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Preface

In recent decades, robotics has attracted considerable attention in scientific research
and engineering applications. Much effort has been contributed to robotics and differ-
ent types of robots have thus been developed and investigated. Among these robots,
redundant robot manipulators have played a more and more important role in numer-
ous fields of engineering applications, and they have been widely applied in industrial
automation for performing repetitive dull work, such as welding, painting, and
assembly. For a redundant robot manipulator, it possesses more degrees-of-freedom
(DOF) than the minimum number required to perform a given end-effector primary
task. One important issue in operating such robotic systems, redundancy resolution,
has been widely studied, which is related to the motion planning and control of
redundant manipulators. That is, given the desired Cartesian paths of the end effector,
the corresponding joint trajectories need to be obtained online or in real-time t.
Various redundancy-resolution schemes have thus been developed and investigated
for the motion planning and control of redundant robot manipulators. By resolving
the redundancy properly (or say, by using a specific redundancy-resolution scheme),
redundant robot manipulators can avoid joint physical limits, while conducting the
given end-effector primary path-tracking task.
In general, the redundancy-resolution problem can be solved at the joint-velocity

level or at the joint-acceleration level, resulting in the corresponding velocity-level
and acceleration-level redundancy-resolution schemes. In this book, focusing on
redundancy resolution, we present and investigate different methods and schemes
for the motion planning and control of redundant robot manipulators. Specifically,
in view of the fact that the Jacobian matrix of a robot manipulator is actually varying
with time during the motion-task execution, the problem of time-varying matrix
pseudoinversion, as a new issue, is involved in the pseudoinverse-based scheme
formulation. By computing the time-varying pseudoinverse of the Jacobian matrix
(of the robot manipulator), discrete-time zeroing dynamics (ZD) models, as a new
approach to the time-varying Jacobian matrix pseudoinversion, are applied to the
redundant-manipulator kinematic control. Then, considering that calculating the
inverse of Jacobian matrix is less efficient, three types of inverse-free simple solution
based on the gradient dynamics (GD) method and ZD method, are thus presented
and investigated to avoid the Jacobian inversion. Recent progress in our 16-year study
shows the advantages of unifying the treatment of various schemes of manipulators’
redundancy resolution. We recall some fundamental techniques for such a unification
and then specify it in full details based on quadratic programming (QP) and its online



�

� �

�

xxviii Preface

solutions. Such a QP formulation is general in the sense that it incorporates equality,
inequality, and bound constraints, simultaneously. This QP formulation covers the
online avoidance of joint physical limits and environmental obstacles, as well as the
optimization of various performance indices. Every term is endowed with clear physical
meaning and utility. Computer-simulation results based on various robotic models
show the effectiveness of the presented methods and schemes. For substantiating the
physical realizability, some of these methods and schemes are applied to an actual
six-DOF planar robot manipulator.
The idea for this book was conceived during the research discussion in the laboratory

and at international scientific meetings. Most of the materials of this book are derived
from the authors’ papers published in journals and proceedings of international confer-
ences. In fact, in recent decades, the field of robotics has undergone the phases of expo-
nential growth, generating many new theoretical concepts and applications (includ-
ing the authors’ ones). Our first priority is thus to cover each central topic in enough
details to make the material clear and coherent; in other words, each part (and even
each chapter) is written in a relatively self-contained manner.
This book contains 15 chapters that are classified into the following seven parts.

Part I: Pseudoinverse-Based ZD Approach (Chapter 1);
Part II: Inverse-Free Simple Approach (Chapter 2 through Chapter 4);
Part III: QP Approach and Unification (Chapter 5);
Part IV: Illustrative Velocity-Level QP Schemes and Performances (Chapter 6 through
Chapter 8);

Part V: Self-Motion Planning (Chapter 9 through Chapter 11);
Part VI: Manipulability Maximization (Chapter 12 and Chapter 13);
Part VII: Encoder Feedback and Joystick Control (Chapter 14 and Chapter 15).

Chapter 1 – This chapter presents and investigates the applications of discrete-time
ZD models to the kinematic control of redundant robot manipulators via time-varying
matrix pseudoinversion. That is, by computing the time-varying pseudoinverse of the
Jacobian matrix (of the robot manipulator), the resultant ZD models are applied to
the redundant-manipulator kinematic control. Computer-simulation results based on
two robot manipulators further illustrate the effectiveness of the presented ZD models
for time-varying matrix pseudoinversion applied to the redundancy resolution of robot
manipulators.
Chapter 2 – In this chapter, base on GDmethod, an inverse-free scheme is presented

at the joint-velocity level to avoid calculating the inverse of Jacobianmatrix.The scheme
is called a G1 type as it uses GD once. In addition, two path tracking simulations based
on five-link and six-DOF redundant robot manipulators illustrate the efficiency and the
accuracy of the presented scheme. What is more, the physical realizability of G1 type
scheme is also verified by the physical experiments based on the six-DOF planar redun-
dant robot manipulator hardware system.
Chapter 3 – In this chapter, another inverse-free simple solution based onGDmethod,

named the D1G1 scheme, is presented at the joint-acceleration level for solving the
inverse kinematics problem of redundant robot manipulators. Furthermore, simulation
results based on a three-link redundant robotmanipulator substantiate the effectiveness
and accuracy of the presented inverse-free D1G1 scheme.


