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Preface

This present book is concerned with two important aspects of non-equilibrium
evaporation and condensation processes: the molecular kinetic theory of phase
transition and the dynamics of a vapor bubble in a superheated liquid.

The problems pertaining to the processes of intense phase change (evaporation
and condensation) are of great interest both from a theoretical and from a practical
point of view. Exposure of materials to laser radiation may lead to strong evapo-
ration from the heated sections, which is accompanied by active condensation on
the cooled parts. Development of space hardware calls for the study of singularities
of flows that may appear in the evaporation of a coolant or as a consequence of its
leak. A hypothetical root cause may be the loss of leak integrity of the containment
shell of a nuclear engine due to thermal overloads in the course of a spaceflight.
Exposure to the solar radiation on a comet surface results in the evaporation of its
ice nucleus with the formation of atmosphere. Depending on the distance to the
Sun, the intensity of evaporation varies a great deal and may reach huge values. The
process of evaporation, which is sharply varying with time, has a great effect on the
density of the comet atmosphere and the character of its motion.

The majority of phase change problems are studied within the approximation to
thermodynamic equilibrium. However, in a number of cases, one has to take into
account gas-phase non-equilibrium phenomena on the phase interface consequent
on molecular kinetic effects. Theoretical analysis of non-equilibrium phenomena
depends on the Boltzmann equation, which for many years, due to its very involved
structure, had been looked upon as a mathematical abstraction. Labuntsov [1] laid
the foundation of the linear kinetic theory and studied for the first time the phase
changes from the theoretical point of view on the basis of the Boltzmann equation.
This theory was further developed by Loyalka [2] and Siewert [3].

A phase change in which the flow velocity is comparable with the sonic one is
called the strong evaporation or strong condensation. Theoretical studies of such
processes may be conventionally subdivided into two directions. In the strong
(“microscopic”) approach, one solves numerically the Boltzmann equation (or its
simplified “relaxation” analogues) to determine the distribution function of its
molecules in velocities. Using the distribution function, one calculates the
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distributions of the velocity, pressure, and temperature in the vapor near the phase
interface. Among recent studies in this direction, we mention the papers by Gusarov
and Smurov [4], Frezzotti and Ytrehus [5], and Frezzotti [6]. In turn, the approx-
imation (“macroscopic”) approach calls for the solution of the system of mass,
momentum, and energy conservation equations of the molecular fluxes, which is
augmented by various approximations of the distribution function. As a result, one
obtains general analytical expressions for the distributions of gas-dynamic param-
eters away from the phase interface. Here, one may mention the studies by
Anisimov [7], Labuntsov and Kryukov [8], Ytrehus [9], Rose [10], as well as the
studies by the author of this present book.

The phenomenon of gas (vapor) bubbles in a liquid, in spite of the fluctuation
character of their nucleation and short lifetime, has a wide spectrum of manifes-
tations: underwater acoustics, sonoluminescence, ultrasonic diagnostics, decreasing
friction by surface nanobubbles, nucleate boiling, etc. The most important appli-
cation of the bubble dynamics is the effervescence of a liquid superheated with
respect to the saturation temperature. This results in the initiation and growth of
nuclei of a new (vapor) phase in liquid. An ideal subject of investigation of this
phenomenon is the spherically asymmetric growth of the vapor bubble in the
volume of a uniformly superheated liquid.

Labuntsov proposed a systematic approach to the problem of the vapor bubble
growth in a superheated liquid. The growth rate in the general case was shown as
being dependent on four physical effects: (a) viscous resistance of the medium
displaced by the bubble; (b) inertial reaction of the liquid to the swelling of the
bubble in it; (c) non-equilibrium effects at the interface; and (d) the mechanism of
heat transfer from the superheated liquid to the bubble boundary. Taking into
account the action of each of the factors under the assumption that the influence
of the others is absent leads to “limiting schemes” of the bubble growth.

In this present book, we perform the next step by changing to “binary” schemes
of growth that describe the simultaneous effect of two principal factors on the
growth of a bubble: inertial reaction of the liquid and heat transfer from the
superheated liquid. We describe the effect of “pressure blocking” in the vapor
phase, when the superheating enthalpy exceeds the phase transition heat.

The problem of non-equilibrium evaporation and condensation processes will be
the underlying theme of this entire book. Moreover, each chapter, which will be
concerned with some or other aspects of this general problem, is practically
self-contained and can be studied independently. The author has deliberately fol-
lowed this approach in the organization of this book, which leads to certain
“self-intersection” of some chapters and, as a consequence, to some “overweight-
ing” of this book. However, here I am convinced that in the present digital era the
reader ought to be given a possibility of the independent familiarization with the
chosen topic. Such a presentation of the material is aimed at releasing the reader
from wearisome paging through this book in searching for references scattered over
the entire volume of this book. This is why each chapter contains a separate
reference list and a separate list of symbols (in case their number is fairly large).
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The title of the books suggests that it is concerned solely with analytical methods
of solution. Analytical solutions of the fluid flow and heat transfer problems play a
significant role even in the current computer age:

e The value of the analytical approach consists in the opportunity of the closed
qualitative description of the process, revealing the full list of dimensionless
characteristic parameters and their hierarchical classification based on the cri-
teria of their importance.

e Analytical solutions possess a necessary generality, so that a variation of the
boundary and inlet conditions allows one to carry out parametrical
investigations.

e In order to validate numerical solutions of the full differential equations, it is
necessary to have basic analytical solutions of the equations for some obviously
simplified cases after an estimation and omission of negligible terms.

Chapter 1 provides a short introduction to the topic. We give a short history
of the development of the molecular kinetic theory and the discussion around the
Boltzmann equation. An exact solution of the Boltzmann equation is presented.
Processes of intensive phase change are briefly discussed.

Chapter 2 is concerned with non-equilibrium effects on the phase interface. We
give the conservation equations of molecular flows of mass, momentum, and
energy and describe the classical problem of evaporation into a vacuum. We present
the fundamentals of the linear kinetic theory and give a short introduction to the
problem of strong evaporation.

Chapter 3 is devoted to the approximate kinetic analysis of strong evaporation.
The author’s mixing model is presented. On this basis, we give analytical solutions
for temperatures, pressures, and mass velocities of vapor and match them with the
available numerical and analytical solutions. We also calculate the evaporation
limiting mass velocity.

Chapter 4 proposed a semiempirical model of strong evaporation based on the
linear kinetic theory. Here, it proved possible to achieve a pretty good agreement
with the results of numerical and approximate analytical solutions for monatomic
and polyatomic gas and also for the limit mass flux.

In Chap. 5, the approximate kinetic analysis of strong condensation is consid-
ered. As in Chap. 3 we shall use the mixing model of strong condensation. We give
solutions for the sonic and supersonic condensations. The analytical solution
demonstrates a good agreement with available simulation data.

In Chap. 6, the mixing model is used for the analysis of linear kinetic problems
of phase transition. The asymmetry of evaporation and condensation, which occurs
for intensive processes, remains even for the case of linear approximation. The
dependence of the vapor pressure on its temperature is shown as having a minimum
near the margin between the anomalous and normal regimes of condensation.

Chapter 7 is concerned with the spherically symmetric growth of a vapor bubble
in an infinite volume of a uniformly superheated liquid. Following Labuntsov, we
considered the influence of each effect within the framework of the following four
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“limiting schemes”: (a) dynamic viscous; (b) dynamic inertial; (c) energetic
molecular kinetic (non-equilibrium); and (d) energetic thermal. A problem on the
description of the limiting schemes of bubble growth is presented. As the next step,
we come to “binary” schemes of growth that describe the simultaneous effect of two
factors on the growth of a bubble.

Chapter 8 proposed a “pressure blocking effect” in the growing vapor bubble in a
highly superheated liquid. The known Plesset—Zwick formula has been generalized
to the region of strong superheating. The problem for the conditions of the
experiment on the effervescence of the butane drop has been solved. An algorithm
for calculating was proposed for constructing an approximate analytical solution
under conditions when the enthalpy of the superheating of which exceeds the phase
transition heat.

Chapter 9 provides an evaporating meniscus on the interface of three phases. An
approximate solving method is presented capable of finding the influence of the
molecular kinetic effects on the geometric parameter of the meniscus and on the
heat transfer intensity. Analytical expressions for the evaporating meniscus
parameters are obtained from the analysis of interaction of the intermolecular,
capillary, and viscous forces, and the study of the molecular kinetic effects.

Chapter 10 is concerned with kinetic effects for a spheroidal state. The kinetic
pressure with respect to a levitating droplet is shown to have either “repulsing” or
“attracting” character depending on the value of the coefficient of
evaporation/condensation. We also put forward an analytical dependence for the
vapor film thickness with the consideration of molecular kinetic effects. The
asymptotic formula for the solution is written down for the exotic case when the
coefficient of evaporation/condensation tends to zero.

Chapter 11 provides a vapor condensation upon transversal flow around a
cylinder. An analysis of the limiting heat exchange laws is given. Analytical
solutions for the laws were obtained, which correspond to the effect of only one
factor: gravity, longitudinal pressure gradient, interfacial friction. The results of the
solution were presented as relative heat exchange laws with respect to the case of
steady-state vapor.

Appendix A considers the problem of heat transfer under film boiling. We obtain
analytical solutions capable of taking into account the effects of vapor superheat in
a film and the influence of the convection on the effective values of thermal con-
ductivity and heat of phase transition of superheated vapor.

Appendix B presents the results of experimental investigation of heat transfer in
a pebble bed for flows of single-phase boiling liquid. Use was made of a method of
processing of experimental data, which enables one to determine the coefficient of
“pseudo-turbulent” thermal conductivity without differentiation of the experimen-
tally obtained temperature profile. Temperature profiles were obtained for the case
of boiling on the pebble bed wall, and qualitative analysis of these profiles was
performed.

I would like to deeply thank the Director of the ITLR, Series Editor
Mathematical Engineering of Springer-Verlag, Prof. Dr.-Ing. habil. Bernhard
Weigand for his strong support of my aspiration to successfully accomplish this
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Chapter 1
Introduction to the Problem

1.1 Kinetic Molecular Theory

The statistical mechanics (at present, the statistical physics), which is considered as
a new trend in theoretical physics and is based on the description of involved
systems with infinite number of molecules, was created by Maxwell, Boltzmann,
and Gibbs. An important constituent of the statistical mechanics is the kinetic
molecular theory, which resides on the Boltzmann integral-differential equation. In
1872, Ludwig Boltzmann published his epoch-making paper [1], in which, on the
basis of his Boltzmann equation, he described the statistical distribution of the
molecules of gas. The equilibrium distribution function of molecules with respect to
velocities, as derived by Maxwell in 1860, is a particular solution to the Boltzmann
equation in the case of statistical equilibrium in the absence of external forces. The
famous H-theorem, which theoretically justifies that the gas growth irreversibly in
time, was formulated in [1].

Metaphisycally, the kinetic molecular theory promoted the decisive choice
between two alternative methods of describing the structure of matter: the continual
and discrete ones. The continual approach operates with continuous medium and by
no means is concerned with the detailed inner structure of matter. The system of
Navier-Stokes equations is considered as its specific tool in application to liquids.
The discrete approach traditionally originates from the antique atomistic structure of
matter. By the end of the nineteenth century it was already generally adopted in
chemistry; however in the time of Boltzmann no final decision in theoretical
physics was made. It may be said that Boltzmann’s theory played a crucial role in
the solution of this central problem: the description of the structure and properties of
a substance should be based on the discrete kinetic approach.

The time period at the end of the nineteenth century is noticeable in the
European science by notorious philosophical discussions between the leading
natural scientist. Wilhelm Ostwald, the author of “energy theory” in the natural
philosophy considered energy as the only reality, while the matter is only a form of

© Springer International Publishing AG 2018 1
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its manifestation. Being skeptical about the atomic-molecular view, Ostwald
interpreted all natural phenomena as various forms of energy transformation and
thus brought the laws of thermodynamics to the level of philosophic generaliza-
tions. Ernst Mach, a positivist philosopher and the founder of the theory of shock
waves is gas dynamics, was a great opponent of atomism. Since at his times atoms
were unobservable, Mach considered the “atomistic theory” of matter as a working
hypothesis for explaining physical and chemical phenomena. Disagreeing with the
“energists” (Ostwald) and “phenomenologists” (Mach), Boltzmann, nevertheless
tried to find in their approaches a positive component and sometimes spoke almost
in the spirit of Mach’s positivism. In his paper [2], he wrote: “I felt that the
controversy about whether matter or energy was the truly existent constituted a
relapse into the old metaphysics which people thought had been overcome, an
offence against the insight that all theoretical concepts are mental pictures”.

Irrespective of the fact that Boltzmann’s theory depend on the simple kinetic
molecular model (which now seems quite transparent), it looked fairly challenging
for many physicists 150 years ago. The principal moment of the theory is the
following postulate: all phenomena in gases can be completely described in terms
of interactions of elementary particles: atoms and molecules. Consideration of the
motion and interaction of such particles had enabled to put forward a general
conception combining the first and the second laws of thermodynamics. The crux of
Boltzmann’s perceptions can be expressed in a somewhat simplified form as fol-
lows [3]: atoms and molecules do really exist as elements in the outside world, and
hence there is no need to artificially “generate” them from hypothetical equations;
the study of the interaction of molecules on the basis of the kinetic molecular theory
provides comprehensive information about the gas behavior.

It is also worth pointing out that until the mid-1950s theoretical physics con-
tained the “caloric theory”, which looked quite good from the application point of
view. This theory was capable of adequately describing a number of facts, but was
incapable of correctly describing transitions of various forms of energy into each
other. It was the kinetic molecular theory that made it possible to ultimately and
correctly solve the problem of the description of the heat phenomenon. So, from the
metaphysical point of view, the kinetic molecular theory is an antithesis to both the
“energetic” and the “phenomenological” approaches.

Boltzmann introduced into science the concept of the “statistical entropy”, which
later played a crucial role in the development of quantum theory [4]. When Planck
was deriving his well-known formula on the spectral density of radiation, he first
wrote it down from empirical considerations. Later, Planck obtained this formula by
theoretical considerations with the help of the statistical concept of entropy. In
extending this concept for the radiation of a black-body he required the conjecture
of discrete portions of energy. As a result, Planck had arrived to the definition of an
elementary quantum of energy with a fixed frequency. This being so, the quantum
theory in its modern form could not in principle be formulated without an appeal to
statistical entropy [5]. Few years after Einstein, Planck introduced the concept of a
quantum of light. The Bose—FEinstein statistics and Fermi—Dirac statistics both have
their roots in Boltzmann’s statistical method. Finally, the second law of
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thermodynamics (increase of the entropy for a closed system) is obtained as an
equivalent of the H-theorem.

Boltzmann equation, which was obtained, strictly speaking, for rarefied gases,
proved applicable also to the problem of description of a dense medium.
Succeeding generations of scientists investigated in this way plasmas and mixtures
of gases (simple and polyatomic ones), molecules were being considered as small
solid balls. It is worth observing here that the kinetic molecular theory was a link
between the microscopic and macroscopic levels of the description of matter. The
solution to the Boltzmann equation by Chapman—Enskog’s method of successive
approximations (expansion in terms of a small parameter near the equilibrium) had
enabled one to directly calculate the heat-conduction and the viscosity coefficients
of gases.

For many years, due to its very involved structure, the Boltzmann equation had
been looked upon as a mathematical abstraction. It suffices here to mention that the
Boltzmann equation involves a 5-fold integral collision integral and that in it the
distribution function varies in the seven-dimensional space: time, three coordinates
and tree velocities. From the applied point of view, the need for solving the
Boltzmann equation was at first unclear. Various continual-based approximations
proved quite successful for near-equilibrium situations. However, in the 1950s, with
the appearance of high-altitude aviation and launch of the first artificial satellite, it
became eventually clear that the description of motion in the upper atmosphere is
only possible in the framework of the kinetic molecular theory. The Boltzmann
equation also proved to be indispensable in vacuum-engineering applications and in
the study of motion of gases under low pressure conditions. Later it seemed
opportune to develop methods of kinetic molecular theory in far-from-equilibrium
situations (that is, for processes of high intensity).

It appeared later that the Boltzmann equation can give much more than it was
expected 100 years ago. The Boltzmann equation proved capable of describing
involved nonlinear far-from-equilibrium new type phenomena. It is worth noting
that such phenomena were formulated originally from the pure theoretical con-
siderations as a result of solution of some problems for the Boltzmann equation.

1.2 Discussing the Boltzmann Equation

The kinetic molecular theory depends chiefly on the Boltzmann’s H-theorem, which
underlies the thermodynamics of irreversible processes. According to this theorem,
the mean logarithm of the distribution function (the H-function) for an isolated
system decreases monotonically in time. By relating the H-function to the statistical
weight, Boltzmann showed that the state of heat equilibrium in a system will be the
most probable. Considering as an example a perfect monatomic gas, he showed the
H-function as being proportional to the entropy and derived a formula relating the
entropy to the probability of a macroscopic state (Boltzmann’s formula).
Boltzmann’s formula directly yields the statistical interpretation of the second law
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of thermodynamics based on the generalized definition of the entropy. This relation
unites in fact classical Carnot—Clausius thermodynamics and the kinetic molecular
theory of matter. It is the probabilistic interpretation of the second law of ther-
modynamics that manages to reconcile the property reversibility of mechanical
phenomena with the irreversible character of thermal processes. However, at first
this most important location provision of statistical thermodynamics was vigorously
opposed by fundamentalist scientists.

The first objections against new Boltzmann’s theory had appeared already in
1872 right after the appearance of the paper [1]. With some simplification these
objections can be phrased as follows [3]:

e Why the reversible laws of mechanics (the Liouville equation) allow irreversible
evolution of a system (Boltzmann’s H-theorem)?

e Whether the Boltzmann equation contradicts the classical dynamics?

e Why the symmetry of the Boltzmann equation does not agree with that of the
Liouville equation?

The Liouville equation, which is of primary importance for the classical
dynamics, features the fundamental symmetry property: the reversion of velocity
leads to the same result as that for time. In contrast to this, the Boltzmann equation,
which describes the evolution of the distribution function, does not have the
symmetry property. The reason for this is the invariance of the collision integral in
the Boltzmann equation with respect to the reversion of velocity: the Boltzmann’s
theory does not distinguish between the collisions reversed in the positive or
negative directions of time (that is, “in the past or in the future”). This remarkable
property of the Boltzmann equation had led Poincaré to the conclusion that the
trend in the entropy growth contradicts the fundamental laws of classical
mechanics. Indeed, according to the well-known Poincaré recurrence theorem
(1890) [3], after some finite time interval any system should return to a state which
is arbitrarily close to the initial one. This means that to each possible increase of the
entropy (when leaving the initial state) there should correspond a decrease of the
entropy (when returning back to the initial state).

In 1896, Zermelo, a pupil of Planck, derived the following corollary to the
Poincaré recurrence theorem: no single-valued continuous and differentiable state
function (in particular, the entropy) may increase monotonically in time. It turns out
that irreversible processes in classical dynamics are impossible in principle when
excluding the singular initial states. Boltzmann, when raising objections to
Zermelo, pointed out the statistical basis of the kinetic molecular theory, which
operates with probabilistic quantities. For a statistical system, which is composed of
a huge number of molecules, the deconfiguration time should be astronomically
large and hence has negligible probability. So, the Poincaré recurrence theorem
remains valid, but in the context of a gas system it acquires the abstract sense: in
reality only irreversible processes with finite probability are realized. In 1918
Caratheodory claimed that the proof of the Poincaré recurrence theorem is
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insufficient, for it does not make use of the Lebesgue’s (1902) concept of a
“measure of a set point”.

In reply to Zermelo’s criticism, Boltzmann wrote: “Already Clausius, Maxwell
and others have shown that the laws of gases have statistical character. Very fre-
quently and with the best possible clarity I have been emphasizing that Maxwell’s
law of distribution of velocities of gas molecules is not the law of conventional
mechanics, but rather a probabilistic law. In this connection, I also pointed out that
from the viewpoint of molecular theory the second law is only a probability law...”.
In 1895, in reply to Kelvin’s strong criticism, Boltzmann wrote: “My theorem on
the minimum (or the H-theorem) and the second law of thermodynamics are only
probabilistic assertions”.

The discussion on the H-theorem was concluded by Boltzmann in his last
lifetime publication [6]: “Even though these objections are very potent in
explaining theorems of kinetic theory of gases, they by no means disprove the
simple theorems of probability ...The state of thermal equilibrium differs only in
that that to it there correspond the most frequent distributions of vis viva between
mechanical elements, whereas other states are rare, exceptional. Only by this rea-
son, an isolated gas quantum which is in a state different from thermal equilibrium
will go over into thermal equilibrium and will permanently stay there...”

In 1876 Loschmidt put forward the following fundamental objection to the
kinetic molecular theory: the time-symmetric dynamic equations exclude in prin-
ciple any irreversible process. Indeed, reverse collisions of molecules “mitigate” the
consequences of direct collisions, and hence in theory the system should return in
the initial state. Hence, following its decrease, the H-function (or the inverse
entropy) must again increase from a finite value to the initial value.
Correspondingly, following its growth the must again decrease. Boltzmann in his
polemics with Loschmidt pointed out the conjecture of “molecular chaos”, under-
lying his statistical approach. According s to this conjecture, in a real situation there
is no correlation of any pair of molecules prior to their collision. In a simplified
form, the line of Boltzmann’s reasoning is as follows.

Loschmidt’s idea of intermolecular interaction postulates the existence of some
“storage of information” for gas molecules in which they “store” their previous
collisions. In the framework of classical dynamics, the role of such a storage should
be played by correlations between molecules. Let us now trace the consequences of
a “time-backward” evolution of a system which is accepted by the Liouville
equation. It turns out that certain molecules (however far they were at the time of
velocities reversion) are “doomed” to meet at a predetermined time instant and be
subject to a predetermined transformation of velocities. But this immediately
implies that the reversion of velocities in time generates a highly organized system,
which is antipodal to the state of molecular chaos. This being so, Boltzmann’s
elegant physical considerations formally disprove Loschmidt’s rigorous observa-
tion. As a result, the kinetic molecular theory had enabled to justify a passage from
the classical dynamics to the statistical thermodynamics or, figuratively speaking,
“from order to chaos”. Such a passage is most natural in rarefied gases, which
determined the main domain of applicability of the Boltzmann equation.
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Boltzmann’s legacy is extremely broad and very deep in its contents. The
philosophical idea of the atomic structure matter weaves through her work in a
striking manner; he uncompromisingly defended this idea from Mach and Ostwald
as representatives of phenomenological (or “pure”) description of natural phe-
nomena. In his polemics with Ostwald, who stated that any attempts of mechanistic
interpretation of energetic laws should be rejected, Boltzmann wrote: “From the fact
that the differential equations of mechanics are left unchanged by reversing the sign
of time without changing anything else, Ostwald concludes that the mechanical
view of the world cannot explain why natural processes already run preferentially in
a definite direction. But such a view appears to me to overlook that mechanical
events are determined not only by differential equations, but also by initial con-
ditions”. In his numerous speeches and popular talks Boltzmann always pointed out
the real existence of atoms and molecules: “Thus he, who believes he can free
himself from atomism by differential equations, does not see the wood for the
trees... We cannot doubt that the scheme of the world, that is assumed with it, is in
essence and structure atomistic”.

One should also mention the original Boltzmann’s idea pertaining to the time
nature, which he did not succeed in bringing in the scientific form. A year before his
tragic death he wrote to the philosopher von Brentano: “I am just now occupied
with determining the number which plays the same role for time as the Loschmidt
number for matter, the number of time-atoms = discrete moments of time, which
make up a second of time”.

The synthesis between the classical dynamics and the kinetic molecular theory
was achieved in the 1930s. Bogolyubov [7] gave an elegant derivation of the
Boltzmann equation from the Liouville equation. This derivation, which depends on
the “hierarchy of characteristic times”, takes into account binary collisions of
molecules. Later Bogolyubov in collaboration with other researchers developed
systematic methods capable of producing more general equations (which take into
account triple and multiple collisions). These methods were subsequently used as a
basis for derivation of equations describing dense gases. According to Ruel [8]: ...
La vie de Boltzmann a quelque chose de romantique. Il s’est donné la mort parce
qu’il était, dans un certain sens, un raté. Et pourtant nous le considérons maintenant
comme un des grands savants de son époque, bien plus grand que ceux qui furent
ses opposants scientifiques. Il a vu clair avant les autres, et il a eu raison trop tot....”

1.3 Precise Solution to the Boltzmann Equation

Numerous studies show that considerable mathematical difficulties are encountered
trying to solve precisely the Boltzmann equation. Bobylev [9] seems to be the first
to obtain the only known particular precise solution to the Boltzmann equation.
Below we shall briefly enlarge on the results of the pioneering work [9]. In the
classical kinetic theory of monatomic gases, the gas state at time ¢ >0 is charac-
terized by one-particle distribution function of molecules over spatial coordinates x
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and velocities v in the three-dimensional Euclidean space: f(x,v,#). With some
simplification, this function can be looked upon as the number of particles
(molecules) per unit volume of the velocity-configuration phase space at a time ¢. Its
space-time evolution is described by the Boltzmann equation

o

of
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The right-hand part of (1.1) the collision integral—this is the nonlinear integral
operator, which can be represented as
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Here, w is the volume element, n is the unit vector, |n| = 1, dn is the unit sphere
surface element, the integration is taken over the entire five-dimensional space of
molecular velocities. In (1.2), we used the following notation

u=v-—w,u=|ul,gup) = uG(u,p),V/ = 1/2(V+W+un)vw/
=1/2(v+w —un) (1.3)

We shall assume that collision of molecules follow the laws of the classical
mechanics of particles, which interact with the pair potential U(r) where r is the
distance between particles. The function o(u, p) in (1.3) is the differential scattering
cross-section for the angle 0 <60 <7 in the center-of-mass system of colliding
molecules, where u > 0, u = cos(6) are the arguments. The quantity g(u,p) > 0
is the (1.2) is considered as a given function, whose depends on the chosen model
of molecules. For the model of molecules under consideration (rigid balls of radius
ro) we have g(u,p) = urj. A more involved expression appears for the model of
molecules, in which they are considered as point particles with power-law inter-
actions: U(r) = a/r"(a > 0,n>2) g(u,p) = u'~*/"g,(n), where g, (n)(1 — ;1)3/2
is a bounded function.

The principal mathematical difficulties in solving the Boltzmann equation are
related with the nonlinearity and involved structure of the collision integral (1.2).
The very first had shown that the boundary-value problem for the Boltzmann
equation is much more challenging than the initial-value problem. The problem of
relaxation (approximation to the equilibrium) can be stated in the most simple way
as follows

of
E:I[faﬂ’ f|z:():f0(v) (1.4)
Equation (1.4) descries the space-homogeneous Cauchy problem of independent
interest. Problems of existence and unique solvability of the Boltzmann equation
(both for the Cauchy, and for boundary-value problems) were studied extensively.



