

Fabrice Bethuel
Haïm Brezis
Frédéric Hélein

Ginzburg- Landau Vortices

Birkhäuser

Modern Birkhäuser Classics

Many of the original research and survey monographs, as well as textbooks, in pure and applied mathematics published by Birkhäuser in recent decades have been groundbreaking and have come to be regarded as foundational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain accessible to new generations of students, scholars, and researchers.

Ginzburg-Landau Vortices

Fabrice Bethuel
Haïm Brezis
Frédéric Hélein

Reprint of the 1994 Edition

Birkhäuser

Fabrice Bethuel
Laboratory Jacques-Louis Lions
Pierre and Marie Curie University
Paris, France

Haïm Brezis
Rutgers University
Piscataway
New Jersey, USA

Frédéric Hélein
Université Paris Diderot - Paris 7
Paris, France

ISSN 2197-1803
Modern Birkhäuser Classics
ISBN 978-3-319-66672-3
DOI 10.1007/978-3-319-66673-0

ISSN 2197-1811 (electronic)
ISBN 978-3-319-66673-0 (eBook)

Library of Congress Control Number: 2017951852

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This book is published under the trade name Birkhäuser, www.birkhauser-science.com
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

**Fabrice Bethuel
Haïm Brezis
Frédéric Hélein**

Ginzburg-Landau Vortices

Springer Science+Business Media, LLC

Fabrice Bethuel
Laboratoire d'Analyse Numérique
Université Paris-Sud
91405 Orsay Cedex
France

Frédéric Hélein
CMLA, ENS-Cachan
94235 Cachan Cedex
France

Haïm Brezis
Analyse Numérique
Université Pierre et Marie Curie
4, place Jussieu
75252 Paris Cedex 05, France
and
Department of Mathematics
Rutgers University
New Brunswick, NJ 08903

Library of Congress Cataloging-in-Publication Data

Bethuel, Fabrice, 1963-

Ginzburg-Landau vortices / Fabrice Bethuel, Haïm Brezis, Frédéric Hélein.

p. cm. -- (Progress in nonlinear differential equations and their applications ; v. 13)

Included bibliographical references and index.

ISBN 978-0-8176-3723-1 ISBN 978-1-4612-0287-5 (eBook)

DOI 10.1007/978-1-4612-0287-5

**1. Singularities (Mathematics) 2. Mathematical physics.
3. Superconductors--Mathematics. 4. Superfluidity--Mathematics.**

5. Differential equations, Nonlinear--Numerical solutions.

I. Brezis, H. (Haim) II. Hélein, Frédéric, 1963- . III. Title.

IV. Series.

QC20.7.S54B48 1994

94-2026

530.1'55353--dc20

CIP

Printed on acid-free paper

© Springer Science+Business Media New York 1994

Originally published by Birkhäuser Boston in 1994

Copyright is not claimed for works of U.S. Government employees.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the copyright owner.

Permission to photocopy for internal or personal use of specific clients is granted by Springer Science+Business Media, LLC,

for libraries and other users registered with the Copyright Clearance

Center (CCC), provided that the base fee of \$6.00 per copy, plus \$0.20 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, U.S.A. Special requests should be addressed directly to Springer Science+Business Media, LLC.

ISBN 978-0-8176-3723-1

Typeset by the Authors in AMSTEX.

9 8 7 6 5 4 3 2

TABLE OF CONTENTS

Introduction	xi
I. Energy estimates for S^1-valued maps	
1. An auxiliary linear problem	1
2. Variants of Theorem I.1	6
3. S^1 -valued harmonic maps with prescribed isolated singularities. The canonical harmonic map	10
4. Shrinking holes. Renormalized energy	16
II. A lower bound for the energy of S^1-valued maps on perforated domains	31
III. Some basic estimates for u_ϵ	
1. Estimates when $G = B_R$ and $g(x) = x/ x $	42
2. An upper bound for $E_\epsilon(u_\epsilon)$	44
3. An upper bound for $\frac{1}{\epsilon^2} \int_G (u_\epsilon ^2 - 1)^2$	45
4. $ u_\epsilon \geq 1/2$ on “good discs”	46
IV. Towards locating the singularities: bad discs and good discs	
1. A covering argument	48
2. Modifying the bad discs	49
V. An upper bound for the energy of u_ϵ away from the singularities	
1. A lower bound for the energy of u_ϵ near a_j	53
2. Proof of Theorem V.1	54

CONTENTS

VI. u_{ε_n} converges: u_* is born!	
1. Proof of Theorem VI.1	58
2. Further properties of u_* : singularities have degree one and they are not on the boundary	60
VII. u_* coincides with THE canonical harmonic map having singularities (a_j)	65
VIII. The configuration (a_j) minimizes the renormalized energy W	
1. The general case	76
2. The vanishing gradient property and its various forms	82
3. Construction of critical points of the renormalized energy	93
4. The case $G = B_1$ and $g(\theta) = e^{i\theta}$	95
5. The case $G = B_1$ and $g(\theta) = e^{di\theta}$ with $d \geq 2$	97
IX. Some additional properties of u_ε	
1. The zeroes of u_ε	100
2. The limit of $\{E_\varepsilon(u_\varepsilon) - \pi d \log \varepsilon \}$ as $\varepsilon \rightarrow 0$	101
3. $\int_G \nabla u_\varepsilon ^2$ remains bounded as $\varepsilon \rightarrow 0$	103
4. The bad discs revisited	104
X. Non minimizing solutions of the Ginzburg-Landau equation	
1. Preliminary estimates; bad discs and good discs	107
2. Splitting $ \nabla v_\varepsilon $	109
3. Study of the associated linear problems	112
4. The basic estimates: $\int_G \nabla v_\varepsilon ^2 \leq C \log \varepsilon $ and $\int_G \nabla v_\varepsilon ^p \leq C_p$ for $p < 2$	119
5. v_{ε_n} converges to v_*	125
6. Properties of v_*	132

CONTENTS

XI. Open problems	137
Appendix I. Summary of the basic convergence results in the case where $\deg(g, \partial G) = 0$	142
Appendix II. Radial solutions	145
Appendix III. Quantization effects for the equation $-\Delta v = v(1 - v ^2)$ in \mathbb{R}^2	147
Appendix IV. The energy of maps on perforated domains revisited	148
BIBLIOGRAPHY	154
INDEX	159

Acknowledgements

We are grateful to E. DeGiorgi, H. Matano, L. Nirenberg and L. Peletier for very stimulating discussions. During the preparation of this work we have received advice and encouragement from many people: A. Belavin, E. Brezin, N. Carlson, S. Chanillo, B. Coleman, L.C. Evans, J. M. Ghidaglia, R. Hardt, B. Helffer, M. Hervé, R. M. Hervé, D. Huse, R. Kohn, J. Lebowitz, Y. Li, F. Merle, J. Ockendon, Y. Pomeau, T. Rivière, J. Rubinstein, I. Shafrir, Y. Simon, J. Taylor and F. Treves.

Part of this work was done while the first author (F.B.) and the third author (F.H.) were visiting Rutgers University. They thank the Mathematics Department for its support and hospitality; their work was also partially supported by a Grant of the French Ministry of Research and Technology (MRT Grant 90S0315). Part of this work was done while the second author (H.B.) was visiting the Scuola Normale Superiore of Pisa; he is grateful to the Scuola for its invitation. We also thank Lisa Magretto and Barbara Miller for their enthusiastic and competent typing of the manuscript.

INTRODUCTION

The original motivation of this study comes from the following questions that were mentioned to one of us by H. Matano.

Let

$$G = B_1 = \{x = (x_1, x_2) \in \mathbb{R}^2; x_1^2 + x_2^2 = |x|^2 < 1\}.$$

Consider the Ginzburg-Landau functional

$$(1) \quad E_\varepsilon(u) = \frac{1}{2} \int_G |\nabla u|^2 + \frac{1}{4\varepsilon^2} \int_G (|u|^2 - 1)^2$$

which is defined for maps $u \in H^1(G; \mathbb{C})$ also identified with $H^1(G; \mathbb{R}^2)$.

Fix the boundary condition

$$g(x) = x \quad \text{on} \quad \partial G$$

and set

$$H_g^1 = \{u \in H^1(G; \mathbb{C}); \quad u = g \quad \text{on} \quad \partial G\}.$$

It is easy to see that

$$(2) \quad \min_{u \in H_g^1} E_\varepsilon(u)$$

is achieved by some u_ε that is smooth and satisfies the Euler equation

$$(3) \quad \begin{cases} -\Delta u_\varepsilon = \frac{1}{\varepsilon^2} u_\varepsilon (1 - |u_\varepsilon|^2) & \text{in } G, \\ u_\varepsilon = g & \text{on } \partial G. \end{cases}$$

The maximum principle easily implies (see e.g., F. Bethuel, H. Brezis and F. Hélein [2]) that any solution u_ε of (3) satisfies $|u_\varepsilon| \leq 1$ in G . In particular, a subsequence (u_{ε_n}) converges in the $w^* - L^\infty(G)$ topology to a limit u^* . Clearly, $|u^*(x)| \leq 1$ a.e. It is very easy to prove (see Chapter III) that

$$(4) \quad \int_G (|u_\varepsilon|^2 - 1)^2 \leq C\varepsilon^2 |\log \varepsilon|$$

and thus $|u_{\varepsilon_n}(x)| \rightarrow 1$ a.e. This suggests that $|u^*(x)| = 1$ a.e. However, such a claim is not clear at all since we do not know, at this stage, that $u_{\varepsilon_n} \rightarrow u^*$ a.e. It turns out to be true that $|u^*(x)| = 1$ a.e. — but we have no simple proof. This fact is derived as a consequence of a delicate analysis (see Chapter VI).

The original questions of H. Matano were:

Question 1: Does $\lim_{\varepsilon \rightarrow 0} u_\varepsilon(x)$ exist a.e.?

Question 2: What is u^* ? Do we have $u^*(x) = x/|x|$?

Question 3: What can be said about the zeroes of u_ε ? If they are isolated do they have degree ± 1 (in the sense of Section IX.1)?

These questions have prompted us to consider a more general setting. Let $G \subset \mathbb{R}^2$ be a smooth, bounded and simply connected domain in \mathbb{R}^2 . Fix a (smooth) boundary condition $g : \partial G \rightarrow S^1$ and consider a minimizer u_ε of problem (2) as above. Our purpose is to study the behavior of u_ε as $\varepsilon \rightarrow 0$.

The Brouwer degree

$$(5) \quad d = \deg(g, \partial G)$$

(i.e., the winding number of g considered as a map from ∂G into S^1) plays a crucial role in the asymptotic analysis of u_ε .

Case $d = 0$. This case is easy because $H_g^1(G; S^1) \neq \emptyset$ and thus the minimization problem

$$(6) \quad \underset{u \in H_g^1(G; S^1)}{\text{Min}} \int_G |\nabla u|^2$$

makes sense. In fact, problem (6) has a unique solution u_0 that is a smooth harmonic map from G into S^1 , i.e.,

$$-\Delta u_0 = u_0 |\nabla u_0|^2 \quad \text{in } G.$$

Moreover (see e.g., Lemma 1 in F. Bethuel, H. Brezis and F. Hélein [2])

$$u_0 = e^{i\varphi_0} \quad \text{in } G$$

where φ_0 is a harmonic function (unique mod $2\pi\mathbb{Z}$) such that

$$e^{i\varphi_0} = g \quad \text{on } \partial G.$$

We have proved in F. Bethuel, H. Brezis and F. Hélein [2] (see also Appendix I at the end of the book) that $u_\varepsilon \rightarrow u_0$ in $C^{1,\alpha}(\overline{G})$ and in $C_{\text{loc}}^k(G) \quad \forall k$; in particular,

$$(7) \quad \int_G |\nabla u_\varepsilon|^2 \text{ remains bounded as } \varepsilon \rightarrow 0.$$

We have also obtained rates of convergence for $\|u_\varepsilon - u_0\|$ in various norms.

Case $d \neq 0$. Throughout the book we assume that $d > 0$ since the case $d < 0$ reduces to the previous case by complex conjugation. Here, the main difficulty stems from the fact that

$$(8) \quad H_g^1(G; S^1) = \emptyset.$$

Indeed, suppose not, and say that $H_g^1(G; S^1) \neq \emptyset$, then we could consider, as above,

$$(9) \quad \text{Min}_{H_g^1(G; S^1)} \int_G |\nabla u|^2.$$

A minimizer exists and is smooth up to ∂G , e.g., by a result of C. Morrey [1], [2]. In particular, there would be some $u \in C(\overline{G}; S^1)$ such that $u = g$ on ∂G . Standard degree theory shows that this is impossible since g can be homotopied in S^1 to a constant. Alternatively, one could also use $H^{1/2}(S^1; S^1)$ degree theory (see a result of L. Boutet de Monvel and O. Gabber quoted in A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice [1], [2]) to show that $H_g^1(G; S^1) = \emptyset$.

In this case, problem (9) does not make sense. In order to get around this topological obstruction we are led to the following idea. Enlarge the class of testing functions to

$$H_g^1(G; \mathbb{C}).$$

(Clearly this set is always nonempty.) But on the other hand, add a penalization in the energy that “forces” $|u|$ to be close to 1. The simplest penalty that comes to mind is

$$\frac{1}{\varepsilon^2} \int_G (|u|^2 - 1)^2.$$

Therefore, we are led very naturally to

$$\text{Min}_{H_g^1(G; \mathbb{C})} E_\varepsilon.$$

Here, in contrast with the previous case,

$$(10) \quad \int_G |\nabla u_\varepsilon|^2 \rightarrow +\infty, \text{ as } \varepsilon \rightarrow 0,$$

(otherwise, $u_{\varepsilon_n} \rightharpoonup \tilde{u}$ weakly in H^1 and $u_{\varepsilon_n} \rightarrow \tilde{u}$ a.e., so that $|\tilde{u}| = 1$, a.e.; thus $\tilde{u} \in H_g^1(G; S^1)$ — impossible by (8)). However, we may still hope that

$$u_*(x) = \lim u_{\varepsilon_n}(x) \text{ exists for a.e. } x \in G$$

(naturally, with $\int_G |\nabla u_*|^2 = \infty$). If this is indeed the case then u_* can be viewed as a “generalized solution” of problem (9).

Of course, many other “penalties” can be devised. They all seem to lead to the same class of generalized solutions. For example, one other natural penalty consists of drilling a few little holes $B(a_i, \rho)$ in G and considering the domain $G_\rho = G \setminus \bigcup_i B(a_i, \rho)$. In this case there is no topological obstruction and

$$H_g^1(G_\rho; S^1) \neq \emptyset$$

(we do not impose a Dirichlet condition on $\partial B(a_i, \rho)$). Then, one may consider the problem

$$\min_{H_g^1(G_\rho; S^1)} \int_{G_\rho} |\nabla u|^2$$

and analyze what happens as $\rho \rightarrow 0$. Here, the points (a_i) are free to move and some configurations will turn out to be “better” than others (see Section I.4 and Chapter VIII).

Going back to a minimizer u_ε of the original functional E_ε , our main results are the following:

Theorem 0.1. *Assume G is starshaped. Then there is a subsequence $\varepsilon_n \rightarrow 0$ and exactly d points a_1, a_2, \dots, a_d in G and a smooth harmonic map u_* from $G \setminus \{a_1, a_2, \dots, a_d\}$ into S^1 with $u_* = g$ on ∂G such that*

$$u_{\varepsilon_n} \rightarrow u_* \text{ in } C_{\text{loc}}^k(G \setminus \bigcup_i \{a_i\}) \quad \forall k \text{ and in } C^{1,\alpha}(\bar{G} \setminus \bigcup_i \{a_i\}) \quad \forall \alpha < 1.$$

In addition, each singularity has degree +1 and, more precisely, there are complex constants (α_i) with $|\alpha_i| = 1$ such that

$$(11) \quad \left| u_*(z) - \alpha_i \frac{(z - a_i)}{|z - a_i|} \right| \leq C |z - a_i|^2 \text{ as } z \rightarrow a_i, \quad \forall i.$$

This theorem answers, in particular, Question 1 above. In this theorem it is essential (in general) to pass to a subsequence. For example, if G is the unit disc and $g = e^{2i\theta}$ then, for ε small, u_ε is not unique and various subsequences converge to different limits (see Section VIII.5). However, in some cases, for example $g(\theta) = e^{i\theta}$, the full sequence (u_ε) converges to a well defined limit (see Section VIII.4).

So far, we have not said anything about the location of the singularities. Our next result tells us where to find them. For this purpose, we introduce,

for any given configuration $b = (b_1, b_2, \dots, b_d)$ of distinct points in G , the function

$$(12) \quad W(b) = -\pi \sum_{i \neq j} \log |b_i - b_j| + \frac{1}{2} \int_{\partial G} \Phi(g \times g_\tau) - \pi \sum_{i=1}^d R(b_i)$$

where Φ is the solution of the linear Neumann problem

$$\begin{cases} \Delta \Phi = 2\pi \sum_{i=1}^d \delta_{b_i} & \text{in } G, \\ \frac{\partial \Phi}{\partial \nu} = g \times g_\tau & \text{on } \partial G, \end{cases}$$

(ν is the outward normal to ∂G and τ is a unit tangent vector to ∂G such that (ν, τ) is direct) and

$$R(x) = \Phi(x) - \sum_{i=1}^d \log |x - b_i|.$$

Note that $R \in C(\bar{G})$, so that $R(b_i)$ makes sense.

The function W , called the **renormalized energy**, has the following properties (see Section I.4):

- (i) $W \rightarrow +\infty$ as two of the points b_i coalesce,
- (ii) $W \rightarrow +\infty$ as one of the points b_i tends to ∂G
(since $R(b_i) \rightarrow -\infty$ as $b_i \rightarrow \partial G$).

In other words, the singularities b_i repel each other, but the boundary condition on ∂G produces a **confinement effect**. In particular W achieved its minimum on G^d and every minimizing configuration consists of **d distinct points** in G^d (not \bar{G}^d).

The location of the points (a_i) in Theorem 0.1 is governed by W through the following:

Theorem 0.2. *Let (a_i) be as in Theorem 0.1. Then (a_i) is a minimizer for W on G^d .*

The expression W comes up naturally in the following computation. Given **any** configuration $b = (b_1, b_2, \dots, b_d)$ of distinct points in G , let $G_\rho = G \setminus \bigcup_i B(b_i, \rho)$. Consider the class

$$(13) \quad \mathcal{E}_\rho = \left\{ v \in H^1(G_\rho; S^1) \left| \begin{array}{l} v = g \text{ on } \partial G \\ \deg(v, \partial B(b_i, \rho)) = 1 \quad \forall i \end{array} \right. \right\}.$$

One proves (see Theorem I.2) that there exists a unique minimizer u_ρ for the problem

$$(14) \quad \underset{u \in \mathcal{E}_\rho}{\text{Min}} \int_{G_\rho} |\nabla u|^2$$

and that (see Theorem I.7) the following expansion holds:

$$(15) \quad \frac{1}{2} \int_{G_\rho} |\nabla u_\rho|^2 = \pi d |\log \rho| + W(b) + O(\rho) \quad \text{as } \rho \rightarrow 0.$$

In other words, W is what remains in the energy after the singular “core energy” $\pi d |\log \rho|$ has been removed. (The idea of removing an infinite core energy is common in physics; see e.g., M. Kléman [1]). Moreover, as $\rho \rightarrow 0$, u_ρ converges to some u_0 that has the following properties:

$$(16) \quad u_0 \text{ is a smooth harmonic map in } G \setminus \bigcup_i \{b_i\}$$

$$(17) \quad u_0 = g \quad \text{on } \partial G$$

$$(18) \quad \left| u_0(z) - \beta_i \frac{(z - b_i)}{|z - b_i|} \right| \leq C |z - b_i| \quad \text{as } z \rightarrow b_i, \quad \forall i$$

for some complex numbers β_i with $|\beta_i| = 1$ $\forall i$.

In fact, given any configuration $b \in G^d$ of distinct points, there is a unique u_0 satisfying (16), (17) and (18) (see Corollary I.1). We call this u_0 the **canonical harmonic map** associated to the configuration b .

There is an **explicit formula** for u_0 (see Corollary I.2):

$$(19) \quad u_0(z) = e^{i\varphi(z)} \frac{(z - b_1)}{|z - b_1|} \frac{(z - b_2)}{|z - b_2|} \cdots \frac{(z - b_d)}{|z - b_d|}$$

where φ is the solution of the Dirichlet problem

$$(20) \quad \begin{cases} \Delta \varphi = 0 & \text{in } G \\ \varphi = \varphi_0 & \text{on } \partial G \end{cases}$$

and φ_0 is defined on ∂G by

$$(21) \quad e^{i\varphi_0(z)} = g(z) \frac{|z - b_1|}{(z - b_1)} \frac{|z - b_2|}{(z - b_2)} \cdots \frac{|z - b_d|}{(z - b_d)}.$$

(Note that the right-hand side in (21) is a map from ∂G into S^1 of degree zero so that φ_0 is well defined as a single-valued smooth function.)

For a general configuration b estimate (18) cannot be improved. However, for the special configuration as described in Theorem 0.1 we have the better estimate (11). That property, which may be written as

$$(22) \quad \nabla \left(u_*(x) \frac{|x - a_i|}{(x - a_i)} \right) (a_i) = 0 \quad \forall i,$$

is related to the fact that $a = (a_1, a_2, \dots, a_d)$ is a critical point of W on G^d . It is extremely useful in localizing the singularities of u_* (see Section VIII.4).

The role of condition (22) has been strongly emphasized (in the case of a single singularity) by J. Neu[1] and by P. Fife and L. Peletier [1]. They show that (22) must be satisfied in order to be able to carry out a matched asymptotic expansion argument for (3).

Equation (22) also bears some resemblance with the results concerning the location of the blow-up points for the problem

$$-\Delta u = u^{p-\epsilon} \quad \text{or} \quad -\Delta u = u^p + \epsilon u \quad \text{in } \Omega \subset \mathbb{R}^n$$

with critical exponent $p = (n+2)/(n-2)$. There, the blow-up points a satisfy

$$\nabla H(a) = 0$$

where H is the regular part of the Green's functions (see H. Brezis and L. Peletier [1] and O. Rey [1], [2]).

To complete the description of u_* we have:

Theorem 0.3. *Let (a_i) and u_* be as in Theorem 0.1. Then u_* is the canonical harmonic map associated to the configuration*

$$a = (a_1, a_2, \dots, a_d).$$

Conclusion: In general, W may have several minima. However, once the location of a_i is known, then u_* is completely determined. In some important cases W has a unique minimizer that can be identified explicitly; for example when $G = B_1$ and $g(x) = x$:

Theorem 0.4. *Assume $G = B_1$ and $g(x) = x$. Let u_ϵ be a minimizer for (1), then, $\forall x \neq 0$,*

$$u_\epsilon(x) \rightarrow u_*(x) = \frac{x}{|x|} \text{ as } \epsilon \rightarrow 0.$$

This answers Question 2 above.

Theorem 0.4 can be viewed as the 2-dimensional analogue of a result of H. Brezis, J. M. Coron and E. Lieb [1], which asserts that the unique minimizer of the problem

$$\min_{u \in H_g^1(B^3; S^2)} \int_{B^3} |\nabla u|^2 \quad \text{with } g(x) = x$$

is $u(x) = x/|x|$. More generally, F.H. Lin [1] has obtained the same conclusion for the problem

$$\min_{u \in H_g^1(B^n; S^{n-1})} \int_{B^n} |\nabla u|^2 \quad \text{for any } n \geq 3.$$

Next, we study the zeroes of u_ε . Let us recall some earlier works on that question. It has been proved by C. Elliott, H. Matano and T. Qi [1] that (for every $\varepsilon > 0$) the zeroes of any minimizer u_ε of (2) are isolated. P. Bauman, N. Carlson and D. Phillips [1] have shown, in particular, that if $G = B_1$ and $\deg(g, \partial G) = 1$ with $g(\theta)$ strictly increasing then (for every $\varepsilon > 0$) there is a unique zero of any minimizer u_ε of (2).

Our main result concerning the zeroes of u_ε is the following:

Theorem 0.5. *Let G be a starshaped domain and let $d = \deg(g, \partial G)$. Then, for $\varepsilon < \varepsilon_0$ depending only on g and G , u_ε has exactly d zeroes of degree +1.*

Remark 0.1. If $d \geq 2$ we give an example in Section VIII.5 showing that the conclusion of Theorem 0.5 fails when ε is large. The following happens: when ε is large u_ε has a single zero of degree d and, as $\varepsilon \rightarrow 0$, this zero splits into d zeroes of degree +1.

Finally we analyze the behavior as $\varepsilon \rightarrow 0$ of solutions v_ε of the Ginzburg-Landau equation (3), which **need not be minimizers** of E_ε . We prove that some of the results presented above for minimizers still hold for solutions of (3). In particular, v_{ε_n} converges to some limit v_* in $C_{\text{loc}}^k(G \setminus \bigcup_j \{a_j\})$ where $\{a_j\}$ is a finite set. However, by contrast with the previous situation, we have no information about $\text{card}(\bigcup_j \{a_j\})$ and $\deg(v_*, a_j)$ **need not be** +1. More precisely, we have

Theorem 0.6. *Assume G is starshaped. Then there exist a subsequence $\varepsilon_n \rightarrow 0$, k points a_1, a_2, \dots, a_k in G and a smooth harmonic map $v_* : \overline{G} \setminus \bigcup_j \{a_j\} \rightarrow S^1$ with $v_* = g$ on ∂G such that*

$$v_{\varepsilon_n} \rightarrow v_* \text{ in } C_{\text{loc}}^\ell(G \setminus \bigcup_j \{a_j\}) \quad \forall \ell \text{ and in } C^{1,\alpha}(\overline{G} \setminus \bigcup_j \{a_j\}) \quad \forall \alpha < 1.$$

Moreover, there exist integers $d_1, d_2, \dots, d_k \in \mathbb{Z} \setminus \{0\}$ and a smooth harmonic function $\varphi : \overline{G} \rightarrow \mathbb{R}$ such that

$$v_*(z) = e^{i\varphi(z)} \frac{(z - a_1)^{d_1}}{|z - a_1|^{d_1}} \cdots \frac{(z - a_k)^{d_k}}{|z - a_k|^{d_k}}.$$

In addition, we have

$$\nabla \left(v_*(z) \frac{|z - a_j|^{d_j}}{(z - a_j)^{d_j}} \right) (a_j) = 0 \quad \forall j,$$

which expresses that (a_j, d_j) is a critical point of some appropriate renormalized energy W .

Remark 0.2. We emphasize that k need not be equal to d . However there is a bound for k in terms of g and G , and similarly for $\sum_j |d_j|$. We also emphasize that Theorem 0.6 is of interest even in the case where $d = \deg(g, \partial\Omega) = 0$ (we recall that the result of F. Bethuel, H. Brezis and F. Hélein [2] concerns only the analysis, as $\varepsilon \rightarrow 0$, of minimizers of E_ε when $d = 0$).

Analogies in physics. The results discussed in this book present striking analogies to numerous theoretical and experimental discoveries in the area of superconductors and superfluids over the past 40 years. Functionals of the form $E_\varepsilon(u)$ were originally introduced by V. Ginzburg and L. Landau [1] in the study of phase transition problems occurring in superconductivity; similar models are also used in superfluids such as helium II (see V. Ginzburg and L. Pitaevskii [1]) and in XY -magnetism. There is a considerable amount of literature on this huge subject; some of the standard references are: P. G. DeGennes [1], R. Donnelly [1], J. Kosterlitz and D. Thouless [1], D. Nelson [1], P. Nozières and D. Pines [1], R. Parks [1], D. Saint-James, G. Sarma and E. J. Thomas [1], D. Tilley and J. Tilley [1], M. Tinkham [1]. The unknown u represents a complex order parameter (i.e., with two degrees of freedom). In the physics literature u — often denoted ψ — is called a **condensate wave function** or a Higgs field. The parameter ε , which has the **dimension of a length**, depends on the material and its temperature. In the physics literature it is called the **(Ginzburg-Landau) coherence length** (or healing length or **core radius**) and is often denoted by $\xi = \xi(T)$. For temperatures $T < T_c$ (the critical temperature) with T not too close to T_c , $\xi(T)$ is **extremely small**, typically of the order of some hundreds of angstroms in superconductors, and of the order of a few angstroms in superfluids. Hence, it is of interest to study the asymptotics as $\varepsilon \rightarrow 0$, even though the limiting problem (at