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INTRODUCTION 

The original motivation of this study comes from the following questions 
that were mentioned to one of us by H. Mata.no. 

Let 
G = B1 = {~ = (~1.~2) E R2 ; ~~ +~~ = /z/2 < 1}. 

Consider the Ginzburg-Landau functional 

(1) Ee(u} = ~ L /Vu/2 + ~2 L (lu/2 - 1)2 

which is defined for maps u E H 1(G;C} also identified with H 1 (G;R2 ). 

Fix the boundary condition 

g(x) =x on OG 

and set H: = {u E H 1(G;C}; u = g on OG}. 

It is easy to see that 

(2) 

is achieved by some Ue that is smooth and sa.tisfies the Euler equation 

(3) { -Llue = : 2 ue(1 -lue/2 ) 

Ue =g 

in G, 

on OG. 

The maximum principle easily implies (see e.g., F. Bethuel, H. Brezis and F. 
Helein (2]) that any solution ue of (3) satisfies /uel ~ 1 in G. In particular, 
a subsequence (ue.,) converges in thew*- L00 (G) topology to a limit u*. 
Clearly, /u*(a:)/ ~ 1 a.e. It is very easy to prove (see Chapter III) that 

(4) L(/uel2 -1)2 ~ Ge2 /loge/ 

and thus /ue., (.:c)/ -+ 1 a.e. This suggests that /u*{x)/ = 1 a.e. However, 
such a claim is not clear at all since we do not know, at this stage, that 
ue., -+ u* a.e. It turns out to be true that /u*(x)l = 1 a.e. -but we have 
no simple proof. This fact is derived as a consequence of a delicate analysis 
(see Chapter VI). 
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The original questions of H. Matano were: 

Question 1: Does lim u~(x) exist a.e.? 
~ ...... o 

Question 2: What is u*? Do we have u*(x) = xflxl? 

Question 3: What can be said about the zeroes of ue? If they are isolated 
do they have degree ±1 (in the sense of Section IX.l)? 

These questions have prompted us to consider a more general setting. 
Let G C R2 be a smooth, bounded and simply connected domain in R2• 

Fix a (smooth) boundary condition g: CJG-+ 8 1 and consider a minimizer 
Ue of problem {2) as above. Our purpose is to study the behavior of u~ as 
s-+ 0. 

The Brouwer degree 

(5) d = deg(g, 8G) 

(i.e., the winding number of g considered as a map from CJG into 8 1) plays 
a crucial role in the asymptotic analysis of u~. 

Cased= 0. This case is easy because n;(G; 81) ':f: 0 and thus the mini­
mization problem 

(6) 

makes sense. In fact, problem (6) has a. unique solution uo that is a. smooth 
harmonic map from G into S 1 , i.e., 

Moreover (see e.g., Lemma. 1 in F. Bethuel, H. Brezis and F. Helein [2}) 

where l{)o is a. harmonic function (unique mod 21rZ) such that 

We have proved in F. Bethuel, H . Brezis and F. Helein [2) (see also Appendix 
I at the end of the book} that u~ -.... Uo in C1•0 (G) and in Ct,c(G) Vk; in 
particular, 

(7) L IVu~ 12 remains bounded as e -+ 0. 

We have also obtained rates of convergence for Uu~- uol! in various norms. 
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Case d¥0. Throughout the book we assume that d > 0 since the case 
d < 0 reduces to the previous case by complex conjugation. Here, the main 
difficulty stems from the fact that 

(8) 

Indeed, suppose not, and say that n; ( G; S 1) ¥ 0, then we could consider, 
as above, 

{9) 

A minimizer exists and is smooth up to 8G,e.g., by a result of C. Mor­
rey [1J,[2J. In particular, there would be some u E C(G; 8 1 ) such that 
u = g on &G. Standard degree theory shows that this is impossible since 
g can be homotopied in S 1 to a constant. Alternatively, one could also 
use H 112(S1 ;S1) degree theory (see a result of L. Boutet de Manvel and 
0. Gabber quoted in A. Boutet de Monvel-Berthier, V. Georgescu and 
R. Purice [1), [2}) to show that n;(G;S1) = 0. 

In this case, problem (9) does not make sense. In order to get around 
this topological obstruction we are led to the following idea. Enlarge the 
class of testing functions to 

n:(G;C). 

(Clearly this set is always nonempty.) But on the other hand, add ape­
nalization in the energy that "forces" lui to be close to 1. The simplest 
penalty that comes to mind is 

Therefore, we are led very naturally to 

Min E~. 
HJ(G;C) 

Here, in contrast with the previous case, 

(10) L 1Vu~l2 --+ +oo, as E --+ 0, 

(otherwise, u~,. __. u weakly in H 1 and ul!: .. --+it a.e., so that 
lui= 1, a.e.; thus u E H~(G;S1)- impossible by (8)). However, we may 
still hope that 

u.(x) =lim Ue:,. (x) exists for a.e. x E G 
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(naturally, with fc IY'u.,l2 = oo). If this is indeed the case then u., can be 
viewed as a "generalized solution" of problem (9). 

Of course, many other "penalties" can be devised. They all seem to lead 

to the same class of generalized solutions. For example, one other natural 

penalty consists of drilling a few little holes B ( ai, p) in G and consider­
ing the domain Gp = G \ UB(ai,p). In this case there is no topological 

i 

obstruction and 

(we do not impose a Dirichlet condition on 8B(ai, p)). Then, one may 
consider the problem 

and analyze what happens as p -+ 0. Here, the points (ai) are free to 

move and some configurations will turn out to be "better" than others (see 
Section 1.4 and Chapter VIII). 

Going back to a minimizer u~ of the original functional Ee, our main 

results are the following: 

Theorem 0.1. Assume G is starshaped. Then there is a subsequence 
en -+ 0 and exactly d points a1, az, ... , ad in G and a smooth harmonic 

map u., from G \ { a 1, a2, . .. , ad} into S1 with u. = g on 8G such that 

Ut:,. -+ u., inCiocCG \ L,J{ai}) 'Vk and in C 1•Q(G \ L,J{a,}) 'Vo: < 1. 
• • 

In addition, each singularity has degree + 1 and, more precisely, there are 

complex constants ( O:i) with la:i I = 1 such that 

(11) 

This theorem answers, in particular, Question 1 above. In this theorem 

it is essential (in general) to pass to a subsequence. For example, if G is 
the unit disc and g = e2i 6 then, for e small, u., is not unique and various 
subsequences converge to different limits (see Section VIII.5). However, in 
some cases, for example g( 0) = ei9, the full sequence ( Ue) converges to a 
well defined limit (see Section VIII.4). 

So far, we have not said anything about the location of the singularities. 
Our next result tells us where to find them. For this purpose, we introduce, 
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for any given configuration b = (b1 ,~, . .• ,bd) of distinct points in G, the 
function 

(12) W(b) = -1T L log lbi - bjl + ~ f ~(g x g.,) - 1T t R(bi) 
i#j }8G i=l 

where ~ is the solution of the linear Neumann problem 

{ 
: = 2~ ,t, 6,, 

011 = 9 X 9-r 

in G, 

on 8G, 

(v is the outward normal to 8G and r is a unit tangent vector to 8G such 
that (v, r) is direct) and 

d 

R(x) = ~(x)- Llogjx- bil· 
i=l 

Note that R E C(G), so that R(bi) makes sense. 

The function W, called the renormalized energy, has the following 
properties (see Section 1.4): 

(i) W -+ +oo as two of the points b.t coalesce, 

(ii) W-+ +oo as one of the points bi tends to 8G 
(since R(b,) -+ -oo as bi -+ 8G). 

In other words, the singularities bi repel each other, but the boundary con­
dition on 8G produces a confinement effect. In particular W achieved its 
minimum on Gd and every minimizing configuration consists of d distinct 
points in Gd (not Qd). 

The location of the points (ai) in Theorem 0.1 is governed by W through 
the following: 

Theorem 0.2. Let (ai) be as in Theorem 0.1. Then (ai) is a minimizer 
for Won Gd. 

The expression W comes up naturally in the following computation. 
Given any configuration b = (bt. ~ . .. . , bd) of distinct points in G, let 
Gp = G \ UB(bi, p). Consider the class 

i 

(13) 
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One proves (see Theorem 1.2} that there exists a unique minimizer up for 

the problem 

{14) 

and that (see Theorem 1.7) the following expansion holds: 

(15) ~ f IV'upl2 = 11" djlog pj + W(b) + O(p) asp-+ 0. 
la" 

In other words, W is what remains in the energy after the singular "core 

energy" 71' djlog PI has been removed. (The idea of removing an infinite 

core energy is common in physics; see e.g., M. Kleman [1}). Moreover, as 

p -+ 0, up converges to some uo that has the following properties: 

(16) uo is a smooth harmonic map in G \ L:J{bi} 
' 

(17) Uo=g on &G 

(18) 

for some complex numbers f3i with IPt:l = 1 Vi. 

In fact, given any configuration b E Gd of distinct points, there is a 

unique uo satisfying (16), (17) and (18) (see Corollary I.l). We call this uo 

the canonical harmonic map associated to the configuration b. 

There is an explicit formula for uo (see Corollary 1.2): 

(19) 

where r.p is the solution of the Dirichlet problem 

(20) { ~r.
p=O 

r.p = tpo 

inG 

on8G 

and tpo is defined on &G by 

{21) i'Po(z) _ ( ) lz- bd lz- ~~ Jz- bdj 
e - g z (z- bl) (z - ~) · · · (z- bd) · 
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(Note that the right-hand side in (21) is a map from 8G into 8 1 of degree 
zero so that v>o is well defined as a single--valued smooth function.) 

For a general configuration b estimate (18) cannot be improved. 
However, for the special configuration as described in Theorem 0.1 we 
have the better estimate (11). That property, which may be written as 

(22) 

is related to the fact that a = (a 1 , a2, ... , ad) is a critical point of W on 
Gd. It is extremely useful in localizing the singularities of 14 (see Section 
VIII.4). 

The role of condition (22) has been strongly emphasized (in the case of 
a single singularity) by J. Neu(l] and by P. Fife and L. Peletier [lj. They 
show that (22) must be satisfied in order to be able to carry out a matched 
asymptotic expansion argument for (3). 

Equation (22) also bears some resemblance with the results concerning 
the location of the blow-up points for the problem 

or -Au = uP + cU in n c Rn 

with critical exponent p = (n + 2)/(n- 2). There, the blow-up points a 
satisfy 

VH(a)=O 

where H is the regular part of the Green's functions (see H. Brezis and 
L. Peletier [I] and 0. Rey [1], [2J). 

To complete the description of u. we have: 

Theorem 0.3. Let (ai) and u* be as in Theorem 0.1. Then u* is the 
canonical hannonic map associated to the configuration 

Conclusion: In general, W may have several minima. However, once 
the location of ai is known, then u* is completely determined. In some 
important cases W has a unique minimizer that can be identified explicitly; 
for example when G = B1 and g(x) = x: 

Theorem 0.4. Assume G = B1 and g(x) = x. Let U,; be a minimizer for 
{1), then, \fx =F 0, 
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This answers Question 2 above. 

Theorem 0.4 can be viewed as the 2-dimensional analogue of a result 

of H. Brezis, J. M. Coron and E. Lieb [1), which asserts that the unique 

minimizer of the problem 

is u(x) = xflxl. More generally, F.H. Lin [1) has obtained the same con­

clusion for the problem 

Min f 1Vul2 for any n ;:::>: 3. 
uEH~(B";S"-1 )} B" 

Next, we study the zeroes of u,.. Let us recall some earlier works on 

that question. It has been proved by C. Elliott, H. Matano and T. Qi [1] 
that (for every e > 0) the zeroes of any minimizer u" of (2) are isolated. 
P. Bauman, N. Carlson and D. Phillips [1] have shown, in particular, that 

if G = B 1 and deg(g, 8G) = 1 with g(O) strictly increasing then (for every 

E > 0) there is a unique zero of any minimizer u" of (2). 

Our main result concerning the zeroes of u" is the following: 

Theorem 0.5. Let G be a starshaped domain and let d = deg(g, 8G). 
Then, for e < eo depending only on g and G, u" has exactly d zeroes of 

degree +1. 

Remark 0.1. If d ~ 2 we give an example in Section VIII.5 showing that 

the conclusion of Theorem 0.5 fails when c is large. The following happens: 

when c is large u" has a single zero of degree d and, as c _,. 0, this zero 

splits into d zeroes of degree + 1. 

Finally we analyze the behavior as E -+ 0 of solutions v .. of the Ginzburg­

Landau equation {3), which need not be minimizers of Ec-. We prove 

that some of the results presented above for minimizers still hold for solu­

tions of (3). In particular, v .... converges to some limit v ... in ct,c(G\Uj{aj}) 
where {aj} is a finite set. However, by contrast with the previous situation, 

we have no information about card(Ui{aj}) and deg(v*,a;) need not be 

+ 1. More precisely, we have 

Theorem 0.6. Assume G is starshaped. Then there exist a subsequence 

en __. 0, k points a1, a2, ... , ak in G and a smooth harmonic map 

v*: G \ U{aj} __. S 1 with v* = g on ac such that 
j 
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Moreover, there exist integers d1 , d2 , ••• , d~: E Z \ {0} and a smooth har­
monic function cp : G -+ R such that 

In addition, we have 

(z- a~:)d* 
lz- a~:ld"'. 

'\1 (v.(z) t- a;~~) (a;)= 0 "Vj, z- a; J 

which expresses that (a;, dj) is a critical point of some appropriate renor­
malized eneryy W. 

Remark 0.2. We emphasize that k need not be equal to d. However 
there is a bound for k in tenns of g and G, and similarly for 2:; ld;l· 
We also emphasize that Theorem 0.6 is of interest even in the case where 
d = deg(g, 00) = 0 (we recall that the result of F. Bethuel, H. Brezis and 
F. H~Hein [2] concerns only the analysis, as e -+ 0, of minimizers of E"' 
when d= 0). 

Analogies in physics. The results discussed in this book present strik­
ing analogies to numerous theoretical and experimental discoveries in the 
area of superconductors and superfluids over the past 40 years. FU.nction­
als of the form E£(u) were originally introduced by V. Ginzburg and L. 
Landau [1] in the study of phase transition problems occurring in super­
conductivity; similar models are also used in superftuids such as helium II 
(see V. Ginzburg and L. Pitaevskii [1]) and in XY-magnetism. There is a 
considerable amount of literature on this huge subject; some of the stan­
dard references are: P. G. DeGennes {1], R. Donnelly [1], J. Kosterlitz and 
D. Thouless (1], D. Nelson (1], P. Nozieres and D. Pines (1], R. Parks [1], 
D. Saint-James, G. Sarma and E. J. Thomas [1], D. Tilley a.nd J. Tilley 
[1], M. Tinkham [1]. The unknown u represents a complex order param­
eter (i.e., with two degrees of freedom). In the physics literature u -
often denoted 'fjJ - is called a condensate wave function or a Higgs 
field. The parameter e, which has the dimension of a length, depends 
on the material and its temperature. In the physics literature it is called 
the (Ginzburg-Landau) coherence length (or healing length or core 
radius) and is often denoted bye= e(T}. For temperatures T < Tc (the 
critical temperature) with T not too close to Tc , e(T) is extremely small, 
typically of the order of some hundreds of angstroms in superconductors, 
and of the order of a few angstroms in superftuids. Hence, it is of interest 
to study the a.symptotics as e - 0, even though the limiting problem (at 


