AutoUni – Schriftenreihe

Daniel Szczepanski

Ursachenforschung und Möglichkeiten zur Reduzierung des Grataufwurfs beim Laserabtragschneiden für Anwendungen im Fahrzeugbau

AutoUni – Schriftenreihe

Band 106

Herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Die Volkswagen AutoUni bietet Wissenschaftlern und Promovierenden des Volkswagen Konzerns die Möglichkeit, ihre Forschungsergebnisse in Form von Monographien und Dissertationen im Rahmen der "AutoUni Schriftenreihe" kostenfrei zu veröffentlichen. Die AutoUni ist eine international tätige wissenschaftliche Einrichtung des Konzerns, die durch Forschung und Lehre aktuelles mobilitätsbezogenes Wissen auf Hochschulniveau erzeugt und vermittelt.

Die neun Institute der AutoUni decken das Fachwissen der unterschiedlichen Geschäftsbereiche ab, welches für den Erfolg des Volkswagen Konzerns unabdingbar ist. Im Fokus steht dabei die Schaffung und Verankerung von neuem Wissen und die Förderung des Wissensaustausches. Zusätzlich zu der fachlichen Weiterbildung und Vertiefung von Kompetenzen der Konzernangehörigen, fördert und unterstützt die AutoUni als Partner die Doktorandinnen und Doktoranden von Volkswagen auf ihrem Weg zu einer erfolgreichen Promotion durch vielfältige Angebote – die Veröffentlichung der Dissertationen ist eines davon. Über die Veröffentlichung in der AutoUni Schriftenreihe werden die Resultate nicht nur für alle Konzernangehörigen, sondern auch für die Öffentlichkeit zugänglich.

The Volkswagen AutoUni offers scientists and PhD students of the Volkswagen Group the opportunity to publish their scientific results as monographs or doctor's theses within the "AutoUni Schriftenreihe" free of cost. The AutoUni is an international scientific educational institution of the Volkswagen Group Academy, which produces and disseminates current mobility-related knowledge through its research and tailor-made further education courses. The AutoUni's nine institutes cover the expertise of the different business units, which is indispensable for the success of the Volkswagen Group. The focus lies on the creation, anchorage and transfer of knew knowledge.

In addition to the professional expert training and the development of specialized skills and knowledge of the Volkswagen Group members, the AutoUni supports and accompanies the PhD students on their way to successful graduation through a variety of offerings. The publication of the doctor's theses is one of such offers. The publication within the AutoUni Schriftenreihe makes the results accessible to all Volkswagen Group members as well as to the public.

Herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Brieffach 1231 D-38436 Wolfsburg http://www.autouni.de

Weitere Bände in der Reihe http://www.springer.com/series/15136

Daniel Szczepanski

Ursachenforschung und Möglichkeiten zur Reduzierung des Grataufwurfs beim Laserabtragschneiden für Anwendungen im Fahrzeugbau

Daniel Szczepanski Wolfsburg, Deutschland

Zugl.: Dissertation, Otto-von-Guericke-Universität Magdeburg, 2016

Die Ergebnisse, Meinungen und Schlüsse der im Rahmen der AutoUni – Schriftenreihe veröffentlichten Doktorarbeiten sind allein die der Doktorandinnen und Doktoranden.

AutoUni – Schriftenreihe ISBN 978-3-658-19564-9 https://doi.org/10.1007/978-3-658-19565-6 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer Fachmedien Wiesbaden GmbH 2017

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer ist Teil von Springer Nature

Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Danksagung

Die vorliegende Dissertationsschrift entstand während meiner Tätigkeit als Doktorand bei der Technologieplanung und –entwicklung der Volkswagen AG Wolfsburg. Aus diesem Grund möchte ich mich zunächst bei meinen Abteilungsleitern, Herrn Prof. Ferkel und Herrn Dr. Goede, und meinen Unterabteilungsleitern, Herrn Dr. Jäckel und Herrn Borowetz, bedanken, die mir diesen Weg zur Promotion ermöglicht haben.

Insbesondere gilt aber mein Dank Herrn Thorge Hammer, der mich über den gesamten Zeitraum hinweg tatkräftig unterstützt, zu kritischen Hinterfragungen angeregt und durch zahlreiche Diskussionen mir diese Arbeit ermöglich hat.

Zu Dank verpflichtet bin ich auch gegenüber Frau Prof. Martinek und Herrn Prof. Jüttner, die die Betreuung seitens der Otto-von-Guericke-Universität Magdeburg übernommen haben und mich immer wieder auf den richtigen Weg gelenkt haben. Für die geleistete Unterstützung und Zusammenarbeit danke ich recht herzlich.

Auch Herrn Dr. Pieschel und meinen Gutachtern Herrn Prof. Otto und Herrn Prof. Wessling danke ich für die Unterstützung und Bereitschaft diese Promotion zu begleiten.

Ferner möchte ich jenen Kollegen der Volkswagen AG danken, die mich stetig unterstützt und motiviert haben, vor allem Herrn Kegel, Herrn Schmidt und Herrn Wiethop bin ich zu besonderem Dank verpflichtet. Für die zahlreichen Anregungen und Diskussionen, die tatkräftige Unterstützung und allzeit gute Zusammenarbeit möchte ich mich auch bei Herrn Hartwig, Herrn Ebert, Herrn Drechsel, Herrn Prof. Steiger und Frau Marquardt recht herzlich und größtmöglich bedanken.

Ein herzlicher Dank gilt auch meinen Eltern, die mir all dies ermöglicht haben und mich stets moralisch unterstützt haben sowie meinem Bruder Michael, meiner Freundin Antje und allen meinen Freunden und Verwandten, die zum Gelingen dieser Arbeit beigetragen haben.

Daniel Szczepanski

Inhaltsverzeichnis

Dan	ksagur	ng	V
Abb	oildung	sverzeichnis	XI
Tab	ellenve	erzeichnis	XV
List	e der v	erwendeten Formelzeichen	XVII
List	e der v	erwendeten Abkürzungen	XIX
1	Einl	leitung	1
	1.1	Motivation	1
	1.2	Ziel der Arbeit	2
2	Allg	emeine Verfahrensgrundlagen	3
	2.1	Einordnung der Lasertrennverfahren	4
	2.2	Übersicht über industrierelevante Laserschneidverfahren	4
		2.2.1 Laserstrahlschmelzschneiden	5
		2.2.2 Laserstrahlsubliminierschneiden	5
		2.2.3 Laserstrahlbrennschneiden	6
	2.3	Nutzung der Remote-Technik für Laserprozesse	6
		2.3.1 Systembeschreibung und Differenzierung	7
		2.3.2 Einsatz der Remote-Technik bei Lasertrennprozessen	8
		2.3.3 Remote-Technik beim Schmelzdruckschneiden	8
		2.3.4 Ablauf des Laserstrahlabtragverfahrens	9
	2.4	Parameterbetrachtung beim Abtragschneiden	
		2.4.1 Laserleistung	
		2.4.2 Fokusdurchmesser	
		2.4.3 Intensität	
		2.4.4 Schneidgeschwindigkeit	15
		2.4.5 Einstechvorgang	15

		2.4.6 Fokuslage	15	
		2.4.7 Fokussiereigenschaften	16	
		2.4.8 Pulsbetrieb	16	
3	Las	Lasergeführte Abtragsprozesse – Stand der Entwicklung		
	3.1	Laserstrahlabtragschneiden	19	
	3.2	Laserstrahlstrukturieren		
	3.3	Laserstrahlbohren		
4	Kon	kretisierung der Aufgabenstellung		
	4.1	Dynamik des Prozesses Laserabtragschneiden		
	4.2	Theorien zur Gratentstehung	25	
		4.2.1 Gratentstehung durch Schmelzspritzer	25	
		4.2.2 Gratentstehung durch Einflüsse des Laserfokus		
		4.2.3 Gratentstehung durch die Werkstückdicke		
5	Versuchsdurchführung			
	5.1	Technische Ausstattung		
		5.1.1 Laser und-anlage		
		5.1.2 Scanneroptik	30	
		5.1.3 High-Power Strahlvermessungsgerät		
		5.1.4 Infrarotthermografie		
	5.2	Kriterien zur Beurteilung des entstehenden Grates		
6	Exp	erimentelle Untersuchungen		
	6.1	Grundlagenuntersuchungen zur Schneidbarkeit	39	
		6.1.1 Schneidbarkeit von verzinkten Karosseriewerkstoffen	39	
		6.1.2 Untersuchung des Einflusses von Zinküberzügen	44	
		6.1.3 Untersuchung von Elektroblechen		
	62	Parameteruntersuchungen zum Grataufwurf		
	0.2	I arameteruntersaenangen zum Grataufwarf		

		6.2.2 Einfluss der Intensität bei gleichen Fokusdurchmessern	49
		6.2.3 Einfluss der Blechdicke	52
		6.2.4 Einfluss der Fokuslage auf den Grataufwurf bei Elektroblechen .	54
		6.2.5 Diskussion der Ergebnisse	56
	6.3	Gratentstehung durch Fokusverschiebungen	57
		6.3.1 Einfluss der Scannerspiegel	58
		6.3.2 Einfluss der Schutzgläser	62
		6.3.3 Einfluss des Kollimators auf Fokusverschiebungen	68
		6.3.4 Einfluss der Objektive auf Fokusverschiebungen	72
		6.3.5 Diskussion der Ergebnisse	79
		6.3.6 Simulative Berechnung durch Fokusshift entstehender	
		Verluste	81
	6.4	Simulative Berechnungen zur Steigerung der Prozesseffektivität	87
	6.5	Untersuchungen zur Gratvermeidung und -entfernung	91
	6.6	Wirtschaftliche Betrachtung des Abtragschneidverfahrens	93
		6.6.1 Taktzeitermittlung definierter Geometrien beim	
		Abtragschneiden	93
		6.6.2 Vergleichende Betrachtung mit Hilfe des	
		Schmelzdruckschneidens RFC	94
7	Zusa	mmenfassung	99
Liter	aturvei	rzeichnis	03

Abbildungsverzeichnis

Abbildung 2.1: Fokussierung des Laserstrahls nach Objektiv	.4
Abbildung 2.2: Schematische Darstellung Laserstrahlschmelzschneiden [11]	. 5
Abbildung 2.3: Schematischer Aufbau eines Scannersystems [18]	. 7
Abbildung 2.4: Prinzip des Schmelzdruckschneidens an der Schnittkante [29]	. 9
Abbildung 2.5: Sequenzielles Abtragen bei 3 kW und $f = 230 \text{ mm}$ an M270-35A	10
Abbildung 2.6: Sequenzielles Abtragen bei 5 kW und $f = 230$ mm an M270-35A	10
Abbildung 2.7: Schematische Darstellung des Abtragschneidens [35]	10
Abbildung 2.8: Simulation des Temperaturfelds und der Werkstoffabtragung beim Laserabtragschneiden [36]	11
Abbildung 2.9: Schematischer Aufbau des Faserlasers [38]	13
Abbildung 2.10: Prinzip der Doppelkernfaser [38]	14
Abbildung 2.11: Beispiele für verschiedene Fokuslagen	16
Abbildung 2.12: Laser im Dauerstrichbetrieb [8]	16
Abbildung 2.13: Laser im gepulsten Betrieb [8]	17
Abbildung 3.1: Strukturierungsprozess mit Parametern des Abtragschneidens	21
Abbildung 3.2: Verfahrensarten des Laserstrahlbohrens [84]	23
Abbildung 4.1: Vergleich Gauß-Profil (oben) und Tophat-Profil (unten)	26
Abbildung 5.1: Aufbau der verwendeten Laseranlage	29
Abbildung 5.2: Funktionsprinzip Scanneroptik	31
Abbildung 5.3: Schematische Darstellung des Strahlvermessungsgerätes [95]	31
Abbildung 5.4: Prinzipdarstellung des Strahlvermessungsgerätes [95]	32
Abbildung 5.5: Standardaufbau mit Strahlvermessungsgerät	33
Abbildung 5.6: Variationen der Messaufbauten	34
Abbildung 5.7: Thermografische Analyse des verwendeten Versuchsaufbaus mit Prisma	35
Abbildung 5.8: Grataufwurf am M270-35A in 0,35 mm Dicke	37
Abbildung 5.9: Verringerung der Ummagnetisierungsverluste durch Lamellierung	37
Abbildung 6.1: Abtragsverhalten von Karosserieblechen mit f = 230 mm	39
Abbildung 6.2: Schliffproben unterschiedlich verzinkter Stähle	41
Abbildung 6.3: Vergleich der mittleren Abtragtiefen aus der Profilmessung	42

Abbildung 6.4: I	EDX-Analyse an Probe H220 Z100 MB	42
Abbildung 6.5: 2	Zink-Eisen-Legierungsschicht eines DX52 Z140	43
Abbildung 6.6: A	Abtragsverhalten der Elektrobleche bei $f = 230 \text{ mm}$	44
Abbildung 6.7: A	Abtragsverhalten der Elektrobleche bei f = 500 mm	45
Abbildung 6.8: I	Lackabbrand von Elektroblechen am Beispiel des NO30 bei 8 m/s	46
Abbildung 6.9: V	Verdampfungs- und Schmelzrate im Vergleich	47
Abbildung 6.10:	Vergleich unterschiedlicher Geschwindigkeiten auf die Gratausbildung	48
Abbildung 6.11:	Vergleich unterschiedlicher Geschwindigkeiten auf die Gratausbildung am M270-35A	48
Abbildung 6.12:	Grathöhen bei steigenden Verfahrgeschwindigkeiten	49
Abbildung 6.13:	Vergleich des Grataufwurfs bei unterschiedlicher Laserleistung	50
Abbildung 6.14:	Einfluss der Intensität auf den Grataufwurf	50
Abbildung 6.15:	Grataufwurf bei veränderten Intensitätsbedingungen	51
Abbildung 6.16:	Ausbildung der Schnittfuge bei unterschiedlicher Laserleistung	51
Abbildung 6.17:	Einfluss der Blechdicke auf die Ausbildung der Schnittkante	53
Abbildung 6.18:	Grataufwurf in Abhängigkeit der Blechdicke	53
Abbildung 6.19:	Abtragschneiden mit einer Überfahrt	54
Abbildung 6.20:	Ergebnisse zur Schwankungsbreite bei Defokussierung	55
Abbildung 6.21:	Verändertes Intensitätsprofil nach Kaustikveränderung	55
Abbildung 6.22:	Wechselwirkungen beim Abtragschneiden	56
Abbildung 6.23:	Schematische Darstellung der Fokusverschiebung	57
Abbildung 6.24:	Geometrie und Abmessungen der verwendeten Scannerspiegel	58
Abbildung 6.25:	Temperaturanstieg der Scannerspiegel in Abhängigkeit der Bestrahlungsdauer	58
Abbildung 6.26:	Optimales Strahlprofil im Fokus, links 3D, rechts 2D	59
Abbildung 6.27:	Strahlprofil unterhalb des optimalen d_{fok} , links 3D, rechts 2D	59
Abbildung 6.28:	Einflüsse des Scanners mit <i>f</i> -theta-230-Optik auf die Strahleigenschaften	60
Abbildung 6.29:	Einflüsse des Scanners mit Festoptik auf die Strahleigenschaften	61
Abbildung 6.30:	Temperaturentwicklung der Schutzgläser bei P = 300 W	62
Abbildung 6.31:	Weglängenänderung der Schutzgläser in Abhängigkeit der Bestrahldauer	64
Abbildung 6.32:	Simulation der Schutzglasverformung und -erwärmung	65

Abbildung 6.33:	Simulation der radialen Temperaturverteilung in Abhängigkeit der Lasereinwirkzeit bei $P = 3 \text{ kW}$ und $t = 120 \text{ s}$ an Schutzglas 3
Abbildung 6.34:	Einfluss unterschiedl. Schutzgläser auf die Strahleigenschaften 67
Abbildung 6.35:	Schematische Darstellung des Versuchsaufbaus
Abbildung 6.36:	Durchmesser des kollimierten Strahles bei Einschaltdauer 30 s 68
Abbildung 6.37:	Durchmesser des kollimierten Strahles bei Einschaltdauer 60 s 69
Abbildung 6.38:	Strahlfokusverschiebungen in Abhängigkeit der Laserleistung bei f = 500 mm
Abbildung 6.39:	Vergleich der Fokusverschiebung in Abhängigkeit des Verschmutzungsgrades des Kollimators
Abbildung 6.40:	Vergleich der Strahlgüten in Abhängigkeit des Verschmutzungsgrades des Kollimators
Abbildung 6.41:	Vergleich der Strahltaillen in Abhängigkeit des Verschmutzungsgrades des Kollimators71
Abbildung 6.42:	Einflüsse der Standardoptik (f = 500 mm) auf die Strahleigenschaften
Abbildung 6.43:	Kaustik messungen mit P = 1 kW und Standardoptik (f = 500 mm) . 73 $$
Abbildung 6.44:	Schematischer Schnitt durch die verwendete Sonderoptik74
Abbildung 6.45:	Fokus- und Strahltaillenveränderungen mit der Sonderoptik74
Abbildung 6.46:	Fokusverschiebung, Strahlqualitäts- und Strahltaillenveränderungen mit der <i>f</i> -theta-Optik mit f = 230 mm 75
Abbildung 6.47:	Auswirkungen der Defokussierung auf die Kaustik und den Fokusdurchmesser bei P = $2,5 \text{ kW}$ und Optik (f = 230 mm)
Abbildung 6.48:	Fokusverschiebung, Strahlqualitäts- und Strahltaillenveränderungen mit der Festoptik mit f = 250 mm77
Abbildung 6.49:	Fokusverschiebung, Strahlqualitäts- und Strahltaillenveränderungen mit der Festoptik mit f = 500 mm78
Abbildung 6.50:	Strahlprofil bei 300 W im Fokus +/- 1 mm
Abbildung 6.51:	Physikalisches Modell der numerischen Simulation nach [105] 82
Abbildung 6.52:	Masseneffekte bei Defokussierung und P = $2,5 \text{ kW}$
Abbildung 6.53:	Leistungseffekte bei Defokussierung und $P = 2,5 \text{ kW}$
Abbildung 6.54:	Simulationsdarstellung des Materialabtrags ohne Defokussierung mit P = 5 kW
Abbildung 6.55:	Simulationsdarstellung des Materialabtrags bei Defokussierung mit P = 5 kW
Abbildung 6.56:	Masseneffekte bei Defokussierung und $P = 5 \text{ kW}$

Abbildung 6.57: Auswirkungen des Fokusdurchmessers auf die Abtragsmenge bei P = 5 kW	. 86
Abbildung 6.58: Auswirkungen der Laserstrahlleistung auf die Masseneffekte	87
Abbildung 6.59: Vergleich der Leistungseffekte beim Abtragschneiden mit Pvar	88
Abbildung 6.60: Vergleich der Massenverluste unterschiedlicher Mode-Formen	88
Abbildung 6.61: Simulativer Vergleich des Werkstoffabtrags für unterschiedliche Leistungen	. 89
Abbildung 6.62: Ausprägung der Schneidfront für unterschiedliche Mode-Formen	90
Abbildung 6.63: Gratentfernung mittels Laserstrahlung	92
Abbildung 6.64: Wiederzulaufende Schnittfugen beim RFC [109]	95
Abbildung 6.65: Ermitteltes Parameterfeld zum RFC mit Faserlaser	95
Abbildung 6.66: Ermittelte Parameterfelder zum RFC mit Scheibenlaser	96