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Preface

Daniel Alpay graduated in 1986 from the Weizmann Institute of Science with the
Ph.D. thesis: “Reproducing kernel Krein spaces of analytic functions and inverse
scattering” under the supervision of Prof. Harry Dym. After graduating, he oc-
cupied positions at the University of Tel Aviv, at the University of Groningen,
at the Virginia Polytechnic Institute in Blacksburg, at the Weizmann Institute of
Science in Rehovot, and at INRIA in Valbonne. In 1991 he moved to Ben Gurion
University in Beer-Sheva, Israel, where he joined the Department of Mathematics.
There he became a tenured member in 1995, and his mathematical career took
off from there; later, in December 2005, Daniel was awarded the Earl Katz family
chair in algebraic system theory. In August 2016 Daniel was offered the Foster G.
and Mary McGaw Professorship in Mathematical Sciences at Chapman University
where he was received with open arms.

Apart from his own extensive research, Daniel is the initiator and Editor-
in-Chief of the journal “Complex Analysis and Operator Theory” published by
Birkhäuser whose first issue appeared in January 2007. Since 2005 he is also a
co-editor of a sub-series entitled “Linear Operators and Linear Systems” of the
book series “Operator Theory: Advances and Applications” also published by
Birkhäuser, as well as a member of the editorial boards of four other journals.
His prolific career has produced 230 papers and 6 books and counting, with over
70 collaborators all over the world.

Daniel’s current research interests include: Schur analysis in the setting of
slice-hyperholomorphic functions, infinite dimensional analysis in the white noise
space setting, free analysis, rational functions and applications to linear system
theory and wavelets, Schur analysis in the setting of bicomplex functions, operator
theory and Riemann surfaces, interpolation theory, reproducing kernel methods in
one and several complex variables. This, by any means, is not an exhaustive list.

This volume collects contributions written by Daniel’s friends and collabora-
tors. Several of them have participated in the conference International Conference
on Complex Analysis and Operator Theory held in honor of Daniel’s 60th birthday
at Chapman University in November 2016. We are grateful to all the authors and
to the referees who helped us to form this volume.

Fabrizio Colombo
Irene Sabadini

Daniele C. Struppa
Mihaela B. Vajiac
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Classes of de Branges Matrices and
Corresponding de Branges Spaces

Damir Z. Arov and Harry Dym

To Daniel on the occasion of his sixtieth birthday, with our best wishes

Abstract. Reproducing kernel Hilbert spaces B(E) of vector-valued entire
functions and reproducing kernel

KE
ω (λ) =

E+(λ)E+(ω)
∗ − E−(λ)E+(ω)

∗

−2πi(λ− ω)

based on an entire matrix-valued function E(λ) =
[
E−(λ) E+(λ)

]
with p×p

blocks E±(λ) were introduced and extensively studied by Louis de Branges.
In this paper a new subclass of the matrices E(λ) is introduced and its relation
to other subclasses that were presented earlier is discussed.

Mathematics Subject Classification (2000). 46E22, 47B32, 30H99.

Keywords. de Branges spaces, de Branges matrices, reproducing kernels, entire
matrix-valued inner functions, reproducing kernel Hilbert spaces.

1. Introduction

An entire p× 2p mvf (matrix-valued function) E(λ) =
[
E−(λ E+(λ)

]
with p× p

blocks E±(λ) will be called an entire dB (de Branges) matrix if

(1) detE+(λ) �≡ 0 in the complex plane C and
(2) the mvf χ(λ) = (E−1

+ E−)(λ) is holomorphic and contractive in the open
upper half plane C+ and unitary on the line R.

Since E±(λ) are entire mvf’s, the condition in (2) ensures that

E+(λ)E
#
+ (λ)− E−(λ)E

#
− (λ) = 0 for every point λ ∈ C,

1 D.Z. Arov acknowledges with thanks the support of a Morris Belkin Visiting Professorship at
the Weizmann Institute.

© Springer International Publishing AG 2017 
F. Colombo et al. (eds.), Advances in Complex Analysis and Operator Theory,  
Trends in Mathematics, DOI 10.1007/978-3-319-62362-7_1 
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2 D.Z. Arov and H. Dym

where f#(λ) = f(λ)∗. Moreover, the kernel

KE
ω (λ) =

E+(λ)E+(ω)
∗ − E−(λ)E−(ω)∗

−2πi(λ− ω)

is positive in the sense of (P3) in Section 3 and hence there exists exactly one
RKHS (reproducing kernel Hilbert space) B(E) of p×1 entire vvf’s (vector-valued
functions) with RK (reproducing kernel) KE

ω (λ), i.e., for every point ω ∈ C, every
u in the space C

p of complex p× 1 vectors and every f ∈ B(E)
(1) KE

ωu ∈ B(E) (as a function of λ) and
(2) 〈f,KE

ωu〉B(E) = u∗f(ω).

The space B(E) will be called the dB (de Branges) space corresponding to the dB
matrix E.

The spaces B(E) were first introduced by L. de Branges for the case p = 1
in an extensive series of papers on Hilbert spaces of entire functions in the late
fifties and early sixties that culminated in the monograph [10]. De Branges also
considered generalizations to vector-valued spaces of holomorphic functions in [7],
[8], [9] and [11].

The spaces B(E) are of fundamental importance in the study of direct and
inverse problems for canonical systems of differential and integral equations and
numerous other problems of analysis; see, e.g., [2], [3] and [6] and the references
cited therein; the review papers [4] and [5] may also be helpful for the reader.

In this paper attention is focused on subclasses of a class I(jp) of entire dB
matrices E for which the corresponding RKHS B(E) is invariant under the gen-
eralized backwards shift operator. An essential role is played by a pair of entire
inner mvf’s {b3, b4} which are characterized by the condition E−(λ)∗b3(λ) and
b4(λ)E+(λ) are outer mvf’s. A new subclass IsR(jp) of strongly regular dB ma-
trices of I(jp) is introduced and some of its properties, including its relation to
other subclasses of B(E) that have been presented earlier are discussed. The main
new results are presented in Section 6 and in Theorem 5.3.

The rest of this paper is organized as follows: Supplementary notation is pre-
sented in Section 2; RKHS’s are reviewed briefly in Section 3;the specific RKHS’s
B(E) based on dB matrices E and some of their main properties are discussed
in Section 4. Sections 5 and 6 focus on subclasses of B(E) and finally Section 7
discusses some connections with a class of entire Jp-inner mvf’s A(λ) and the cor-
responding RKHS’s H(A) that were not pursued in this paper and references to
other related work that was not treated here.

2. Notation

To proceed further we will need some notation. Here and below C denotes the
complex plane, C+ (resp., C−) the open upper (resp., lower) half plane, R the real
axis; mvf (resp., vvf)is an acronym for matrix-valued function (resp., vector-valued
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function); M � 0 (resp., M � 0) means that M is a positive semi-definite (resp.,
positive definite) matrix, and cls is an acronym for closed linear span.

The symbols

ρω(λ) = −2πi(λ− ω), f#(λ) = f(λ)∗,

and, for mvf’s that are holomorphic in a neighborhood of α ∈ C,

(Rαf)(λ) =

⎧⎨⎩f(λ)− f(α)
λ− α

for λ �= α,

f ′(α) for λ = α,

will be used, as will the signature matrices

jp =

[
Ip 0
0 −Ip

]
and Jp =

[
0 −Ip

−Ip 0

]
; (2.1)

they are unitarily equivalent:

Jp = VjpV
∗, where V = V∗ =

1√
2

[−Ip Ip
Ip Ip

]
. (2.2)

A p× q mvf f(λ) belongs to the class:

• Lp×q
2 if f is measurable on R and

‖f‖2st =
∫ ∞

−∞
trace{f(μ)∗f(μ)}dμ < ∞;

• Hp×q
2 (the Hardy class) if it is holomorphic in C+ and if

‖f‖22 = sup
ν>0

∫ ∞

−∞
trace{f(μ+ iν)∗f(μ+ iν)}dμ < ∞;

• (Hp×q
2 )⊥ if f# ∈ Hq×p

2 (the superscript ⊥ is in the notation because Hp×q
2

and (Hp×q
2 )⊥ are orthogonal to each other when regarded as subspaces of

Lp×q
2 );

• Hp×q
∞ if it is holomorphic in C+ and if

‖f‖∞ = sup{‖f(λ)‖ : λ ∈ C+} < ∞;

• Sp×q (the Schur class) if it is in Hp×q
∞ and ‖f‖∞ ≤ 1;

• Sp×q
in (the class of inner p × q mvf’s) if it is in Sp×q and the limit f(μ) =

limν↓0 f(μ+ iν) (which exists a.e. by a lemma of Fatou) meets the constraint
f(μ)∗f(μ) = Iq a.e. on R;

• Sp×q
out (the class of outer contractive p× q mvf’s) if it is in Sp×q and fHq

2 is
dense in Hp

2 ;

• Cp×p (the Carathéodory class) if q = p, f is holomorphic in C+ and

(�f)(λ) =
f(λ) + f(λ)∗

2
� 0

for every point λ ∈ C+;
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• N p×q (the Nevanlinna class of mvf’s with bounded Nevanlinna characteristic)

if it can be expressed in the form f = h−1g, where g ∈ Sp×q and h ∈ S def
=

S1×1;

• N p×q
+ (the Smirnov class) if it can be expressed in the form f = h−1g, where

g ∈ Sp×q and h ∈ Sout
def
= S1×1

out ;

• N p×q
out (the class of outer mvf’s in N p×q) if it can be expressed in the form

f = h−1g, where g ∈ Sp×q
out and h ∈ Sout;

• Πp×q if it belongs toN p×q and there exists a p×q mvf f− that is meromorphic

in C− such that f#
− ∈ N q×p and limν↓0 f(μ+ iν) = limν↓0 f−(μ− iν) a.e. on

R.

• Ep×q if it is an entire p× q mvf;

For each class of p× q mvf’s X p×q we shall use the symbols

X instead of X 1×1 and X p instead of X p×1; (2.3)

X p×q
const for the set of mvf’s in X p×q that are constant;

E ∩ X p×q for the class of entire mvf’s in X p×q.

3. Reproducing kernel Hilbert spaces

A Hilbert space H of n × 1 vvf’s (vector-valued functions) on a set Ω ⊆ C is a
RKHS if there exists an n× n mvf Kω(λ) on Ω× Ω such that for every choice of
λ, ω ∈ Ω, ξ ∈ C

n and f ∈ H
(1) The vvf Kωξ ∈ H.
(2) 〈f,Kωξ〉H = ξ∗f(ω).

The mvf Kω(λ) is called a RK (reproducing kernel) for H. The following properties
of a RKHS are well known and easily checked:

(P1) Kα(β)
∗ = Kβ(α).

(P2) A RKHS has exactly one RK.
(P3) A RK is positive in the sense that

n∑
i,j=1

v∗jKωi(ωj)vi ≥ 0

for every choice of points ω1, . . . , ωn ∈ C and vectors v1, . . . , vn ∈ C
p and

every positive integer n.
(P4) ‖f(ω)‖ ≤ ‖Kω(ω)‖1/2‖f‖H.

Conversely, if Kω(λ) is a positive kernel on Ω×Ω in the sense of (P3), then,
by the matrix version of a theorem of Aronszjan (see, e.g., Theorem 5.2 of [2]),

there exists exactly one RKHS H with Kω(λ) as its RK. (3.1)
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In this paper we shall deal primarily with RKHS’s of entire vvf’s. The next
lemma provides useful necessary and sufficient conditions on a kernel in order for
it to be the RK of a RKHS of entire vvf’s.

Lemma 3.1. If H is a RKHS of m× 1 vvf ’s on some nonempty open subset Ω of
C with RK Kω(λ) on Ω×Ω, then every vvf f ∈ H is holomorphic in Ω if and only
if the following two conditions are met:

(1) Kω(λ) is a holomorphic function of λ in Ω for every point ω ∈ Ω and

(2) the function Kω(ω) is continuous on Ω.

Proof. See, e.g., Lemma 5.6 in [2]. �

Example 3.2. The Hardy space Hp
2 is a RKHS of p× 1 vvf’s that are holomorphic

in C+ with RK

Kω(λ) =
Ip

ρω(λ)
for λ, ω ∈ C+.

Example 3.3. The space (Hp
2 )

⊥ is a RKHS of p× 1 vvf’s that are holomorphic in
C− with RK

Kω(λ) = − Ip
ρω(λ)

for λ, ω ∈ C−.

Example 3.4. If b ∈ E ∩Sp×p
in , then b is of exponential type, det b(λ) = eiλτ b(0) for

some τ ≥ 0 and

b#(λ)b(λ) = Ip for every point λ ∈ C.

Moreover, the space

H(b) = Hp
2 � bHp

2

is a RKHS of p× 1 entire vvf’s with RK

kbω(λ) =
Ip − b(λ)b(ω)∗

ρω(λ)
for λ �= ω.

Example 3.5. If b ∈ E ∩ Sp×p
in , then, in view of the preceding example, the kernel

�bω(λ) = b#(λ)kbω(λ)b
#(ω)∗ =

b#(λ)b#(ω)∗ − Ip
ρω(λ)

for λ �= ω

is also positive in the sense of (P3) and may be identified as the RK for the space

H∗(b) = (Hp
2 )

⊥ � b#(Hp
2 )

⊥ = b#H(b)

of p× 1 entire vvf’s.

Example 3.6. If b3, b4 ∈ E ∩ Sp×p
in , then H∗(b4)⊕H(b3) is a RKHS of p× 1 entire

vvf’s with RK

�b4ω (λ) + kb3ω (λ) =
b#4 (λ)b

#
4 (ω)

∗ − b3(λ)b3(ω)
∗

ρω(λ)
for λ �= ω.
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4. Entire de Branges matrices E and de Branges spaces B(E)
Recall that an entire p × 2p mvf E(λ) =

[
E−(λ) E+(λ)

]
with p × p blocks E±

will be called an entire dB matrix if

detE+(λ) �≡ 0 and E−1
+ E− ∈ Sp×p

in . (4.1)

If E is a dB matrix, then the set of entire p× 1 vvf’s that meet the constraints

E−1
+ f ∈ Hp

2 and E−1
− f ∈ (Hp

2 )
⊥ (4.2)

is a RKHS B(E) with RK

KE
ω(λ) =

⎧⎨⎩
E+(λ)E+(ω)

∗ − E−(λ)E−(ω)∗

ρω(λ)
= −E(λ)jpE(ω)

∗

ρω(λ)
if λ �= ω,

− 1
2πi{E′

+(ω)E+(ω)
∗ − E′

−(ω)E−(ω)∗} if λ = ω,
(4.3)

with respect to the inner product

〈f, g〉B(E) =

∫ ∞

−∞
g(μ)∗ΔE(μ)f(μ)dμ, (4.4)

where
ΔE(μ) = {E+(μ)E+(μ)

∗}−1 = {E−(μ)E−(μ)∗}−1

at points μ ∈ R at which detE±(μ) �= 0; see, e.g., Section 4.10 in [3] and Section
3.2 in [6].

Remark 4.1. Since E(λ) is an entire mvf, the second condition in (4.1) implies that

E+(λ)E
#
+ (λ)− E−(λ)E

#
− (λ) = 0 for every point λ ∈ C. (4.5)

Moreover, the mvf χ = E−1
+ E−, which belongs to Sp×p

in by definition, extends as a
meromorphic mvf in C and the formulas

V1f = E−1
+ f and V2f = E−1

− f

define unitary operators from B(E) onto the RKHS’sH(χ) andH∗(χ), respectively.
The RK’s of these spaces are related by the formulas

KE
ω (λ) = E+(λ)k

χ
ω(λ)E+(ω)

∗ for λ, ω ∈ hχ (4.6)

and
KE

ω (λ) = E−(λ)�χω(λ)E−(ω)∗ for λ, ω ∈ hχ# , (4.7)

where hχ (resp., hχ#) denotes the domain of holomorphy of χ (resp., χ#) in C.�

An entire dB matrix E belongs to the class I(jp) if
(ρiE

#
− )−1 ∈ Hp×p

2 and (ρiE+)
−1 ∈ Hp×p

2 . (4.8)

Lemma 4.2. If E ∈ I(jp), then
(1) detE+(λ) �= 0 for every point λ ∈ C+ and E−1

+ is holomorphic in C+;

detE−(λ) �= 0 for every point λ ∈ C− and E−1
− is holomorphic in C−. .

(2) The dB space B(E) is Rα-invariant for every point α ∈ C.
(3) E ∈ E ∩Πp×2p and B(E) ⊂ E ∩Πp.
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(4) RαE+η ∈ B(E) and RαE−η ∈ B(E) for every η ∈ C
p and α ∈ R.

(5) The subspaces

Nα
def
= {u ∈ C

p : KE
α (α)u = 0} and Rα

def
= {KE

α (α)u : u ∈ C
p} (4.9)

are independent of α,
C

p = Nα ⊕Rα (4.10)

and
Rα = {f(α) : f ∈ B(E)}. (4.11)

(6) KE
α (α) � 0 ⇐⇒ Rα = C

p ⇐⇒ Nα = {0}.
(7) KE

ω (ω) � 0 for at least one point ω ∈ C if and only if KE
ω (ω) � 0 for every

point ω ∈ C.

Moreover, if E is an entire dB matrix and there exists at least one point α ∈ C

such that

(a) B(E) is Rα invariant and KE
α (α) � 0,

or, there exists a pair of points α, β ∈ C
p such that

(b) E+(α) is invertible, E−(β) is invertible, RαE+η ∈ B(E) and RβE−η ∈ B(E)
for every η ∈ C

p,

then E ∈ I(jp).
Proof. See Lemma 3.19 in [6]. �

A nondecreasing p × p mvf σ(μ) on R is called a spectral function for a dB
space B(E) based on a dB matrix E ∈ I(jp) if

〈g, g〉B(E) =

∫ ∞

−∞
g(μ)∗ dσ(μ) g(μ) for every g ∈ B(E).

The set of spectral functions for B(E) will be denoted (B(E))sf . If σ ∈ (B(E))sf is
locally absolutely continuous and Δ(μ) = σ′(μ) a.e. is such that

〈g, g〉B(E) =

∫ ∞

−∞
g(μ)∗ Δ(μ) g(μ)dμ for every g ∈ B(E),

then Δ will be called a spectral density for B(E). Since

E ∈ I(jp) =⇒
∫ ∞

−∞

ΔE(μ)

1 + μ2
dμ is finite,

the function

σE(μ) =

∫ μ

0

ΔE(ν)dν

is a spectral function for B(E) and ΔE is a spectral density for B(E).
Lemma 4.3. If E ∈ I(jp) and KE

ω (ω) � 0 for at least one point ω ∈ C, then∫ ∞

−∞
trace

{
dσ(μ)

1 + μ2

}
< ∞

for every σ ∈ (B(E))sf .
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Proof. Let f ∈ B(E). Then, as
f(i)

λ− i
=

f(λ)

λ− i
− (Rif)(λ),

it is readily checked that∫ ∞

−∞
f(i)∗

dσ(μ)

1 + μ2
f(i)

≤ 2

∫ ∞

−∞
f(μ)∗

dσ(μ)

1 + μ2
f(μ) + 2

∫ ∞

−∞
(Rif)(μ)

∗dσ(μ)(Rif)(μ)

≤ 2‖f‖2B(E) + 2‖Rif‖2B(E).

The asserted bound follows from the fact that {f(i) : f ∈ B(E)} = C
p, by Lemma

4.2. �

Example 4.4. If b1, b2 ∈ E ∩ Sp×p
in and ϕ ∈ Ep×p with detϕ(λ) �≡ 0, then

E =
[
ϕb1 ϕb−1

2

]
is a dB matrix and ΔE(μ) = {ϕ(μ)ϕ(μ)∗}−1 a.e. on R.

If, for example, ϕ(λ) = λIp, then ΔE(μ) = μ−2Ip for μ �= 0. Moreover,

(1) if E =
[
b1 b−1

2

]
, then B(E) = H∗(b1)⊕H(b2).

(2) if E =
[
b1 Ip

]
, then B(E) = H∗(b1).

(3) if E =
[
Ip b−1

2

]
, then B(E) = H(b2). �

A theorem of M.G. Krein (see e.g., Theorem 3.91 in [2]) guarantees that if
f ∈ E ∩Πp×q, then f has finite exponential type

τf = lim sup
r↑∞

{
ln ‖f(λ)‖

r
: |λ| < r

}
< ∞

and that

τf = max{τ−f , τ+f } where τ±f = lim sup
ν↑∞

{
ln ‖f(±iν)‖

ν

}
.

The next example demonstrates that the inclusions

I(jp) ⊂ {dB matrices E ∈ E ∩Πp×2p} ⊂ {dB matrices E ∈ Ep×2p}
are proper.

Example 4.5. Let E =
[
ϕb1 ϕb−1

2

]
be the dB matrix with b1, b2 ∈ E ∩ Sp×p

in ,

ϕ ∈ Ep×p and detϕ(λ) �≡ 0.

If ϕ(λ) = λIp, then E ∈ E ∩Πp×2p but E �∈ I(jp),
since b2(ϕρi)

−1 �∈ Hp×p
2 . On the other hand, if

ϕ(λ) = eλ
2

Ip then E is an entire dB matrix but E �∈ Πp×2p

because E is not of exponential type. �
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If E ∈ I(jp), then, in view of (4.8), there exist a pair of mvf’s b3, b4 ∈ Sp×p
in

and ϕ3, ϕ4 ∈ N p×p
out such that

(E#
− )−1 = b3ϕ3 and (E+)

−1 = ϕ4b4. (4.12)

The pair {b3, b4} is uniquely determined by (4.12) up to p × p constant unitary
multipliers on the right and left, respectively. The set

{(b3u, vb4) : u and v are unitary p× p matrices}
is called the set of associated pairs of E and is denoted ap(E);

the associated pairs of E ∈ I(jp) are entire mvf’s. (4.13)

The verification of (4.13) follows from [1] and the fact that ap(E) coincides with
the set of associated pairs of the second kind of a mvf A that belongs to the class
E ∩U(Jp) that is considered briefly in Section 7; see especially (7.2) and (7.1) and,
for additional discussion, Theorem 4.54 in [2]).

Lemma 4.6. If E =
[
E− E+

]
belongs to the class I(jp), then

(1) τ+E = max{τ+f : f ∈ B(E)} and τ−E = max{τ−f : f ∈ B(E)};
(2) τ+E = τ+E+

= τb4 and τ−E = τ−E− = τb3 .

Proof. See Lemma 3.41 in1 [6]. �

Let Uconst(jp) denote the set of V ∈ C
2p×2p such that V ∗jpV = jp.

Lemma 4.7. If E and Ẽ are entire dB matrices and KE
0 (0) � 0, then

B(E) = B(Ẽ) ⇐⇒ Ẽ(λ) = E(λ)V for some V ∈ Uconst(jp). (4.14)

Proof. The implication ⇐= is obvious; a proof of the opposite implication =⇒ is
furnished in Theorem 3.22 of [6]. �

The set of matrices

Vα =

[
Ip + iα iα
−iα Ip − iα

]
with α = α∗ ∈ C

p×p (4.15)

is a subgroup of the multiplicative group Uconst(jp) with the property

Vα Vβ = Vα+β . (4.16)

Lemma 4.8. If V ∈ Uconst(jp), then[
Ip Ip

]
V =

[
Ip Ip

]⇐⇒ V = Vα

for some Hermitian matrix α ∈ C
p×p.

Proof. See Lemma 3.11 in [6]. �

Let
I◦(jp) = {E ∈ I(jp) : E(0) =

[
Ip Ip

]}.
1The enumeration of some of the items referred to in [6] might shift a little in the final edition.
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Lemma 4.9. If E =
[
E− E+

]
is an entire dB matrix, then there exists a matrix

V ∈ Uconst(jp) such that (EV )(0) =
[
Ip Ip

]
if and only if E+(0) is invertible.

Proof. See Theorem 3.12 in [6]. �

Lemma 4.10. If E , E1 ∈ I(jp) and B(E) = B(E1), then ap(E) = ap(E1).

Proof. This is Corollary 3.17 in [6]. �

5. Subclasses of IR(jp)
A Hilbert space H1 is said to be contractively included in a Hilbert space H2 if

f ∈ H1 =⇒ f ∈ H2 and ‖f‖H2
≤ ‖f‖H1

;

the indicated inclusion is said to be isometric if

‖f‖H2 = ‖f‖H1 for every f ∈ H1.

The notation H1 ∼ H2 means that the two Hilbert spaces coincide as vector spaces
and have equivalent norms, i.e., there exist a pair of constants γ1 > 0 and γ2 ≥ γ1
such that

γ1 ‖f‖H1
≤ ‖f‖H2

≤ γ2 ‖f‖H1
.

If E ∈ I(jp) and {b3, b4} ∈ ap(E), then E belongs to the subclass

IS(jp) if b3 and b4 are constant unitary matrices;

IR(jp) if E1 ∈ I(jp), {b3, b4} ∈ ap(E1) and B(E1) ⊆ B(E) is included
isometrically in B(E), then B(E1) = B(E);

IAR(jp) if every mvf E1 for which B(E1) ⊆ B(E) is isometric

belongs to the class IR(jp).
There exist other characterizations of these subclasses. Thus, for example,

IS(jp) = {E ∈ I(jp) : τE = 0} = {[E− E+

] ∈ I(jp) : E#
− , E+ ∈ N p×p

out }.
Example 5.1. If p(λ) is a polynomial of degree ≥ 1 with all its zeros in C−, then
the mvf E(λ) =

[
p#(λ)Ip p(λ)Ip

]
belongs to the class E ∩ IS(jp).

If b3, b4 ∈ E ∩Sp×p
in and b4(λ)b3(λ) is not constant and p(λ) is as above, then

the mvf E(λ) =
[
p#(λ)b3(λ) p(λ)b4(λ)

−1
]
belongs to the class E ∩I(jp) but does

not belong to the class IS(jp) or to the class IR(jp). �

The next theorem will be used to help establish Theorem 5.3. It follows from
the connections between dB matrices E and Jp-inner mvf’s A(λ) that will be
discussed briefly in Section 7; complete proofs will be presented in [6].

Theorem 5.2. If E = I(jp) and {b3, b4} ∈ ap(E), then:

(1) Every closed R0-invariant subspace L of B(E) is equal to a dB space B(E1)
for some dB matrix E1 ∈ I(jp) (and hence ‖f‖B(E1) = ‖f‖B(E) for every
f ∈ B(E1)).
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(2) If E1 ∈ I(jp), {b(1)3 , b
(1)
4 } ∈ ap(E1) and B(E1) ⊆ B(E), then

(b
(1)
3 )−1b3 ∈ E ∩ Sp×p

in and b4(b
(1)
4 )−1 ∈ E ∩ Sp×p

in .

(3) If the mvf’s b
(1)
3 , b

(1)
4 , (b

(1)
3 )−1b3 and b4(b

(1)
4 )−1 all belong to the class E ∩

Sp×p
in , then there exists a dB matrix E1 ∈ IR(jp) such that B(E1) ⊆ B(E)

isometrically and {b(1)3 , b
(1)
4 } ∈ ap(E1). Moreover, this dB matrix is unique

up to a constant jp-unitary factor V on the right.

Theorem 5.3. If E ∈ I(jp), {b3, b4} ∈ ap(E) and the four mvf’s b
(1)
3 , (b

(1)
3 )−1b3,

b
(1)
4 and b4(b

(1)
4 )−1 all belong to the class E ∩ Sp×p

in , then:

(1) k
b
(1)
3

ω ξ ∈ B(E) and �
b
(1)
4

ω ξ ∈ B(E) for every ξ ∈ C
p and ω ∈ C.

(2) The space

L = cls{kb
(1)
3

α ξ + �
b
(1)
4

β η : α, β ∈ C and ξ, η ∈ C
p} in B(E) (5.1)

is a dB space B(E1) based on a dB matrix E1 ∈ I(jp) and hence ‖f‖B(E1) =
‖f‖B(E) for every f ∈ B(E1), i.e., B(E1) ⊆ B(E) and the inclusion is isomet-
ric.

(3) E1 ∈ IR(jp) and {b(1)3 , b
(1)
4 } ∈ ap(E1).

(4) E ∈ IR(jp) if and only if

B(E) = cls{kb3α ξ + �b4β η : α, β ∈ C and ξ, η ∈ C
p} in B(E). (5.2)

Proof. The proof is divided into steps.

1. If b ∈ E ∩ Sp×p
in , then ρik

b
ω ∈ Hp×p

∞ and ρi(�
b
ω)

# ∈ Hp×p
∞ for each choice of

ω ∈ C.

Since ρi(λ)k
b
ω(λ) is an entire mvf of λ for each choice of ω ∈ C,

‖ρikbω‖ ≤ c1 < ∞ for |λ− ω| ≤ 1.

On the other hand, if λ = ω + β with |β| > 1, then∣∣∣∣ ρi(λ)ρω(λ)

∣∣∣∣ = ∣∣∣∣ λ+ i

λ− ω

∣∣∣∣ = |ω + β + i|
|β| ≤ 1 + |ω + i|.

Therefore,

ρik
b
ω =

ρi
ρω

{Ip − bb(ω)∗} ∈ Hp×p
∞ .

The verification of the second assertion is similar.

2. (b
(1)
3 )#(ρiE

#
− )−1 ∈ Hp×p

2 and (ρiE+)
−1(b

(1)
4 )# ∈ Hp×p

2 . In view of (4.12),

E#
− = ϕ−1

3 b#3 and E+ = b#4 ϕ
−1
4

with ϕ3 and ϕ4 in N p×p
out . Therefore, since

(ρiE+)
−1 ∈ Hp×p

2 and (ρiE
#
− )−1 ∈ Hp×p

2 ,
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the mvf’s

(ρiE+)
−1b#4 = ρ−1

i ϕ4 and b#3 (ρiE
#
− )−1 = ρ−1

i ϕ3

belong to Lp×p
2 ∩N p×p

+ . Thus, the Smirnov maximum principle guarantees that

ρ−1
i ϕ3 ∈ Hp×p

2 and ρ−1
i ϕ4 ∈ Hp×p

2 (5.3)

and hence that b#3 (ρiE
#
− )−1 ∈ Hp×p

2 and (ρiE+)
−1b#4 ∈ Hp×p

2 . But this implies

the assertion of Step 2, since (b
(1)
3 )−1b3 ∈ E ∩ Sp×p

in and b4(b
(1)
4 )−1 ∈ E ∩ Sp×p

in .

3. Verification of (1). The proof is based on the fact that

f ∈ B(E) ⇐⇒ E−1
+ f ∈ Hp

2 and E−1
− f ∈ (Hp

2 )
⊥.

In view of Steps 1 and 2, it is easily seen that

E−1
+ k

b
(1)
3

ω ξ = (ρiE+)
−1ρik

b
(1)
3

ω ξ ∈ Hp
2 (5.4)

for every choice of ω ∈ C and ξ ∈ C
p. Moreover, by a self-evident variant of Step

1 and Step 2,

E−1
− k

b
(1)
3

ω ξ = ϕ#
3 b

−1
3 k

b
(1)
3

ω ξ = {ρ−1
−iϕ

#
3 } {ρ−ib

−1
3 k

b
(1)
3

ω ξ} ∈ (Hp
2 )

⊥

for every ω ∈ C and ξ ∈ C
p (keep (5.3) in mind). This completes the proof of the

first assertion in (1); the proof of the second is similar.

4. Verification of (2). We shall assume that b
(1)
3 (0) = b

(1)
4 (0) = Ip. In view of Step

1, L is a closed subspace of B(E) and hence is automatically isometrically included
in B(E). Moreover, since

k
b
(1)
3

ω (λ) =
Ip − b

(1)
3 (λ)b

(1)
3 (ω)∗

ρω(λ)
=

1

2πi
(Rωb

(1)
3 )(λ)b

(1)
3 (ω)∗,

the resolvent identity Rα−Rβ = (α−β)RαRβ with α = 0 and β = ω implies that

(R0k
b
(1)
3

ω )(λ) =
i

2πω
{(R0b

(1)
3 )(λ)− (Rωb

(1)
3 )(λ)}b(1)3 (ω)∗

=
k
b
(1)
3

0 (λ)b
(1)
3 (ω)∗ − k

b
(1)
3

ω (λ)

−ω
if ω �= 0,

and hence that R0 maps finite sums of the form
∑

k
b
(1)
3

ωj ξj (with ωj �= 0) into finite
sums of the same form. Similarly, since

�
b
(1)
4

ω (λ) =
(b

(1)
4 )#(λ)(b

(1)
4 )#(ω)∗ − Ip

ρω(λ)
= − 1

2πi
(Rω(b

(1)
4 )#)(λ)(b

(1)
4 )#(ω)∗

R0�
b
(1)
4

ω = − 1

2πi
(R0Rω(b

(1)
4 )#)(λ)(b

(1)
4 )#(ω)∗

= − 1

2πiω

{
(Rω(b

(1)
4 )#)(λ)− (R0(b

(1)
4 )#)(λ)

}
b
(1)
4 (ω),
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R0 maps finite sums of the form
∑

�
b
(1)
4

ωj ηj (with ωj �= 0) into finite sums of the
same form. Thus, as such sums are dense in L and R0 is a bounded operator on
B(E), L is invariant under R0. Therefore, by Theorem 5.2, L = B(E1) for some
dB matrix E1 ∈ I(jp).

5. Verification of (3). Since the blocks in E1 =
[
E

(1)
− E

(1)
+

]
admit factorizations

of the form

E
(1)
− = b̃3ϕ̃

#
3 and E

(1)
+ = (̃b4)

−1ϕ̃4 with ϕ̃3, ϕ̃4 ∈ N p×p
out

and k
b
(1)
3

ω ξ, �
b
(1)
4

ω ξ ∈ B(E1) for every choice of ω ∈ C and ξ ∈ C
p,

(E
(1)
+ )−1�

b
(1)
4

ω ξ = (ϕ̃4)
−1b̃4�

b
(1)
4

ω ξ ∈ Hp
2 ⊂ N p×p

+ (5.5)

and

(E
(1)
− )−1k

b
(1)
3

ω ξ = (ϕ̃3)
−#(̃b3)

−1k
b
(1)
3

ω ξ ∈ (Hp
2 )

⊥ (5.6)

for every ω ∈ C and ξ ∈ C
p. In particular, (5.5) implies that b̃4�

b
(1)
4

ω ξ ∈ Lp
2 ∩N p

+ =
Hp

2 and hence that

�
b
(1)
4

ω ξ ∈ (̃b#4 H
p
2 ) ∩ (Hp

2 )
⊥ = H∗(̃b4)

and, by a similar argument based on (5.6), that

k
b
(1)
3

ω ξ ∈ H(̃b3) for every ω ∈ C and ξ ∈ C
p.

Thus,

�
b
(1)
4

ω (ω) � �
˜b4
ω (ω) and k

b
(1)
3

ω (ω) � k
˜b3
ω (ω) for every point ω ∈ C.

But this in turn leads easily to the inequalities

(b
(1)
4 )#(ω)(b

(1)
4 )#(ω)∗ � b̃#4 (ω)̃b

#
4 (ω)

∗ and b̃3(ω)̃b3(ω)
∗ � b

(1)
3 (ω)b

(1)
3 (ω)∗

for ω ∈ C+. Therefore,

b̃4(b
(1)
4 )−1 ∈ Sp×p

in and (b
(1)
3 )−1b̃3 ∈ Sp×p

in . (5.7)

In view of Theorem 5.2, there exists an essentially unique dB matrix E2 ∈
IR(jp) such that B(E2) ⊆ B(E1) isometrically, {b(1)3 , b

(1)
4 } ∈ ap(E2) and B(E2) ⊆

B(E) isometrically. Therefore, by (2) applied to E2 instead of E, it follows that
B(E1) ⊆ B(E2) isometrically. Therefore, B(E2) = B(E1), as needed.

6. Verification of (4). This follows from (2) and (3) by setting b
(1)
3 = b3 and

b
(1)
4 = b4, since in this case E ∈ IR(jp) if and only if B(E1) = B(E). �



14 D.Z. Arov and H. Dym

6. The class of strongly regular entire de Branges matrices

A mvf E ∈ I(jp) will be called a strongly regular entire dB matrix if B(E) ⊂ Lp
2

and there exist a pair of constants γ1 > 0 and γ2 ≥ γ1 such that

γ1 ‖f‖st ≤ ‖f‖B(E) ≤ γ2 ‖f‖st for every f ∈ B(E). (6.1)

The class of strongly regular entire dB matrices will be denoted IsR(jp).
Lemma 6.1. If E ∈ I(jp), {b3, b4} ∈ ap(E) and f ∈ B(E) ∩ Lp

2, then

f ∈ H∗(b4)⊕H(b3). (6.2)

Moreover, E ∈ IsR(jp) if and only if

B(E) ∼ H∗(b4)⊕H(b3). (6.3)

Proof. If f ∈ B(E), then E−1
+ f ∈ Hp

2 and E−1
− f ∈ (Hp

2 )
⊥. Thus, in view of the

factorizations in (4.12), there exist a pair of mvf’s ϕ3, ϕ4 ∈ N p×p
out such that

ϕ4b4f ∈ Hp
2 and ϕ#

3 b
#
3 f ∈ (Hp

2 )
⊥.

Therefore,

b4f ∈ N p×1
+ and (b#3 f)

# ∈ N 1×p
+ .

Under the extra assumption that f ∈ Lp
2 (as well as to B(E)) it follows from the

Smirnov maximum principle that b4f ∈ Hp
2 and b#3 f ∈ (Hp

2 )
⊥. Therefore, f is

orthogonal to b#4 (H
p
2 )

⊥ and to b3H
p
2 , i.e., (6.2) holds.

Suppose next that E ∈ IsR(jp). Then B(E) ⊂ Lp
2 and hence

B(E) ⊆ H∗(b4)⊕H(b3),

since the inclusion (6.2) is in force. At the same time, Theorem 5.3 guarantees that

{kb3α ξ + �b4β η : α, β ∈ C and ξ, η ∈ C
p} ⊆ B(E). (6.4)

Let f ∈ H∗(b4)⊕H(b3). Then, since

H∗(b4)⊕H(b3) = cls{kb3α ξ + �b4β η : α, β ∈ C and ξ, η ∈ C
p} in Lp

2,

there exists a Cauchy sequence {fn} of finite linear combinations of vvf’s in the
set on the left in (6.4) such that ‖fn− f‖st → 0 as n ↑ ∞. In view of (6.1), {fn} is
also a Cauchy sequence in B(E). Therefore, ‖fn − g‖B(E) → 0 as n ↑ ∞ for some
vvf g ∈ B(E). But f = g, since norm convergence implies pointwise convergence
in a RKHS. Thus, (6.3) holds when E ∈ IsR(jp).

The converse implication is immediate from the definition of the class E ∈
IsR(jp). �

Lemma 6.2. IsR(jp) ⊂ IR(jp) and the inclusion is proper.

Proof. If E ∈ IsR(jp) and {b3, b4} ∈ ap(E), then (6.3) holds. Assertion (4) of
Theorem 5.3 and the relation

H∗(b4)⊕H(b3) = cls{kb3α ξ + �b4β η : α, β ∈ C and ξ, η ∈ C
p} in Lp

2
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imply that E ∈ IR(jp). Thus, IsR(jp) ⊆ IR(jp). However, the inclusion is proper
because the mvf

E1(λ) =
[
(1 + iλ)b3(λ) (1− iλ)b4(λ)

−1
]

belongs to the class IR(jp) but not to the class IsR(jp). (This will be discussed in
more detail in[6].) �

Theorem 6.3. If E ∈ IsR(jp), E1 ∈ I(jp), B(E1) is a closed subspace of B(E) and
the inclusion B(E1) ⊆ B(E) is contractive, then E1 ∈ IsR(jp).

Proof. Let {b(1)3 , b
(1)
4 } ∈ ap(E1). Then, since B(E1) ⊆ B(E) and B(E) ⊂ Lp

2, Lemma

6.1 ensures that B(E1) ⊆ H∗(b
(1)
4 )⊕H(b

(1)
3 ).

On the other hand, if f ∈ H∗(b
(1)
4 ) ⊕ H(b

(1)
3 ), then there exists a sequence

{fn}, n = 1, 2, . . . of linear combinations of vvf’s of the form k
b
(1)
3

α ξ + �
b
(1)
4

β η with

ξ, η ∈ C
p and α, β ∈ C such that fn → f in Lp

2 as n ↑ ∞. In view of Theorem
5.3, fn ∈ B(E1) and hence, as B(E1) ⊆ B(E), fn ∈ B(E) for n = 1, 2, . . .. Thus,
as E ∈ IsR(jp), f ∈ B(E) and hence, as B(E1) is closed in B(E), f ∈ B(E1).

Consequently, B(E1) = H∗(b
(1)
4 ) ⊕H(b3) as vector spaces. Since E ∈ IsR(jp) and

the inclusion B(E1) ⊆ B(E) is contractive, there exists a constant γ1 > 0 such that

γ1‖f‖st ≤ ‖f‖B(E) ≤ ‖f‖B(E1) for every f ∈ B(E1).

Thus, the identity map T from B(E1) onto H∗(b
(1)
4 ) ⊕ H(b

(1)
3 ) is subject to the

bounds

‖Tf‖st = ‖f‖st ≤ γ−1
1 ‖f‖B(E1).

Therefore, as T is invertible, a well-known theorem of Banach guarantees that T−1

is also bounded, i.e., there exists a constant γ > 0 such that

‖f‖B(E1) = ‖T−1f‖B(E1) ≤ γ‖f‖st for every f ∈ B(E1).

Consequently, E1 ∈ IsR(jp). �

7. Other directions

In this paper we have not discussed spectral functions nor the role of vector-valued
dB spaces as a model for symmetric operators; see e.g., [3] for the former and [12]
and the references cited therein for the latter.

The theory of dB spaces B(E) based on entire dB matrices E is intimately
connected with the theory of entire Jp-inner mvfs A and the corresponding RKHS’s
H(A).

Let E∩U(Jp) denote the class of m×m entire Jp-inner mvf’s A(λ), i.e., entire
mvf’s such that

Jp −A(λ)JpA(λ)
∗ � 0 for λ ∈ C+ with equality on R.
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If A ∈ E ∩ U(Jp), then the kernel

KA
ω (λ) =

Jp −A(λ)JpA(ω)∗

ρω(λ)
for λ �= ω

is positive in the sense of (P3) in Section 3. Therefore, KA
ω (λ) can be identified as

the RK of a RKHS of 2p× 1 vvf’s that will be denoted H(A). Moreover, every vvf
f ∈ H(A) is entire, the mvf

E(λ) =
[
E−(λ) E+(λ)

]
= EA(λ)

def
=

√
2
[
0 Ip

]
A(λ)V (7.1)

is a dB matrix and

KE
ω (λ) =

√
2
[
0 Ip

] Jp −A(λ)JpA(ω)
∗

ρω(λ)

√
2

[
0
Ip

]
.

Furthermore,

E ∈ I(jp) if and only if E = EA for some A ∈ E ∩ U(Jp). (7.2)

We shall say that a mvf A ∈ E ∩ U(Jp) belongs to the class

E ∩ UrR(Jp) if H(A) ∩ Lm×m
2 is dense in H(A),

E ∩ UrsR(Jp) if H(A) ⊂ Lm×m
2 ,

E ∩ US(Jp) if H(A) ∩ Lm×m
2 = {0},

E ∩ UAR(Jp) if A1 ∈ E ∩ U(Jp) and A−1
1 A ∈ E ∩ U(Jp), then A1 ∈ UrR(Jp).

A number of other characterizations of these classes are presented in [2].

If A ∈ E ∩ U(Jp) is written in block form A =
[
aij(λ)

]
with p × p blocks

aij(λ) for i, j = 1, 2, then the limit

β = lim
ν↑∞

1

ν
�(a11(iν) + a12(iν))(a21(iν) + a22(iν))

−1

exists and β � 0. A mvf A ∈ E ∩ U(Jp) is said to be perfect if β = 0.

If E ∈ I(jp), then there exists a perfect mvf A ∈ E ∩U(Jp) such that E = EA.
Moreover, in this case the operator

U2 : f ∈ H(A) �→
√
2
[
0 Ip

]
f ∈ B(E)

is unitary.

It also turns out that

(1) E ∈ I(jp) ⇐⇒ E = EA for a perfect mvf A ∈ E ∩ U(Jp)
and, if E = EA for some perfect mvf A ∈ E ∩ U(Jp), then
(2) EA ∈ IS(jp) ⇐⇒ A ∈ E ∩ US(Jp),
(3) EA ∈ IR(jp) ⇐⇒ A ∈ E ∩ UrR(Jp),
(4) EA ∈ IsR(jp) ⇐= A ∈ E ∩ UrsR(Jp),

These connections will be discussed in detail in [6].
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Divided Differences and Two-sided Polynomial
Interpolation Over Quaternions

Vladimir Bolotnikov

Dedicated to Professor Daniel Alpay on the occasion of his 60th birthday

Abstract. We consider a two-sided interpolation problem of Lagrange–Hermite
type for polynomials over quaternions. Necessary and sufficient condition for
the problem to have a solution is given and a particular low-degree solution
is constructed in terms of a certain Sylvester equation.

1. Introduction

Let H be the skew field of real quaternions with imaginary units i, j,k commuting
with R and satisfying i2 = j2 = k2 = ijk = −1. For α = x0 + ix1 + jx2 + kx3

(xi ∈ R), its real and imaginary parts, the quaternionic conjugate and the absolute
value are defined as �(α) = x0, �(α) = ix1 + jx2 + kx3, α = �(α) − �(α) and

|α| = √
αα =

√|�(α)|2 + |�(α)|2.
Let H[z] denote the ring of polynomials in one formal variable z which com-

mutes with quaternionic coefficients. The division algorithm holds in H[z] on either
side, and hence, any (left or right) ideal in H[z] is principal. We denote by 〈G〉r
and 〈G〉� the right and left ideals generated by G ∈ H[z] dropping the subscript if
the ideal is two-sided. To exclude non-uniqueness, all generators will be assumed
to be monic. We recall that the ring R[z] of polynomials with real coefficients is
the center of H[z] and that any two-sided ideal in H[z] is generated by an element
from R[z].

Adapting the main concept from [6] to the current single-variable noncom-
mutative setting, let us say that a finite collection {Φi}ni=1 of left (right) evaluation
functionals is a left (right) ideal interpolation scheme if

1. the solution set of the interpolation problem with homogeneous conditions
Φi(f) = 0 for i = 1, . . . , n is a right (left) ideal I ⊂ H[z], and

2. any non-homogeneous problem has a unique solution f0 modulo I.
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F. Colombo et al. (eds.), Advances in Complex Analysis and Operator Theory,  
Trends in Mathematics, DOI 10.1007/978-3-319-62362-7_  

19

2



20 V. Bolotnikov

The basic example of the ideal interpolation scheme in H[z] is the Lagrange left (or
right) interpolation problem with interpolation nodes such that none three of them
belong to the same similarity (conjugacy) class [7, 8, 14, 15]. To solve a specific
problem in H[z] based on an ideal interpolation scheme, it suffices to find the gen-
erator G for the solution set of the homogeneous problem (this usually amounts to
computing the least left/right common multiple of several given polynomials) and
a particular (low-degree) solution f0 (which can be done, e.g., using Vandermonde
or confluent Vandermonde matrices). Then, by linearity, the solution set for the
original problem can be written as f0 + 〈G〉r (or as f0 + 〈G〉�) for the left (right)
interpolation scheme. In this paper, we make the next step considering the com-
bination of left and right interpolation schemes. Disregarding specific evaluation
functionals we may start directly with solution sets for the one-sided parts of the
problem. In other words, we will be concerned with the following problem:

(P): Given polynomials the G, H, f�, fr ∈ H[z], find a polynomial f ∈ H[z] such
that

f = f� +Gp and f = fr + p̃H for some p, p̃ ∈ H[z]. (1.1)

The solvability criterion and a recipe for constructing a particular solution
of the problem (P) by means of certain Sylvester equation are given in Theorem
1.1 below. In what follows, we use the notation

En =
[
1 0 . . . 0

] ∈ H
1×n and ρα(z) := z − α for a fixed α ∈ H. (1.2)

Without loss of generality we may (and will) assume that the polynomials G and
H are monic and that deg f� < degG and deg fr < degH. Since any quaternionic
polynomial can be factored into the product of linear factors, we may take G and
H in the form

G = ρα1
· · ·ραk

, H = ρβm
· · ·ρβ1

, αi, βj ∈ H. (1.3)

With factorizations (1.3), we associate the matrices

Jα =

⎡⎢⎢⎢⎢⎣
α1 0 . . . 0

1 α2
. . .

...
. . .

. . . 0
0 1 αk

⎤⎥⎥⎥⎥⎦ and Jβ =

⎡⎢⎢⎢⎢⎣
β1 0 . . . 0

1 β2
. . .

...
. . .

. . . 0
0 1 βm

⎤⎥⎥⎥⎥⎦ . (1.4)

For a polynomial g(z) =
∑N

j=0 gjz
j , let us define the column Δ�(α; g) ∈ H

k×1 and

the row Δr(g;β) ∈ H
1×m by the formulas (with Ek and Em as in (1.2))

Δ�(α; g) =

N∑
j=0

J j
αE

	
k gj and Δr(g;β) =

N∑
j=0

gjEm(J	
β )j . (1.5)

Theorem 1.1. Given G and H as in (1.3) and given polynomials f�, fr, let Jα, Jβ,
Δ�(α; f�) and Δr(fr;β) be defined via formulas (1.4), (1.5). There is an f ∈ H[z]
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subject to conditions (1.1) if and only if the equation

JαX −XJ	
β = Δ�(α; f�)Em − E	

k Δr(fr;β) (1.6)

has a solution X ∈ H
k×m. If this is the case, then the formula

fX = f� +G · (Xk,1 +Xk,2ρβ1
+Xk,3ρβ2

ρβ1
+ . . .+Xk,mρβm−1

· · ·ρβ1

)
(1.7)

establishes a one-to-one correspondence between solutions X = [Xi,j ] ∈ H
k×m

to the equation (1.6) and solutions fX to the problem (P) of degree less than
degG+ degH (low-degree solutions).

Remark 1.2. The entries in the equation (1.6) are based on factorizations (1.3)
of G and H which in general are not unique. It follows from Theorem 1.1 that
if G = ργ1

· · ·ργk
and H = ρηm

· · ·ρη1
are two other factorizations of G and H,

then the equation

JγY − Y J	
η = Δ�(γ; f�)Em − E	

k Δr(fr;η) (1.8)

has a solution if and only if the equation (1.6) does. Actually, it can be shown that
for matrices Jα and Jγ constructed from different factorizations of G, there is an
invertible matrix T such that TJγ = JαT and TE	

k = E	
k . Similarly, there is an

invertible matrix T̃ such that J	
η T̃ = T̃J	

β and EmT̃ = Em. Then it follows from

(1.5) that

TΔ�(γ; g) = Δ�(α; g) and Δr(g;η)T̃ = Δr(g;β) for all g ∈ H[z],

from which it is seen that Y solves (1.8) if and only if X = TY T̃ solves (1.6).

The solvability criterion from Theorem 1.1 is fairly satisfactory due to existing
procedures verifying whether or not the Sylvester equation (1.6) has a solution.
One such procedure is based on the complex representation ϕ(M) of a quaternionic
matrix M suggested in [17]:

ϕ(M) =

[
M1 M2

−M2 M1

]
, where M = M1 +M2j, M1, M2 ∈ C

k×m. (1.9)

The map M �→ φ(M) is additive and multiplicative and hence, for any solution X
of (1.6), the matrix Y = ϕ(X) solves the complex Sylvester equation

ϕ(Jα)Y − Y ϕ(J	
β ) = ϕ(Δ�(α; f�)Em − E	

k Δr(fr;β)). (1.10)

On the other hand, if Y =
[
Y11 Y12

Y21 Y22

]
(Yij ∈ C

k×m) satisfies (1.10), then the matrix

X =
1

2

(
Y11 + Y 22 + (Y12 − Y 21) j

)
(1.11)

is a solution to (1.6) (see [13]). Thus, the quaternion Sylvester equation (1.6) has
a solution if and only if the complex equation (1.10) does. Moreover, from each
solution Y to the equation (1.10), one can combine formulas (1.11) and (1.7) to
get a particular solution f to the problem (P). The results on complex Sylvester
equations are classic and we refer to the survey [16] rather than recall them here.
Theorem 1.1 and the complex representation approach are illustrated in Example
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3.4 below. We note that combining the formula (1.7) with complex representation
(1.9) is particularly efficient in case the problem (P) has a unique low-degree
solution (see Section 3.1). Otherwise, instead of finding all low-degree solutions via
this approach, it seems to be more practical to combine one particular low-degree
solution fX with the general low-degree solution of the homogeneous problem.
This second approach will be discussed in Section 3.2. The proof of Theorem 1.1
is presented in Section 2.

2. Divided differences and related Sylvester identity

Divided differences proved to be useful tools in classical polynomial interpolation
theory. In the noncommutative setting, divided differences appear in two (left and
right) versions which serve to construct low-degree solutions for respectively, left
and right Lagrange-Hermite interpolation problems. We will recall these one-sided
divided differences in formulas (2.6), (2.7) below. A straightforward computation
verifies that for any α ∈ H and f ∈ H[z],

f(z) = fe�(α) + (z − α) · (Lαf)(z) = fer (α) + (Rαf)(z) · (z − α), (2.1)

where fe�(α) and fer (α) are left and right evaluation of f at α given by

fe�(α) =

m∑
k=0

αkfk and fer (α) =

m∑
k=0

fkα
k if f(z) =

m∑
j=0

zjfj , (2.2)

and where Lαf and Rαf are polynomials of degree m− 1 given by

(Lαf)(z) =

m−1∑
j+k=0

αjfk+j+1z
k, (Rαf)(z) =

m−1∑
j+k=0

fk+j+1α
jzk. (2.3)

Observe that the mappings f �→ Lαf and f �→ Rαf define a right linear operator
Lα and a left linear operator Rα acting on H[z] (interpreted a a vector space over
H). We next observe that for any α, β ∈ H and f ∈ H[z],

LαRβf = RβLαf and (Lαf)
er (β) = (Rβf)

e�(α). (2.4)

Making use of (2.3), one may first verify equalities (2.4) for f(z) = czn as follows

LαRβf =

n−2∑
k=0

( ∑
i+j=n−k−2

αicβj

)
zk = RβLαf,

(Lαf)
er (β) =

∑
i+j=n−1

αicβj = (Rβf)
e�(α),

and then get the general case by linearity. Now we will use operators (2.3) to
introduce divided differences.

Given an f ∈ H[z], the successive application of the first formula in (2.1) to
the elements α1, α2, . . . ∈ H and polynomials f, Lα1

f, Lα2
Lα1

f, . . . and the second
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formula in (2.1) to elements β1, β2, . . . and polynomials f, Rβ1
f, Rβ2

Rβ1
f, . . ., lead

us, respectively, to representations

f = fe�(α1) +

deg f−1∑
j=1

ρα1
. . .ραj

· (Lαj
· · ·Lα1

f)e�(αj+1),

f = fer (β1) +

deg f−1∑
j=1

(Rβj
· · ·Rβ1

f)er (βj+1) · ρβj
. . .ρβ1

,

(2.5)

which, being (respectively, left and right) quaternionic analogs of the Newton
interpolation formula, suggest to introduce left and right divided differences

[α1; f ]� = fe�(α1),

[α1, . . . , αi; f ]� = (Lαi−1
· · ·Lα1

f)e�(αi) for i ≥ 2, (2.6)

[f ;β1]r = fer (β1),

[f ;β1, . . . , βj ]r = (Rβj−1 · · ·Rβ1f)
er (βj) for j ≥ 2, (2.7)

based on given tuples α = (α1, . . . , αk) and β = (β1, . . . , βm).

Remark 2.1. It follows from (2.5)–(2.7) that for G and H of the form (1.3),

1. f ∈ 〈G〉r if and only if [α1, . . . , αi; f ]� = 0 for i = 1, . . . , k;
2. f ∈ 〈H〉� if and only if [f ;β1, . . . , βj ]r = 0 for j = 1, . . . ,m.

It turns out that in the context of a two-sided interpolation problem, one
needs “two-sided” divided differences which we will refer to as to mixed divided
differences and which we define as follows:

[α1, . . . , αi; f ;β1, . . . , βj ] := (Lαi
· · ·Lα1

Rβj−1
· · ·Rβ1

f)er (βj)

= (Lαi−1
· · ·Lα1

Rβj
· · ·Rβ1

f)e�(αi), (2.8)

where the second equality holds due to (2.4). For j = 1 and for i = 1 the first and
the second formulas in (2.8) take the form

[α1, . . . , αi; f ;β1] = (Lαi
· · ·Lα1

f)er (β1), (2.9)

[α1; f ;β1, . . . , βj ] = (Rβj
· · ·Rβ1

f)e�(α1).

In the next lemma, the column Δ�(α; f) and the row Δr(f ;β) defined in (2.10),
(2.11) as certain sums (in accordance to (1.5)), turn out to be the column and
the row of left and right divided differences of f based on the tuples α and β,
respectively. We refer to [8, Remark 2.5] for the proof of the second equalities in
(2.10) and (2.11).


