition, medical
diagnosis, time series prediction, and optimization of complex problems. The book
is organized into nine main parts, which contain a group of papers around a similar
subject. The first part consists of papers with the main theme of theoretical aspects
of fuzzy logic, which basically consists of papers that propose new concepts and
algorithms based on type-1 fuzzy systems. The second part contains papers with the
main theme of type-2 fuzzy logic, which are basically papers dealing with new
concepts and algorithms for type-2 fuzzy systems. The second part also contains
papers describing applications of type-2 fuzzy systems in diverse areas, such as
time series prediction and pattern recognition. The third part contains papers that
present enhancements to meta-heuristics based on fuzzy logic techniques describing
new nature-inspired optimization algorithms that use fuzzy dynamic adaptation of
parameters. The fourth part presents emergent intelligent models, which range from
quantum algorithms to cellular automata. The fifth part contains papers describing
applications of fuzzy logic in diverse areas of medicine, such as diagnosis of
hypertension and hearth diseases. The sixth part contains papers describing new
computational intelligence algorithms and their applications in different areas of
intelligent control. The seventh part contains papers that present the use of fuzzy
logic in different mathematic models. The eight part deals with a diverse range of
applications of fuzzy logic, ranging from environmental to autonomous navigation.
The ninth part deals with theoretical concepts of fuzzy models.

In the first part of theoretical aspects of type-1 fuzzy logic, there are four papers
that describe different contributions that propose new models, concepts, and
algorithms centered on type-1 fuzzy systems. The aim of using fuzzy logic is to
provide uncertainty management in modeling complex problems.

In the second part of type-2 fuzzy logic theory and applications, there are four
papers that describe different contributions that propose new models, concepts, and
algorithms centered on type-2 fuzzy systems. There are also papers that describe
different contributions on the application of these kinds of type-2 fuzzy systems to
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solve complex real-world problems, such as time series prediction, medical diag-
nosis, and pattern recognition.

In the third part of fuzzy logic for the augmentation of nature-inspired opti-
mization meta-heuristics, there are six papers that describe different contributions
that propose new models and concepts, which can be considered as the basis for
enhancing nature-inspired algorithms with fuzzy logic. The aim of using fuzzy logic
is to provide dynamic adaptation capabilities to the optimization algorithms, and
this is illustrated with the cases of the bat algorithm, harmony search, and other
methods. The nature-inspired methods include variations of ant colony optimiza-
tion, particle swarm optimization, the bat algorithm, as well as new nature-inspired
paradigms.

In the fourth part of emergent intelligent models, there are six papers that
describe different contributions on the application of these kinds of models to solve
complex real-world optimization problems, such as time series prediction, robotics,
and pattern recognition.

In the fifth part of fuzzy logic applications in medicine, there are three papers
that describe different contributions on the application of these kinds of fuzzy logic
models to solve complex real-world problems, such as medical diagnosis.

In the sixth part of intelligent control, there are six papers that describe different
contributions that propose new models, concepts, and algorithms for designing
intelligent controllers for different plants. The aim of using these algorithms is to
provide methods and solution to some real-world problem control areas, such as
scheduling, planning, and robotics.

In the seventh part, there are five papers that are presenting the application of
fuzzy logic in different mathematical models. There are also papers that describe
different contributions on the application of these kinds of fuzzy models to solve
complex real-world problems, such as in intelligent control.

In the eighth part, there are four papers dealing with applications of fuzzy logic,
like in diagnosing air quality or vehicle navigation. In addition, theoretical con-
tributions are presented in regard to how we can apply fuzzy logic.

Finally, in the ninth part, there are six papers presenting theoretical concepts of
fuzzy models. The concepts range from fuzzy linear programming to fuzzy
restricted Boltzmann machines.

In conclusion, the edited book comprises papers on diverse aspects of fuzzy
logic, neural networks, and nature-inspired optimization meta-heuristics and their
application in areas such as intelligent control and robotics, pattern recognition,
time series prediction, and optimization of complex problems. There are theoretical
aspects as well as application papers.

June 2017 Patricia Melin
Oscar Castillo

Janusz Kacprzyk
Marek Reformat
William Melek
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Can Multi-constraint Fuzzy Optimization
Bring Complex Problems in Selecting Optimal
Solar Power Generating System into Focus?

Akash Dand1(&), Chetankumar Patil1, and Ashok Deshpande2,3

1 Department of Instrumentation and Control,
College of Engineering Pune, Pune, India

akash.dand@gmail.com, cyp.instru@coep.ac.in
2 Berkeley Initiative Soft Computing (BISC)-Special Interest Group (SIG),

Environment Management System (EMS),
University of California, Berkeley, USA
ashok_deshpande@hotmail.com

3 College of Engineering Pune (COEP), Pune, India

Abstract. The debate on greenhouse gases (GHS), emissions from polluting
sources & its health effects, climate Change, increased energy needs, and the use
of non-conventional/renewable energy sources has reached a steady state. In
country like India, apart from solar, high energy wind sources could also be used
in selected locations. Therefore, not only renewable energy but energy mix is a
viable proposition to meet increased energy needs. Though solar panels are
installed all over the world to meet ever increasing energy needs and reduce
carbon footprints, selection of Optimal Solar Power Generating System is a
complex issue and could be labeled as multi constraints fuzzy optimization
problem. The paper presents a novel method with a case study to address the
issue of the optimal election strategy of solar energy system.

Keywords: Energy needs � Solar power generating system � Experts’
knowledgebase � Cosine amplitude method � Goal � Multi-constraint fuzzy
optimization

1 Introduction

Ever increasing energy needs and progressive depletion of natural resources, call for
the use of renewable and nonpolluting energy. In country like India, apart from solar,
high energy wind source could also be used in selected locations. In summary, not only
renewable energy but energy mix is a viable proposition to meet increased energy
needs. There are concerted efforts being made globally on solar energy. In this paper,
we have made an attempt to address the issue based on optimal ranking of solar power
generating system.

© Springer International Publishing AG 2018
P. Melin et al. (eds.), Fuzzy Logic in Intelligent System Design,
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1.1 Commentary on Solar Power Generating System and Selection

Installation of solar panels is practiced all over the world. It has been observed that if
solar panel faces sun perpendicularly, then it might gain the best power output. To face
the panels throughout the day, there is a need of sun tracking systems (STS). Some of
the researchers [1–4] are in favor of sun tracked solar panels which might give better
power generation over fixed panels installation. Broadly speaking, STS [4–6] can be
classified as single axis or dual axis and could be sensor based or time based. Should
we go for sun tracking or not? The debate is on in the researcher community and
industry experts. It is largely believed that for different longitude and latitude, different
sun tracking system could be used [1, 3]. The selection process of STS invariably
depends on multiple constraints such as cost, complexity, amount of power generation
in different seasons of the year and area required for the installation, and alike. It can be
argued in no uncertain terms that most of the constraints in decision making of such
systems are imprecise/fuzzy. Decision processes with which fuzziness can be evaluated
from many point of views [7–9]. The authors present the application of fuzzy logic
based algorithm proposed by Bellman-Zadeh in their seminal paper [10] for the
selection of optimal solar power generating system.

1.2 Objective

The overall objective is application of multi-constrain fuzzy optimization formalism in
selecting optimal solar power generating system, while sub objective is to workout
similarity of the domain experts as their belief/perception is used in fuzzy optimization
algorithm.

2 Case Study

The case study relates to arrive at the optimal solar power generating system based on
the experimental set up is installed at out the College of Engineering Pune (COEP)
Pune India, located on longitude 18.5204° N and latitude 73.8567° E.

Figure 1 shows a dome like structure with 45 solar cells in series solar panels. in
addition, there are traditional fixed solar panels and single axis tracking system.

Single axis sun tracking system is design with 25 solar cells of size 165 mm *
165 mm in series. Due to more area requirement in single axis, 36 solar cells are
mounted as fixed panel in same footprint area.

All experimental solar power generating systems are connected to same quantity
load. Voltage across load (V) and current flowing through load (I) is measured. From
voltage and current, power generation calculations could be made using:

P ¼ V � I ð1Þ

Power generation for one complete day was measured and is referred as a Goal in
fuzzy optimization while the constraint could be cost, complexity in operation and

4 A. Dand et al.



maintenance and area required for the installation are the constraints used in Bellman -
Zadeh formulation. Figure 1 shows the Installed Experimental setup.

2.1 Expert Knowledgebase

Authors have created domain expert’s knowledgebase (assumed it as membership
value based on partial belief concept used in fuzzy set theory for the constraints (cost,
operation & maintenance, complexity and footprint area, and season independency).
Out of 11 experts, 3 are from industry, 3 energy consultants and 5 research scholars
working in field of solar power.

In summary, the opinion of all the experts will be considered as the constraints in
Optimal ranking of solar power generating system using Bellman-Zadeh formalism. For
dome structure, in the absence of bba/perception (membership values) for constrains, the
authors have assumed the following values: 1. Cost 0.45, 2. Operation Maintenance 0.5,
3. Complexity 0.4, 4. Footprint area 0.65, 5. Season Independency 0.7.

3 Results and Discussion

3.1 Similarity Between Experts

Table 1 presents the membership grade of domain experts which is on two universes
(membership value in row while column vector is expert). In order to compute simi-
larity within and between the experts, the authors have used Cosine amplitude method
[11], rij is similarity between expert i and j; k = 1…n are expert.

Fig. 1. Experimental setup – (a) Fixed panel, (b) Single axis STS and (c) Dome structure

Table 1. Experts data as constraints in fuzzy optimization

Fixed panels Single axis
1 2 3 4 5 1 2 3 4 5

Expert1 0.1 0.45 0.2 0.5 0.45 0.45 0.55 0.5 0.45 0.6
Expert2 0.2 0.5 0.15 0.4 0.6 0.7 0.35 0.5 0.45 0.8
Expert11 0.4 0.45 0.2 0.7 0.45 0.6 0.55 0.7 0.5 0.65

Can Multi-constraint Fuzzy Optimization Bring Complex Problems 5



rij ¼
Pn

k¼1 xik � xjkp Pn
k¼1 x

2ik
� � Pn

k¼1 x
2jk

� �� � ð2Þ

The results in matrix form is invariably fuzzy tolerance relation which has been
transformed to fuzzy equivalence relation using transitivity closure using (3) and
dendrogram for various a cut values was drawn.

Rn�1 ¼ R � R � R � R ¼ R ð3Þ

It can be inferred all experts agrees at 0.96 possibilities (Fig. 2).

3.2 Multi Constraint Fuzzy Optimization

Optimization result will give optimal sun tracking system. Consider fuzzy sets G (goal)
and C (constraint) with membership function lG (x); and lC (x), where x is an element
of the crisp set of alternatives. Let fuzzy set D as decision with membership function
lD (x). This will result in multiple decision from alternatives. Using the membership
functions as an operation-intersection [10].

lDðxÞ ¼ minðlGðxÞ; lCðxÞÞ ð4Þ

Mostly decision need to be in crisp and this requires defuzzification of D. It is
natural to adopt for that purpose the value x from the selected set [d1; d2] with the
highest degree of membership in the set D. That is maximizing decision lD (x).

xmax ¼ fxjmax lDðxÞ ¼ maxmin ðlGðxÞ; lCðxÞÞg ð5Þ

The experiments were carried out from 24 May 2017 to 2 June 2017. Power
generation of 25 cell fixed panels, 36 cells fixed panels, Dome and single axis sun
tracking system was measured for 10 days. Power generation values were normalized
and membership grade for the Goal (G) was worked out. Table 2 represents the sta-
tistical analysis of 10-day power generation in watts. In fuzzy optimization, authors
have use 36 cells fixed panel system as footprint area is the constraint (Fig. 3).

Fig. 2. (a) Dendrogram for various alpha cut values (b) Fuzzy goal G, constraint C, decision D,
optimal decision Xmax

6 A. Dand et al.



A typical computation for optimal ranking (based on observation May 29, 2017) is
C1 = {0.31, 0.45, 0.52}, C2 = {0.46, 0.5, 0.50}, C3 = {0.07, 0.4, 0.55}, C4 = {0.57,
0.65, 0.32}, C5 = {0.47, 0.7, 0.66} and G = {0.55, 0.52, 0.5}

max
min 0:55; 0:31; 0:46; 0:5; 0:57; 0:47ð Þ;
min 0:52; 0:45; 0:5; 0:25; 0:65; 0:7ð Þ;
min 0:5; 0:52; 0:50; 0:54; 0:2; 0:66ð Þ

0
@

1
A ¼ max

0:31;
0:25;
0:2

 !
¼ 0:31 ð6Þ

0.31 refers to membership value of fixed panel. It can be stated that in this particular
case optimal sun power generation system is Fixed panel.

According to geographical location of Pune, in a year, 60 days are assumed to be
cloudy or partially cloudy days. In all conditions Dome gives better results than single
axis sun tracking system. Single axis sun tracking system generates 322 W in a day in
which it consumes 48 W in rotation of panels, so all over it power output is 20% to
40% less then Dome. Comparing from cost point of view; Single axis system is costlier
as cost of motor and rotating design is more which is approximately twice of the panel
cost. But Dome is less costly, due to no rotating parts and with much lesser mainte-
nance. Dome requires 20% extra solar cells, but as cost of solar cells are decreasing
every day, the total cost of design will come down in future - this may not be a case
with single axis system as cost of motor, bearing and allied mechanical components

Table 2. 10 days total power generation data

25 cell Fixed
panel

36 cell Fixed
panel

Dome Single axis sun
tracker

Minimum 251 324 288 299
Maximum 295 381 335 351
Mean (µ) 269.7 349.4 308.5 322.5
S.D. (r) 12.6 16.4 14.1 15.2
95% confidence level
µ ± 2r

244–295 316–382 280–
337

292–353

Fig. 3. Power generation 29 May 2017, 36 cell, 25 cell, Dome and Single axis sun tracker
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have reached steady state and will tend to increase in future. Because of more area
requirement for Dome configuration, Fixed panel system is preferred to Dome. If we
consider same footprint area in which 25 cell Single axis sun tracking system is
designed; Dome can accommodate 45 solar cells. while in fixed panel system 36 cells
can be installed. Cost of fixed system is less and maintenance is very low.

Concluding Remarks
Decision making in fuzzy environment is demonstrated in possible selection of optimal
solar power generating system. The Authors believe that more studies in this regard
should be carried out. However, approach delineated in the paper can be used in any
other system having different goals and constraints.
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Abstract. Measuring similarity is an important task in many domains such as
psychology, taxonomy, information retrieval, image processing, bioinformatics,
and so on. The diversity of domains has led to many different definitions of and
methods for determining similarity. Even within fuzzy set theory, how to
measure similarity between fuzzy sets presents a wide variety of approaches
depending on what characteristic of a fuzzy set is emphasized, for example,
set-based, logic-based or geometric-based views of a fuzzy set. First similarity is
examined from a psychological viewpoint, and how that perspective might be
applicable to fuzzy set similarity measures is explored. Then two fuzzy set
similarity measures, one set-based and the other geometric-based, are reviewed,
and a comparison is made between the two.

Keywords: Fuzzy set similarity � Set-based similarity � Geometric-based
similarity � Dissemblance index

1 Introduction

Comparing two concepts or objects is a necessary process in many domains such as
biology, psychology, taxonomy, statistics and artificial intelligence. This comparison
operation attempts to determine a relationship between the two concepts. One such type
of relationship that is frequently determined is their similarity. Because of the diversity
of domains, the general meaning of similarity is ambiguous with many different def-
initions and approaches to measuring similarity. As presented in psychological theory
[1], a warning on assessing similarity is given, “Like most powerful and widespread
ideas, it [similarity] is not amendable to a ready and precise definition; indeed, this very
resistance to definition probably goes far to explain its usefulness as a supposed
explanatory principle. Ideas that are imprecise are also dangerously versatile when it
comes to accounting for the complexities of human behavior.”

Even within one domain such as fuzzy set theory, a wide variety of methods exist
for assessing similarity [2], many of which are extensions of similarity measures that
are well-known in their respective research domains. The more recent research area of
ontological knowledge representation for the Semantic Web has also had a proliferation
of semantic similarity measures for various tasks such as ontology alignment, infor-
mation extraction, and semantic annotation. The objective of a semantic similarity
measure, also referred to as an ontological similarity measure, is to calculate the degree
to which one concept is similar to another concept within the context of an ontology.

© Springer International Publishing AG 2018
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Although several major categories of semantic similarity measures exist such as
path-based, information content-based and feature-based, those measures using infor-
mation content have been the emphasis of much study and evaluation especially in the
bioinformatics and biomedical domains. In [3] many of these semantic similarity
measures are shown as related to fuzzy set similarity measures if a concept is repre-
sented as a fuzzy set consisting of itself and all its ancestor concepts and the mem-
bership degrees are based on the information content of each concept within the context
of the ontology.

The focus of this paper is that of similarity in fuzzy set theory. This paper examines
some “respects for similarity” [4] from the domain of psychological theory and their
general applicability to the measurement of similarity in fuzzy set theory. “Respects for
similarity” refers to the ways in which two things can be similar. The term frame of
reference [5] is also used for respects for similarity. The comparison process has
intrinsic factors that determine the respects. As pointed out in [4], asking “How similar
are X and Y?” can be viewed as asking a slightly different question, “How are X and Y
similar? The process for fixing the respects is a crucial facet of similarity comparisons.

Correspondingly, similarity in other domains is investigated to better understand
how fuzzy set similarity measures have been extended from these domains. Two
specific similarity measures, one used very early in taxonomy and the other used in
calculating distances between intervals on the real line are reviewed and their fuzzy set
extensions analyzed. These two similarity measures are compared to determine any
relationships between them. To begin, Sect. 2 looks at similarity as an empirical and
theoretical psychological construct and attempts to elicit correspondences to fuzzy set
similarity. These correspondences might suggest other views and uses for fuzzy set
similarity measures. Just like different characteristics of a concept in the context of an
ontology are considered important to constructing a semantic similarity measure, a
variety of characteristics of a fuzzy set are considered in the construction of a fuzzy set
similarity measure. Section 3 presents the taxonomic related fuzzy set similarity
measures and its relation to Tversky’s psychological model of similarity. The fuzzy
extension of the distance between real number intervals to the similarity between fuzzy
set intervals is described in Sect. 4. Section 5 compares and contrasts these two fuzzy
set similarity measures and establishes a relationship between them. A summary and
plans for future research are provided in Sect. 6.

2 Respects for Similarity

In [4] the researchers examine similarity as an explanatory construct in psychological
theory where humans are comparing two objects or things. The things being compared
ranged from two simple linguistic terms to two visual forms. Their experiments indicate
that similarity is highly flexible and in some ways troublingly flexible. Their experi-
mental observations, however, are used to argue that the flexibility is reasonable as long
as systematic changes in the process of similarity assessment can be established.

The research of Tversky [5] has played a major role in shaping the understanding of
similarity in psychological research. Tversky’s research informs the research in [6]
where it is noted that “the relative weighting of a feature (as well as the relative
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importance of common and distinctive features) varies with the stimulus context and
the task; so that there is no unique answer to the questions of how similar is one object
to another.” This quote on similarity again emphasizes its “resistance to definition” and
that its assessment method is “dangerously versatile.”

The argument [4] is made that instead of viewing similarity assessment as con-
strained by the perceptual process, similarity assessment is flexible and the comparison
process itself methodically sets the respects. Assessing similarity is assumed to be based
on matching and mismatching of properties. Things are similar to the degree they share
properties and dissimilar to the degree that properties apply to one but not the other. The
issue is that two things share a subjective number of properties and likewise they differ
in a subjective number of properties. Before similarity can be computed, a prior process
must occur that determines what properties are to be used in the similarity computation.

Others [7] argue that the respects for determining how two things are judged as
similar are set not by the comparison process but by the goals motivating the com-
parison process. This view is the result on research to determine the requirements for a
similarity measure for use in the automatic generation of textual comparisons. Com-
parison between objects is categorized into six different types. For example, a clarifi-
catory comparison is a domain-based comparison with the goal of distinguishing one
object from another object that is highly similar to it. Domain-based comparisons are
used to establish explicit relationships between an object and other objects existing in
the same domain.

Regardless of how and when respects are established, most agree that similarity
assessment cannot be performed without them. The problem still remains as to the
process of selecting the respects as so aptly described by Tversky [5], “When faced
with the a particular task (e.g. identification or similarity assessment) we extract and
compile from our data base a limited set of relevant features on the basis of which we
perform the required task.”

Another important issue discussed in [4] is the effect of context in similarity
assessment. Setting the context for comparison contributes to the selection of the
respects to which similarity is being assessed. Two objects may be judged less similar
when no explicit context is given than when one is given because the context tends to
make salient the context-relevant properties to be used in the similarity assessment. The
similarity of the two objects is increased based on the degree to which the two objects
share values for these now salient properties.

The extension effect of context is also important in similarity assessment. When in
one context, properties that are shared by all objects are not useful in similarity
assessment; however, if the context is extended or broadened to include objects not
sharing these properties, then these properties become more salient. In the extended
context, two objects sharing those properties are perceived as more similar than they
were in the original context. To summarize, depending on the context, two objects may
vary in their similarity, but this variability becomes systematic when incorporated into
the specification of a similarity comparison.

Analogy also plays a role in similarity assessment. Instead of focusing on similarity
in values for simple properties of objects, it looks for relational or structural similar-
ities. An example given in [4] is “an atom is like the solar system” where the analogy
relies on relations such as “revolves around” and not property values such as “hot” or
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“yellow”. The research in [4] argues the importance of incorporating relational struc-
ture since relational structures can significantly affect the process of determining the
correspondences between objects when assessing similarity.

Similarity assessment involves comparing two objects but this comparison process
may be directional. The example given in [4] is very informative: “surgeons are like
butchers” as compared to “butchers are like surgeons”. The former is critical of sur-
geons whereas the latter is favorable of butchers. In the contrast model of similarity [5],
the less salient or less prominent object is compared to the more salient or prominent
object as evidence by the results of human experiments where the less salient object is
consider more similar to the more salient object than vice versa.

The direction of comparison also affects the properties selected for assessing
similarity as shown in their experimental results [4]. The selected properties may be
more closely related to the base object to which a comparison is being made. The
common properties used in comparing two objects may vary as a function of the
direction of a comparison and the bias is to select properties more strongly associated
with the base object. To summarize, similarity is more than identity since similarity
comparisons may encompass properties of one object becoming the candidate prop-
erties of the other in performing the similarity assessment.

Since similarity assessment usually involves multiple properties, research in cog-
nitive psychology has concentrated on how multiple pieces of information are inte-
grated into a single assessment of similarity. Similarity assessment is affected by both
the selection of the applicable properties and the constraints that the integration method
places on the process. As part of the integration method, weighting may be involved
that favors certain properties over others. In [4] experiments have shown that this
weighting procedure is not independent of the outcome of the comparison process.

One last interesting aspect brought out in [4] is the notion of experience and
learning affecting the process of similarity assessment. Children, for example, judge
similarity in a more holistic manner and are less like to analyze individual components,
but as they mature, they base their similarity judgements more on abstract, relational,
and less on superficial properties.

To summarize the research in [4] for the domain of psychology, similarity
assessment is dynamic and highly variable but connected to the details of the com-
parison process. The details that are focused on in their research are the fixing of the
properties or respects to which objects are similar, the context, the direction of the
comparison, the kind of properties whether simple attributes or relational structures, the
integration of multiple information and the weighting of this information in the process
and human experience. Many of these details of the comparison process in similarity
assessment can be found in fuzzy set similarity measurements.

In the following two sections, a set based fuzzy similarity measure from taxonomy
related its related measures and a then a geometric based fuzzy set similarity measure
from distance between real line intervals are described. Their details are examined from
the viewpoint of similarity assessment in the domain of psychology.
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3 Set-Based Similarity

One of the early set based similarity measures for crisp sets is the Jaccard index [8],
which was used in taxonomic classification. A specimen is represented by a set of
attributes describing it. Two specimens are judged to be similar based on the similarity
between their set of attributes. In taxonomy, the Jaccard index has also been referred to
as the “coefficient of similarity” [9] and in psychology, it is the unparameterized ratio
model of similarity [5]. Its formula where X and Y are sets is expressed as

Sjaccard X; Yð Þ ¼ f X \ Yð Þ
f X [ Yð Þ : ð1Þ

The function f is an additive function and is typically the cardinality of the set. The
Jaccard index is easily extended when X and Y are fuzzy sets by using fuzzy set
operators to perform the intersection and the union on the two fuzzy sets and the
function f is fuzzy set cardinality, which is simply the sum of the membership degrees
for all elements in the fuzzy set. A fuzzy Jaccard dissimilarity measure can be derived
by subtracting the Jaccard similarity from 1, i.e., DJ = 1 − Sjaccard(X,Y).

From the psychological analysis of similarity assessment, the fuzzy sets X and Y are
being compared based not only on the elements making up each set but the degree of
membership of each element in the set. The selection of properties in this similarity
measure is natural; that is, all elements in the support of a fuzzy set describe it. The
selected properties for the comparison process, therefore, include both the support of
X and the support of Y.

The correspondence or alignment between the properties of the two fuzzy sets is
automatic since each element in the fuzzy set is considered a property and the con-
straint on a fuzzy intersection is an exact match on each element in the intersection. The
weighting, however, for a property (element) in this comparison process is its degree of
membership or agreement with the fuzzy concept being represented by the fuzzy set. In
addition to the required exact match on the aligned property values is the constraint on
the integration between their two membership degrees using a fuzzy set intersection
operator, which is typically min. The result is that multiple pieces of information exist
since there are multiple elements (properties) and further integration, referred to as
aggregation in fuzzy set theory, must occur to assess the overall similarity of the two
fuzzy sets. With the Jaccard index, the aggregation operator is summation, that is, the
cardinality of the fuzzy set intersection.

The numerator of the Jaccard index provides an assessment of the agreement of
properties between the two fuzzy sets but does not take into consideration, properties in
one fuzzy set that are not contained in the other fuzzy set and vice versa. The
denominator, which is the union of the fuzzy sets, typically using the max operator,
does consider this and thus normalizes the overall similarity assessment in [0, 1].

Psychological similarity considers direction of comparison as a critical aspect in the
process. The Jaccard index does not account for presupposing a direction for the
comparison. An inclusion index, however, can and is a version of the parameterized
ratio model of similarity [5], which is given as
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STverksy�ratio X; Yð Þ ¼ f X \ Yð Þ
f X \ Yð Þþ af X� Yð Þþ bf Y � Xð Þ : ð2Þ

where (X − Y) is set difference operator. Setting a = 1, b = 1 produces the Jaccard
index. Setting a = 1, b = 0 produces the degree of inclusion for X, that is, the pro-
portion of X overlapping with Y, given as

Sinclusion X; Yð Þ ¼ f X \ Yð Þ
f Xð Þ : ð3Þ

In the parameterized ratio model, the value f(X) for object x is considered a measure
of the overall salience of that object. In psychology, the factors adding to an object’s
salience include “intensity, frequency, familiarity, good form, and informational con-
tent” [5]. Although the cardinality of a fuzzy set is a very simple way to measure the
“salience” of a fuzzy set, i.e., the larger the cardinality, the less salience, other ways
might be more useful depending on the application. Both fuzzy entropy [10] and a
function of the distance of a set to its complement [11] have been used as fuzziness
measures. One could consider that a fuzzy set is more salient than another fuzzy set if it
has less fuzziness.

For fuzzy rule-based reasoning systems, salience of the two fuzzy sets being
compared is not relevant. One approach that is used is to set the comparison direction
from the observation fuzzy set as compared to the rule antecedent fuzzy set, which
becomes the base for comparison to. The objective is to determine how certain is it that
the observation satisfies the antecedent. The more the observation is included within
the antecedent, the more certain that the antecedent is satisfied. If the observation fuzzy
set is a subset of the antecedent fuzzy set, the inclusion measure produces a one. Not
every fuzzy rule base system, however, uses an inclusion measure to assess agreement
between the rule antecedent and the observation fuzzy sets.

In fuzzy applications that are to mimic human directional comparison judgments,
the use of the more salient fuzzy set as the base for comparison might be more
appropriate. Here the properties of the more salient fuzzy set S become the selected
properties for the comparison process, and those properties in the less salient fuzzy
L set that are not in S are simply ignored. Here similarity is more than an identify as
described in [4]. In this use of similarity, the inclusion index measures the proportion of
the properties of S found in L to all the properties of S and is given as

Sinclusion S; Lð Þ ¼ f S\ Lð Þ
f Sð Þ : ð4Þ

Image processing applications [12] using fuzzy set theory tested two different ver-
sions of the inclusion index with other fuzzy set similarity measures in a shape classifi-
cation experiment. The denominator of the inclusion index is replaced by eithermin(f(X),
f(Y)) ormax(f(X), f(Y)). In the experimental results, the error rate for themax version of the
denominator were much smaller than that of the min version. The comparison direction
and how to choose that direction makes a difference and is application dependent.
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For an example of the extension effect discussed with psychological research on
similarity, consider another fuzzy set similarity measure used in [12] which follows the
formula of the Jaccard index but insteadmeasures the similarity between the complements
of the fuzzy sets, i.e.X’ and Y’. Themore the complements of the two sets are similar, then
themore the two fuzzy sets are similar.With this approach, if the context or the universe of
discourse for the two fuzzy sets is extended, i.e., its size increased, then the Jaccard index
for the two fuzzy sets would not be affected by the extension since the properties con-
sidered salient would still be those in the union of the two fuzzy sets. The Jaccard index as
measured using the complements of the two fuzzy sets, however, would be affected and
would be greater in the extended context than in the original context. Intuitively, in the
extended context the complements of the fuzzy sets share more properties.

4 Geometric-Based Similarity

Geometric based similarity relies on the dissemblance index, which provides a nor-
malized distance between two real intervals. If V = [v1, v2] and W = [w1, w2], the
dissemblance index is given as

D V ;Wð Þ ¼ v1� v2j j þ w1� w2j jð Þ
2 � b2 � b1ð Þ : ð5Þ

where [b1, b2] is the smallest interval that contains both the V and W intervals. The
factor 2 * (b2 − b1) is necessary to produce a normalized dissemblance in [0, 1].

The dissemblance index consists of two components, the left and right distance
between the two intervals and may be generalized to fuzzy intervals. A pair of
boundary functions LN and RN and parameters (r1, r2, k, q) define a fuzzy interval. The
core of N is [r1, r2] and k and q are parameters of the boundary functions LN and RN

such that the support of N is in the interval [r1 − k, r2 + q]. If LN and RN are positively
and negatively sloping linear functions, respectively, then N is represented by a
trapezoidal fuzzy set membership function. Figure 1 illustrates two fuzzy trapezoidal
fuzzy sets X and Y and labels for left and right boundaries.

To calculate the fuzzy dissemblance index between two fuzzy intervals X and Y, the
formula uses integration over the a-cuts of the fuzzy intervals as

fD X; Yð Þ ¼ 1
2 b2 � b1ð Þ

Z 1

0
LX að Þ � LY að Þj j þ RX að Þ � RY að Þj jð Þda: ð6Þ

where [b1, b2] is the smallest interval that contains both the support of the X and
Y fuzzy intervals. FD calculates a fuzzy dissimilarity measure between two fuzzy
intervals based on a normalized distance and can be converted into a fuzzy similarity
measure as SfD(X, Y) = 1 − fD(X, Y).

With the fuzzy similarity measure SfD, also referred to as a geometric fuzzy sim-
ilarity [2], the alignment between properties is not based on identical property values as
for the Jaccard fuzzy similarity measure but on identical a values. The comparison is
measured between the property values at the identical a values for the left and the right
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components of the fuzzy interval. This geometric similarity differs from the Jaccard
fuzzy similarity measure since the comparison is done on the a values and resolved
using a fuzzy set intersection operator. Correspondingly, both have a normalizing
factor that includes the support of both X and Y.

Some similarity research have been proposed to approximate fD to avoid the
computationally expensive integration over a, the value [13]. These approximations
use only the distance obtained from a single a-cut, for example, only the distance
between the core intervals of the fuzzy sets. This approximation does not incorporate
information about the proximity of the support intervals. Thus, the approximation result
may be much smaller than fD. A summarization technique was introduced in [14].
First, the distance between the support intervals is determined as

f D0 X; Yð Þ ¼ 1
2 b2 � b1ð Þ LX 0ð Þ � LY 0ð Þj j þ RX 0ð Þ � RY 0ð Þj jð Þ ð7Þ

and similarly for the core intervals, fD1. The summarized distance is the average core
and support distances given as

f D@ ¼ f D0 þ f D1

2
: ð8Þ

For trapezoidal fuzzy sets in which LX does not intersect LY and RX does not intersect
RY, this summarization technique produces equivalent results as fD. When LX does
intersect LY at aL the left distance for the support interval must be factored by aL and the
left distance for the core interval must be factored by (1 − aL) and similarly if RX does
intersect RY at aR. This factor represents the height of the triangle created at the
intersections.

The geometric fuzzy similarity measure Sdiss(X,Y) = 1 − fD(X,Y) and its use in
fuzzy reasoning is presented in [14] since using this distance based measure allows a
fuzzy conclusion to be determined using the left and right distances between the fuzzy
rule antecedent and the fuzzy observation even when there is no overlap between the
two. The details of this fuzzy reasoning approach are not examined here but instead a
relationship between the fuzzy Jaccard similarity and the fuzzy geometric similarity
measures are explored.

5 Relating Set and Geometric Similarity

When extending the similarity measures of psychology and taxonomy to similarity
measures for fuzzy sets, it is natural to see how features of objects are replaced by
elements of the fuzzy sets, crisp set cardinality replaced with fuzzy set cardinality and
set operators replaced with fuzzy set operators. However, not all equalities using crisp
set operators are true for all possible fuzzy set operators. For example, when X and
Y are crisp sets and not disjoint, f X [ Yð Þ ¼ f Xð Þþ f Yð Þ � f X \ Yð Þ. This equality is
true for fuzzy sets only when members of Frank’s family of dual t-norms and t-conorms
[15] are selected for the union and intersection operators. A more methodical method of
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creating a framework for fuzzy set similarity measures is based on developing a set of
properties that they should satisfy. In order to develop the relationship between the
Jaccard and geometric fuzzy similarity measures the theoretical foundation for the
fuzzy Jaccard similarity measure is first presented [16].

One of the properties established for a fuzzy set similarity measure between X and
Y is that S(X, Y) = 1 if and only if the symmetric difference between the two, XDYð Þ is
the empty set. Another property is if X and Y have disjoint sets, then S(X, Y) = 0. To
meet these conditions a fuzzy set similarity measure is derived using relative cardinality
on the negation of the symmetric difference between X and Y, g XDYð Þ0� �

where g is
relative cardinality and

XDY ¼ X [ Yð Þ \ X 0 \ Y 0ð Þ ¼ X \Y 0ð Þ \ X 0 \ Yð Þ

Here is another example of an equality being true for crisp sets but only true for
fuzzy sets when minimum is used for intersection and maximum is used for union.

The fuzzy similarity measure should be in the interval [0, 1] so the range for
g XDYð Þ0� �

must be found to produce a normalized value. The maximum value for
g XDYð Þ occurs when the two fuzzy sets are disjoint, which is g X [ Yð Þ. The minimum
value for g XDYð Þ0� �

, therefore, occurs for g X [ Yð Þ0� �
. The range for g XDYð Þ0� �

is
½ gð X [ Yð Þ0� �

; 1�. The fuzzy similarity measure can be derived as

S X; Yð Þ ¼ g XDYð Þ0� �� g X [Yð Þ0� �
1� g X [ Yð Þ0� � :

This equation can be rewritten as

S X; Yð Þ ¼ g X [ Yð Þ � g XDYð Þ
g X [Yð Þ ¼ 1� g XDYð Þ

g X [ Yð Þ

since g(X) = 1 − g(X’) for relative cardinality. From the above equation, the fuzzy
similarity measure produces a 0 if and only if g XDYð Þ ¼ g X [ Yð Þ, that is the fuzzy
sets X and Y are disjoint. The fuzzy set similarity measure produces a 1 if and only if
the symmetric difference produces the empty set. When X and Y are crisp and X = Y, all
the symmetric difference operators produce an empty set. When X and Y are fuzzy sets,
however, the only symmetric difference operator to produce an empty set when
X = Y is derived using X \ Y 0ð Þ [ X 0 \ Yð Þ with bold intersection, max 0; uX vð Þþð
uY vð Þ � 1Þ and bold union, minð1; uX vð Þþ uY vð Þ).

Using this symmetric difference operator and replacing relative cardinality with
fuzzy set cardinality since the cardinality of the universe of discourse may be cancelled
out in the numerator and denominator

g XDYð Þ
g X [Yð Þ ¼

P
v min 1; ðmax 0; uX vð Þ � uYðvð Þð Þþmax 0; uY vð Þ � uX vð Þð ÞÞÞ

X [ Yj j :
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Since the differences in the membership degrees cannot be larger than 1 the min
operation can be removed to produce

g XDYð Þ
g X [ Yð Þ ¼

P
v max 0; uX vð Þ � uY ðvð ÞÞþmax 0; uY vð Þ � uX vð Þð Þ

X [ Yj j

Since either the membership of v in X is greater than or equal to its membership in Y,

g XDYð Þ
g X [ Yð Þ ¼

P
uX vð Þ �minðuX vð Þ; uY vð ÞÞþ uY vð Þ �minðuX vð Þ; uY vð ÞÞ

X [ Yj j

Now rewriting by distributing the summation operator over each component in the
summation and using set intersection \ for minimum produces

g XDYð Þ
g X [ Yð Þ ¼

Xj j þ Yj j � 2 X \ Yj jð Þ
X [ Yj j ¼ X [ Yj j � X \ Yj jð Þ

X [ Yj j ¼ 1� X \ Yj j
X [ Yj j

since for the maximum and minimum operators, Xj j þ Yj j ¼ X [ Yj j þ jX \ Y , there-
fore, resulting in

S X; Yð Þ ¼ 1� 1� g X \ Yð Þ
g X [ Yð Þ

� �
¼ g X \Yð Þ

g X [Yð Þ

which is the original proposed “similarity of coefficient” used in taxonomic classifi-
cation. If the fuzzy Jaccard similarity measure is converted to a dissimilarity measure
by subtracting from 1, then

DJ X; Yð Þ ¼ g XDYð Þ
g X [ Yð Þ

which also incorporates the symmetric difference.
There is a strong relationship between the fuzzy dissemblance measure and the

Jaccard dissimilarity measure. The fuzzy distances calculated for the left and right
components of dissemblance dissimilarity measure when added together include the
symmetric difference between X and Y.

To establish the relationship between the two fuzzy dissimilarity measures, first
consider two cases, (1) the fuzzy sets X and Y do not intersect and (2) the fuzzy sets
X and Y do intersect. Case 1 is easier since when they do not intersect, DJ(X, Y) = 1
because the symmetric difference produces the same as the union of the two sets. Thus
fD(X,Y) � DJ(X, Y). Case 2 has two subcases: (1) the cores of the fuzzy sets intersect
and (2) the cores of the fuzzy sets do not intersect.

Subcase 1 is easier since with overlap in the cores of the fuzzy sets, the dissem-
blance dissimilarity only includes the symmetric difference as in DJ. Thus, fD(X,
Y) � DJ(X, Y) since both have the same numerator g XDYð Þ but the normalization
factor in the denominator for fD is 2 * (b2 − b1) which is always greater than or equal
to X [ Yj j.

18 V. Cross



Subcase 2 is most difficult since when RX (a) intersect LY(a) at aI there is a distance
between [RX(1), LY(1)]. Figure 1 illustrates this. The dissemblance dissimilarity mea-
sure in addition to the symmetric difference, includes this distance as twice the area of
the top triangle T with base of (LY(1) − RX(1)) and height of (1 − aI) value since aI is
the point of intersection. The (1 − aI) value represents the height of triangle since the
triangle is formed above the aI intersection point. This triangle area is included twice
because both the distance between the left boundary functions of X and Y and between
the right boundary functions are include this triangle area. Rewriting the fuzzy dis-
semblance measure and using symbol T in the equation,

f D X; Yð Þ ¼ g XDYð Þþ 2 � T
2 � b2 � b1ð Þ

To analyze this, the starting point is when RX(a) intersect LY(a) at aI = 0. Since
X and Y are disjoint, fD(X,Y) � DJ(X, Y), the case 1 scenario. When RX(a) intersects
LY(a) at aI, two triangles are formed the top triangle T and the bottom triangle B. The
area of B is X \ Yj j. The area of T is at a maximum when aI = 0 since its height,
therefore, would be 1. However, this is case 1 and fD(X,Y) � DJ(X, Y) for this case. As
aI increases, the area of T shrinks. As the area of the intersection grows, the corre-
sponding area of T shrinks. In comparing to DJ(X, Y), even at the maximum area for T,
the fuzzy dissemblance similarity is still smaller than the fuzzy Jaccard dissimilarity
measure. Twice the area of triangle T cannot produce a large enough value to cause fD
(X, Y) to surpass DJ(X, Y).

Fig. 1. Trapezoidal fuzzy sets X and Y with B intersection area and T dissemblance overlap.
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