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INTRODUCTION

The original motivation of this study comes from the following questions
that were mentioned to one of us by H. Matano.

Let
G =B, ={x=(z1,72) € R?; 22+ 2% =|z> < 1}.

Consider the Ginzburg-Landau functional
_1 2, 1 2 _ )2
W Bew) = 3 [ 90+ 25 [ (ul -

which is defined for maps v € H!(G;C) also identified with H!(G;R?).
Fix the boundary condition

glz)=z on 8G

and set
H;={uc H(G;C); u=g on 0G}.

It is easy to see that
9 .
(2) '}g}?} E.(u)

is achieved by some u. that is smooth and satisfies the Euler equation

(3) { —Au; = Elgut(l - !uel2) in G’

U =g on 9G.

The maximum principle easily implies (see e.g., F. Bethuel, H. Brezis and F.
Hélein {2]) that any solution u, of (3) satisfies |u.] < 1 in G. In particular,
a subsequence (u,) converges in the w* — L*°(G) topology to a limit u*.
Clearly, [u*(z)] <1 a.e. It is very easy to prove (see Chapter III) that

@) j (Juef? = 1) < Ce?|loge]
G

and thus |u., (z)] — 1 a.e. This suggests that [u*(z)) =1 a.e. However,
such a claim is not clear at all since we do not know, at this stage, that
e, — u* a.e. It turns out to be true that ju*(z)] =1 a.e. — but we have
no simple proof. This fact is derived as a consequence of a delicate analysis
{(see Chapter VI).
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The original questions of H. Matano were:
Question 1: Does lin%) uc(x) exist a.e.?
E—
Question 2: What is u*? Do we have u*(z) = z/|z|?

Question 3: What can be said about the zeroes of u.7 If they are isolated
do they have degree +1 (in the sense of Section IX.1)?

These questions have prompted us to consider a more general setting.
Let G C R? be a smooth, bounded and simply connected domain in RZ.
Fix a (smooth) boundary condition g : 8G — S' and consider a minimizer
¢ of problem (2) as above. Our purpose is to study the behavior of u, as
e—0.

The Brouwer degree
(5) d = deg(g, 8G)

(i.e., the winding number of g considered as a map from 8G into S!) plays
a crucial role in the asymptotic analysis of u,.

Case d = 0. This case is easy because H; (G; S*) # 0 and thus the mini-
mization problem

©) Min / (Vauf?
uGH;(G';SI) G

makes sense. In fact, problem (6) has a unique solution ug that is a smooth
harmonic map from G into S!, i.e.,

—Aup = ug|Vug)2 in G.

Moreover (see e.g., Lemma 1 in F. Bethuel, H. Brezis and F. Hélein [2])
up=e¥ in G

where (g is a harmonic function (unique mod 27Z) such that
e’ =g on 8G.

We have proved in F. Bethuel, H. Brezis and F. Hélein [2] (see also Appendix
I at the end of the book) that ue — ug in CV*(G) and in CE_(G) Vk; in
particular,

(N f |Vu.|? remains bounded as € — 0.
G

We have also obtained rates of convergence for ||u, — up|| in various norms.
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Case d#0. Throughout the book we assume that d > 0 since the case
d < 0 reduces to the previous case by complex conjugation. Here, the main
difficulty stems from the fact that

(8) HY(G;8") =0.

Indeed, suppose not, and say that H}(G;S!) # @, then we could consider,
as above,

©) Min f [Vul?.
HI(GSY Jg

A minimizer exists and is smooth up to 8G,e.g., by a result of C. Mor-
rey [1],i2]. In particular, there would be some u € C(G;S!) such that
u = g on 0G. Standard degree theory shows that this is impossible since
g can be homotopied in 5! to a constant. Alternatively, one could also
use H'/2(5%;S') degree theory (see a result of L. Boutet de Monvel and
O. Gabber quoted in A. Boutet de Monvel-Berthier, V. Georgescu and
R. Purice [1], [2]) to show that H}(G;S") = 0.

In this case, problem (9) does not make sense. In order to get around
this topological obstruction we are led to the following idea. Enlarge the
class of testing functions to

H ; (G;C).

(Clearly this set is always nonempty.) But on the other hand, add a pe-
nalization in the energy that “forces” |u| to be close to 1. The simplest
penalty that comes to mind is

3 [ -1y
Therefore, we are led very naturally to
H};\g}m Ee.

Here, in contrast with the previous case,

(10) j |[Vue]? — 400, ase — 0,
G

(otherwise, u, — # weakly in H! and u,, — @ a.e., so that
|E| =1, a.e.; thus i € H; (G; S') — impossible by (8)). However, we may
still hope that

t,(z) = lim u,. () exists for ae. z€ G
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(naturally, with [; |Vu,|? = co). If this is indeed the case then u, can be
viewed as a “generalized solution” of problem (9).

Of course, many other “penalties” can be devised. They all seem to lead
to the same class of generalized solutions. For example, one other natural
penalty consists of drilling a few little holes B(a;,p) in G and consider-
ing the domain G, = G \ |JB(a:,p). In this case there is no topological

obstruction and

H;(G;ﬁ St) #0

(we do not impose a Dirichlet condition on 8B(a;i,p)). Then, one may
consider the problem
Min j |Vau|?
H(G,:S") Jg,

and analyze what happens as p — 0. Here, the points (a;) are free to
move and some configurations will turn out to be “better” than others (see
Section 1.4 and Chapter VIII).

Going back to a minimizer u. of the original functional E,, our main
results are the following:

Theorem 0.1. Assume G is starshaped. Then there is a subseguence
en — 0 and ezactly d points aj,as,...,aq in G and a smooth harmonic
map u, from G\ {a1,az,...,a4} into S with u, = g on 8G such that

ue, — Uy C% (G \ U{a;}) Vk and in C1*(G \ U{a;}) Yo < 1.

In addition, each singularity has degree +1 and, more precisely, there are
complez constants (a;) with |a;| = 1 such that

(11) u,(2) — a,-(z—_t-l'.—) < Clz - a;}® as z — a;, Vi.
IZ—(].,'I

This theorem answers, in particular, Question 1 above. In this theorem
it is essential (in general) to pass to a subsequence. For example, if G is
the unit disc and g = €2 then, for € small, u. is not unique and various
subsequences converge to different limits (see Section VIIL5). However, in
some cases, for example g(d) = e, the full sequence (u¢) converges to a
well defined limit (see Section VIIL4).

So far, we have not said anything about the location of the singularities.
Our next result tells us where to find them. For this purpose, we introduce,
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for any given configuration b = (b1, ba, ..., by) of distinct points in G, the
function

1 d
(12) W) = —n%log Ibi — b + 3 [m ®(g x gr) — ﬂ§R(bi)

where ® is the solution of the linear Neumann problem

d

AD =273 &, in G,
i=1

0P

o =9%9r on G,

(v is the outward normal to G and 7 is a unit tangent vector to 8G such
that (v, 7) is direct) and

d
R(z) = ®(z) - 3 _log|z — bi.

i=1

Note that R € C(G), so that R(b;) makes sense.

The function W, called the renormalized energy, has the following
properties (see Section 1.4):

(i) W — +oo as two of the points b; coalesce,

(ii) W — 400 as one of the points b; tends to G
(since R(b;) — —oo as b; — 8G).

In other words, the singularities b; repel each other, but the boundary con-
dition on &G produces a confinement effect. In particular W achieved its
minimum on G and every minimizing configuration consists of d distinct
points in G? (not GY).

The location of the points (a;) in Theorem 0.1 is governed by W through
the following:

Theorem 0.2. Let (a;) be as in Theorem 0.1. Then (a;) is ¢ minimizer
for W on G9.

The expression W comes up naturally in the following computation.
Given any configuration b = (b1,bs,...,b4) of distinct points in G, let
G, = G\ |JB(b;, p). Consider the class

i

v=g on 8G and
(13) £, = {u € HY(G,; SY) } .

deg(vo aB(btap)) =1 Vi
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One proves (see Theorem 1.2) that there exists a unique minimizer u, for
the problem

: 2
(14) Min [ v

and that (see Theorem 1.7) the following expansion holds:

1
as fG IV |2 =  d|log p| + W(b) + O(p) asp— 0.

In other words, W is what remains in the energy after the singular “core
energy” = d|log p| has been removed. (The idea of removing an infinite
core energy is common in physics; see e.g., M. Kléman [1}). Moreover, as
p — 0, u, converges to some ug that has the following properties:

(16) up is a smooth harmonic map in G \ U{b;}
(17) w=g on dG
(18) wo(@) - AL <oz by as 2oby, Vi

IZ g, bil

for some complex numbers §; with [3;] =1 Vi.

In fact, given any configuration b € G? of distinct points, there is a
unique ug satisfying (16), (17) and (18) (see Corollary L1). We call this uo
the canonical harmonic map associated to the configuration b.

There is an explicit formula for ug (see Corollary 1.2):

io(ry (2= b1) (2 —b2)  (2—ba)
|z~ b1 }z —ba] " |z — bdl

(19) up(z) =€
where ¢ is the solution of the Dirichlet problem

(20) { Ap=0 in G

© =g on G
and (g is defined on 8G by

|z —b1| lz—bal ]z —bdl

- =9 oy =) b
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(Note that the right-hand side in (21) is a map from 8G into S* of degree
zero so that g is well defined as a single-valued smooth function.)

For a general configuration b estimate (18) cannot be improved.
However, for the special configuration as described in Theorem 0.1 we
have the better estimate (11). That property, which may be written as

z — a;f
(z - a)
is related to the fact that a = (a),as,...,ay) is a critical point of W on

G9. It is extremely useful in localizing the singularities of u, (see Section
VIIL4).

(22) v (w@fE=2) @ =0 v

The role of condition {22) has been strongly emphasized (in the case of
a single singularity) by J. Neu[l] and by P. Fife and L. Peletier [1]. They
show that (22) must be satisfied in order to be able to carry out a matched
asymptotic expansion argument for (3).

Equation (22) also bears some resemblance with the results concerning
the location of the blow-up points for the problem

—Au =uP* or —Au=vw"+eu in QCR"

with critical exponent p = (n + 2)/(n — 2). There, the blow-up points a
satisfy
VH(a) =0

where H is the regular part of the Green’s functions (see H. Brezis and
L. Peletier [1] and O. Rey (1], [2]).

To complete the description of u, we have:

Theorem 0.3. Let (a;) and u, be as in Theorem 0.1. Then u, is the
canonical harmonic map associated to the configuration

a = (a;,az,...,ad).

Conclusion: In general, W may have several minima. However, once
the location of a; is known, then u, is completely determined. In some
important cases W has a unique minimizer that can be identified explicitly;
for example when G = B; and g(z) = z:

Theorem 0.4. Assume G = B, and g(z) = z. Let u. be a minimizer for
(1), then, Vz # 0,

ue(z) — u.(z) = L ase—0.

|z
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This answers Question 2 above.

Theorem 0.4 can be viewed as the 2-dimensional analogue of a result
of H. Brezis, J. M. Coron and E. Lieb [1], which asserts that the unique
minimizer of the problem

Min f |Vul? with g(z)==z
u€H}(B%52) Jp3

is u(z) = z/|z|. More generally, F.H. Lin [1] has obtained the same con-
clusion for the problem

Min / |[Vu|? for any n > 3.
uEH;{B";S""‘) Bn

Next, we study the zeroes of u.. Let us recall some earlier works on
that question. It has been proved by C. Elliott, H. Matano and T. Qi [1]
that (for every € > 0) the zeroes of any minimizer u. of (2) are isolated.
P. Bauman, N. Carlson and D. Phillips [1] have shown, in particular, that
if G = B; and deg(g, 8G) = 1 with g(8) strictly increasing then (for every
€ > 0) there is a unique zero of any minimizer u,. of (2).

Our main result concerning the zeroes of u, is the following:

Theorem 0.5. Let G be a starshaped domain and let d = deg(g, 0G).
Then, for € < €9 depending only on g and G, u. has ezactly d zeroes of
degree +1.

Remark 0.1. If d > 2 we give an example in Section VIIL.5 showing that
the conclusion of Theorem 0.5 fails when ¢ is large. The following happens:
when ¢ is large u. has a single zero of degree d and, as ¢ — 0, this zero
splits into d zeroes of degree +1.

Finally we analyze the behavior as ¢ — 0 of solutions v, of the Ginzburg-
Landau equation (3), which need not be minimizers of E.. We prove
that some of the results presented above for minimizers still hold for solu-
tions of (3). In particular, ., converges to some limit v, in Cf;,.(G\U;{2;})
where {a;} is a finite set. However, by contrast with the previous situation,
we have no information about card(lJ;{a;}) and deg(v.,a;) need not be
+1. More precisely, we have

Theorem 0.6. Assume G is starshaped. Then there exist a subsequence
en — 0, k points aj,as,...,ax in G and e smooth harmonic map
v, : G\ U{a;} — S! with v, = g on 8G such that

J

ve, — vy in Cho(G \ Uj{a;}) V¢ and in CV*(G\U;{a;}) Vo<l
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Moreover, there exist integers dy,da,...,dx € Z\ {0} and a smooth har-
monic function ¢ : G — R such that

io(e) (2 —a)® (z — ar)™
lz—aifdr 77 |z —ax|®

n(z)=e

In addition, we have

v (o2 Y @) =0 v,

which ezpresses that (a;, d;) is a critical point of some appropriate renor-
malized energy W.

Remark 0.2. We emphasize that k need not be equal to d. However
there is a bound for k in terms of g and G, and similarly for 3 |d |-
We also emphasize that Theorem 0.6 is of interest even in the case where
d = deg(g, 05?) = 0 (we recall that the result of F. Bethuel, H. Brezis and
F. Hélein [2] concerns only the analysis, as € — 0, of minimizers of E,
when d = 0).

Analogies in physics. The results discussed in this book present strik-
ing analogies to numerous theoretical and experimental discoveries in the
area of superconductors and superfluids over the past 40 years. Function-
als of the form E,(u) were originally introduced by V. Ginzburg and L.
Landau [1] in the study of phase transition problems occurring in super-
conductivity; similar models are also used in superfluids such as helium II
(see V. Ginzburg and L. Pitaevskii [1]) and in XY-magnetism. There is a
considerable amount of literature on this huge subject; some of the stan-
dard references are: P. G. DeGennes [1], R. Donnelly (1], J. Kosterlitz and
D. Thouless [1], D. Nelson [1], P. Noziéres and D. Pines [1], R. Parks [1],
D. Saint-James, G. Sarma and E. J. Thomas [1], D. Tilley and J. Tilley
[1], M. Tinkham [1]. The unknown u represents a complex order param-
eter (i.e., with two degrees of freedom). In the physics literature u —
often denoted ¥ — is called a condensate wave function or a Higgs
field. The parameter £, which has the dimension of a length, depends
on the material and its temperature. In the physics literature it is called
the (Ginzburg-Landau) coherence length (or healing length or core
radius) and is often denoted by £ = £(T'). For temperatures T < T, (the
critical temperature) with T not too close to T, , £(T') is extremely small,
typically of the order of some hundreds of angstroms in superconductors,
and of the order of a few angstroms in superfluids. Hence, it is of interest
to study the asymptotics as ¢ — 0, even though the limiting problem (at



