Advances in Experimental Medicine and Biology 993

Klaus Groschner Wolfgang F. Graier Christoph Romanin *Editors*

Store-Operated Ca²⁺ Entry (SOCE) Pathways

Emerging Signaling Concepts in Human (Patho)physiology

Second Edition

Advances in Experimental Medicine and Biology

Volume 993

Editorial Board

Irun R. Cohen, The Weizmann Institute of Science, Rehovot, Israel Abel Lajtha, N.S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA John D. Lambris, University of Pennsylvania, Philadelphia, PA, USA Rodolfo Paoletti, University of Milan, Milan, Italy Advances in Experimental Medicine and Biology presents multidisciplinary and dynamic findings in the broad fields of experimental medicine and biology. The wide variety in topics it presents offers readers multiple perspectives on a variety of disciplines including neuroscience, microbiology, immunology, biochemistry, biomedical engineering and cancer research. Advances in Experimental Medicine and Biology has been publishing exceptional works in the field for over 30 years and is indexed in Medline, Scopus, EMBASE, BIOSIS, Biological Abstracts, CSA, Biological Sciences and Living Resources (ASFA-1), and Biological Sciences. The series also provides scientists with up to date information on emerging topics and techniques.

More information about this series at http://www.springer.com/series/5584

Klaus Groschner • Wolfgang F. Graier • Christoph Romanin Editors

Store-Operated Ca²⁺ Entry (SOCE) Pathways

Emerging Signaling Concepts in Human (Patho)physiology

Second Edition

Editors Klaus Groschner Institute of Biophysics Medical University of Graz Graz, Austria

Christoph Romanin Institute of Biophysics Johannes Kepler University Linz Linz, Austria Wolfgang F. Graier Institute of Molecular Biology and Biochemistry Medical University of Graz Graz, Austria

 ISSN 0065-2598
 ISSN 2214-8019 (electronic)

 Advances in Experimental Medicine and Biology
 ISBN 978-3-319-57731-9
 ISBN 978-3-319-57732-6 (eBook)

 DOI 10.1007/978-3-319-57732-6
 ISBN 978-3-319-57732-6
 ISBN 978-3-319-57732-6 (eBook)

Library of Congress Control Number: 2017944273

© Springer International Publishing AG 2012, 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

A brief recapitulation of the overwhelming recent progress in our understanding of Ca²⁺ signaling and (patho)physiological processes linked to or associated with depletion/refilling of the cells' sarcoplasmic/endoplasmic reticulum led us to initiate the compilation of a second edition, an update of this book, less than 5 years after the release of the first edition. We kept the original structure to address the key issues of (1) fundamental mechanistic concepts, (2) cross talk between organelle and cell compartments, and (3) molecular and cellular (patho)physiology of these processes. Each of these sections has not only been significantly updated by amendatory, detailed information complementing the previous topics and chapters but also extended by entirely novel aspects addressed in separate, new chapters. Among these important extensions of the scope are the recently gained information on the molecular structure of the STIM-Orai machinery at the atomic resolution level (Chap. 2), novel insights into the supramolecular domain organization of the STIM-Orai coupling machinery (Chap. 5), the recent developments in STIM-Orai optogenetics (Chap. 7), novel insights into the structure and function of membrane (in particular plasma membrane)-endoplasmic reticulum contact sites (Chaps. 15, 17), as well as recently gained knowledge on the role of SOCE in cancer (Chaps. 30, 31). In turn, a few other aspects were found better suitable for combined synopsis within a single chapter such as integrative aspects of cardiovascular disease and therapy (Chap. 24).

Overall, we hope that this second edition may be inspiring and supportive by its comprehensive and timely information on the SOCE phenomenon for both students and advanced colleagues who focus on SOCE-related aspects of cellular Ca^{2+} homeostasis. Even more, we hope that this updated compilation of current expertise in SOCE signaling will serve as an influential knowledge base to further groundbreaking developments in this steadily growing field of cell biology/pathophysiology.

Graz, Austria Graz, Austria Linz, Austria Klaus Groschner Wolfgang F. Graier Christoph Romanin

Acknowledgments

The editors express their sincere thanks and appreciation to all contributors, who repetitively and unswervingly supported this project. Again, we wish to express our particular gratitude to Karin Osibow for her professional and exceptionally dedicated help with all management aspects required for the realization of this book.

Graz, Austria Graz, Austria Linz, Austria Klaus Groschner Wolfgang F. Graier Christoph Romanin

Contents

Part	I SOCE: Fundamental Mechanistic Concepts	1
1	Introduction	3
2	The STIM-Orai Pathway: STIM-Orai Structures – Isolated and in Complex Jinhui Zhu, Qingping Feng, and Peter B. Stathopulos	15
3	The STIM-Orai Pathway: Orai, the Pore-Forming Subunit of the CRAC Channel Aparna Gudlur and Patrick G. Hogan	39
4	The STIM-Orai Pathway: The Interactions Between STIM and Orai Marc Fahrner, Rainer Schindl, Martin Muik, Isabella Derler, and Christoph Romanin	59
5	The STIM-Orai Pathway:Conformational Coupling Between STIM and Orai in theActivation of Store-Operated Ca ²⁺ EntryRobert M. Nwokonko, Xiangyu Cai, Natalia A. Loktionova,Youjun Wang, Yandong Zhou, and Donald L. Gill	83
6	The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications Barbara A. Niemeyer	99
7	The STIM-Orai Pathway:Light-Operated Ca ²⁺ Entry Through EngineeredCRAC ChannelsGuolin Ma, Shufan Wen, Yun Huang, and Yubin Zhou	117
8	STIM-TRP Pathways and Microdomain Organization: Ca²⁺ Influx Channels – The Orai-STIM1-TRPC Complexes Dora Bodnar, Woo Young Chung, Dongki Yang, Jeong Hee Hong, Archana Jha, and Shmuel Muallem	139

9	STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca²⁺ Entry – Impact on Ca²⁺ Signaling and Cell Function Hwei Ling Ong and Indu S. Ambudkar	159
10	STIM-TRP Pathways and Microdomain Organization: Auxiliary Proteins of the STIM/Orai Complex Jonathan Pacheco and Luis Vaca	189
Par	t II SOCE: Crosstalk Between Organelle and Cellular Compartments	211
11	Introduction	213
12	New Aspects of the Contribution of ER to SOCE Regulation: The Role of the ER and ER-Plasma Membrane Junctions in the Regulation of SOCE	217
13	New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca²⁺ Stores Alexis Bavencoffe, Michael Xi Zhu, and Jin-bin Tian	239
14	The Role of Mitochondria in the Activation/Maintenanceof SOCE:Store-Operated Ca ²⁺ Entry and MitochondriaAndrás Spät and Gergö Szanda	257
15	The Role of Mitochondria in the Activation/Maintenance of SOCE: Membrane Contact Sites as Signaling Hubs Sustaining Store-Operated Ca ²⁺ Entry Nicolas Demaurex and Daniele Guido	277
16	The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca ²⁺ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca ²⁺ Entry Roland Malli and Wolfgang F. Graier	297
17	Tissue Specificity: The Role of Organellar Membrane Nanojunctions in Smooth Muscle Ca ²⁺ Signaling Nicola Fameli, A. Mark Evans, and Cornelis van Breemen	321

х

18	Tissue Specificity: SOCE – Implications for Ca²⁺ Handling in Endothelial Cells Lothar A. Blatter	343
19	Tissue Specificity:Store-Operated Ca²⁺ Entry in Cardiac Myocytes Martin D. Bootman and Katja Rietdorf	363
Par	t III SOCE: Molecular and Cellular (Patho)Physiology	389
20	Introduction: Overview of the Pathophysiological Implications of Store-Operated Calcium Entry in Mammalian Cells Juan A. Rosado	391
21	Immunological Disorders:Regulation of Ca2+ Signaling in T LymphocytesSonal Srikanth, Jin Seok Woo, Zuoming Sun, and Yousang Gwack	397
22	Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders Jyoti Tanwar, Mohamed Trebak, and Rajender K. Motiani	425
23	Cardiovascular and Hemostatic Disorders: SOCE and Ca²⁺ Handling in Platelet Dysfunction Jose J. Lopez, Gines M. Salido, and Juan A. Rosado	453
24	Cardiovascular and Hemostatic Disorders: SOCE in Cardiovascular Cells – Emerging Targets for Therapeutic Intervention	473
25	Cardiac Remodeling and Disease: SOCE and TRPC Signaling in Cardiac Pathology Petra Eder	505
26	Cardiac Remodeling and Disease: Current Understanding of STIM1/Orai1-Mediated Store-Operated Ca²⁺ Entry in Cardiac Function and Pathology Fiona Bartoli and Jessica Sabourin	523
27	Neurological and Motor Disorders:Neuronal Store-Operated Ca2+ Signaling – An Overviewand Its FunctionSunitha Bollimuntha, Biswaranjan Pani, and Brij B. Singh	535
28	Neurological and Motor Disorders: TRPC in the Skeletal Muscle Sophie Saüc and Maud Frieden	557

29	Fertility:	
	Store-Operated Ca ²⁺ Entry in Germ Cells – Role	
	in Egg Activation	577
	Zoltan Machaty, Chunmin Wang, Kiho Lee, and Lu Zhang	
30	Metabolic Disorders and Cancer:	
	Hepatocyte Store-Operated Ca ²⁺ Channels in Nonalcoholic	
	Fatty Liver Disease	595
	Eunüs S. Ali, Grigori Y. Rychkov, and Greg J. Barritt	
31	Metabolic Disorders and Cancer:	
	Store-Operated Ca ²⁺ Entry in Cancer – Focus on IP ₃ R-Mediated	
	Ca ²⁺ Release from Intracellular Stores and Its Role in Migration	
	and Invasion	623
	Abigaël Ritaine, George Shapovalov, and Natalia Prevarskaya	
Ind	ex	639

xii

Editors Biography

Klaus Groschner studied pharmacy at the School of Pharmacy, University of Graz, Austria. He completed his PhD studies at the Department of Pharmacodynamics in Graz and received part of his postdoctoral education at the University of Miami, Florida, USA, studying electrophysiology and cell biology. In 1990, he became an assistant professor at the Department of Pharmacology and Toxicology and received his habilitation in pharmacology and toxicology along with promotion to associate professor in 1993. Until 2011, he was head of a research unit for physiology and pharmacology of membrane transport at the Institute of Pharmaceutical Sciences at the University of Graz. Since 2012, he is full professor and chairman at the Institute of Biophysics at the Medical University of Graz.

Wolfgang F. Graier studied pharmacy at the University of Graz, Austria, and received his PhD in pharmacology at the Department of Pharmacology and Toxicology, University of Graz. In 1993–1994, he was a postdoctoral research fellow, analyzing physiology and membrane biophysics at the Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA. In 1994, he became an assistant professor at the Department of Medical Biochemistry, University of Graz. In 1995, he became associate professor (habilitation) in biochemical pharmacology and in physiology in 2001 at the Department of Medical Biochemistry, University of Graz. Since 2009, he is full professor for molecular biology and chairman of the Institute of Molecular Biology and Biochemistry at the Medical University of Graz. Since 2015, he is also head of the Nikon Center of Excellence for Super-Resolution Microscopy: Cells and Organelles that is part of BioTechMed, the concerted research platform of the Medical University of Graz, the University of Graz, and the Graz University of Technology. In 2016, he cofounded a spin-off company named Next Generation Fluorescence Imaging or NGFI (www.ngfi.eu).

Christoph Romanin studied chemistry at the Graz University of Technology, Austria, and completed his doctoral studies at the Department of Pharmacology and Toxicology, University of Graz. In 1986, he started with a postdoc position at the Institute of Biophysics of the Johannes Kepler University Linz, Austria, where he became professor in biophysics (habilitation) in 1993 and served as an associate professor since 1997. In 2001, he was a guest researcher at the National Institute on Aging (NIA) of the NIH in Bethesda, USA. Currently, he is vicechairman of the institute and head of the Ion Channel Group at the Institute of Biophysics in Linz, Austria.

List of Contributors

Eunüs S. Ali Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, SA, Australia

Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia

Indu S. Ambudkar Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research – NIDCR, National Institutes of Health – NIH, Bethesda, MD, USA

Greg J. Barritt Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, SA, Australia

Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia

Fiona Bartoli Inserm UMR S1180, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France

Alexis Bavencoffe Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA

Lothar A. Blatter Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, USA

Dora Bodnar Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research – NIDCR, National Institute of Health – NIH, Bethesda, MD, USA

Sunitha Bollimuntha Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA

Martin D. Bootman School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK

Xiangyu Cai Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA

Woo Young Chung Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA

Nicolas Demaurex Department of Cell Physiology and Metabolism, University of Geneva, Geneva 4, Switzerland

Isabella Derler Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria

Hayley Dingsdale School of Biosciences, Cardiff University, Cardiff, UK

Petra Eder Department of Internal Medicine I, Comprehensive Heart Failure Center Würzburg, University Hospital Würzburg, Würzburg, Germany

A. Mark Evans Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK

Marc Fahrner Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria

Nicola Fameli Institute of Biophysics, Medical University of Graz, Graz, Austria

Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada

Qingping Feng Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada

Maud Frieden Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland

Donald L. Gill Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA

Wolfgang F. Graier Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria

Klaus Groschner Institute of Biophysics, Medical University of Graz, Graz, Austria

Aparna Gudlur Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA

Daniele Guido Department of Cell Physiology and Metabolism, University of Geneva, Geneva 4, Switzerland

Yousang Gwack Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Lee Haynes The Physiological Laboratory, Department of Cellular and Molecular Physiology, The University of Liverpool, Liverpool, UK

Patrick G. Hogan Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA

Jeong Hee Hong Department of Physiology, College of Medicine, Gachon University, Yeonsu-gu, Incheon City, Korea

Yun Huang Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA

Archana Jha Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research – NIDCR, National Institute of Health – NIH, Bethesda, MD, USA

Kiho Lee Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA

Natalia A. Loktionova Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA

Jose J. Lopez Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain

Gyorgy Lur Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA

Guolin Ma Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA

Zoltan Machaty Department of Animal Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN, USA

Roland Malli Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria

Rajender K. Motiani Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India

Shmuel Muallem Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research – NIDCR, National Institute of Health – NIH, Bethesda, MD, USA

Martin Muik Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria

Barbara A. Niemeyer Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany

Robert M. Nwokonko Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA

Emmanuel Okeke The Physiological Laboratory, Department of Cellular and Molecular Physiology, The University of Liverpool, Liverpool, UK

Hwei Ling Ong Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research – NIDCR, National Institutes of Health – NIH, Bethesda, MD, USA

Jonathan Pacheco Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF, México

Biswaranjan Pani Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA

Natalia Prevarskaya Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France

Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, France

James W. Putney The Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences – NIH, Research Triangle Park, NC, USA

Katja Rietdorf School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK

Abigaël Ritaine Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France

Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, France

Christoph Romanin Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria

Juan A. Rosado Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain

Grigori Y. Rychkov School of Medicine, The University of Adelaide, Adelaide, SA, Australia

South Australian Health and Medical Research Institute, Adelaide, SA, Australia

Jessica Sabourin Inserm UMR S1180, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France

Gines M. Salido Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain

Sophie Saüc Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland

Rainer Schindl Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria

George Shapovalov Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France

Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, France

Niroj Shrestha Institute of Biophysics, Medical University of Graz, Graz, Austria

Brij B. Singh Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA

András Spät Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary

Department of Physiology, Semmelweis University, Budapest, Hungary

Sonal Srikanth Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Peter B. Stathopulos Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada

Zuoming Sun Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, CA, USA

Gergö Szanda Department of Physiology, Semmelweis University, Budapest, Hungary

Jyoti Tanwar Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India

Alexei V. Tepikin The Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK

Jin-bin Tian Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA

Mohamed Trebak Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA

Luis Vaca Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF, México

Cornelis van Breemen Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada

Chunmin Wang Vivere Health, Houston, TX, USA

Youjun Wang Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, People's Republic of China

Shufan Wen Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA

Jin Seok Woo Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Dongki Yang Department of Physiology, College of Medicine, Gachon University, Yeonsu-gu, Incheon City, Korea

Lu Zhang Department of Animal Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN, USA

Yandong Zhou Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA

Yubin Zhou Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA

Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Houston, TX, USA

Jinhui Zhu Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada

Michael Xi Zhu Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA

Abbreviations

α-SNAP	α -Soluble NSF attachment protein
$\Delta \Psi_{ m m}$	Mitochondrial membrane potential
σ1R	Sigma-1 receptor
/	Double knockout
+TIP	Plus-end-tracking protein
$[Ca^{2+}]$	Ca ²⁺ concentration
$[Ca^{2+}]_{cyt}/[Ca^{2+}]_{c}$ $[Ca^{2+}]_{ER}$	Cytosolic Ca ²⁺ concentration
$[Ca^{2+}]_{ER}$	Free Ca ²⁺ concentration of the ER
$[Ca^{2+}]_i$	Intracellular free Ca ²⁺ concentration
[Na ⁺] _{ns}	Sodium concentration within the nanospace
2-APB	2-Aminoethoxydiphenyl borate
aa	Amino acid
AA	Arachidonic acid
ABCA	ATP-binding cassette subfamily A member
AC	Adenylyl cyclase
AD	Alzheimer's disease
ADPKD	Autosomal dominant polycystic kidney disease
AM	Atrial myocyte
Ang II	Angiotensin II
ANT	Adenine nucleotide translocase
APC	Adenomatous polyposis coli
APP	Amyloid precursor protein
ARC	Arachidonate-regulated Ca ²⁺ channel
Arf6	ADP-ribosylation factor 6
AtCRY2	Arabidopsis thaliana cryptochrome 2
ATF6	Activating transcription factor 6
ATP	Adenosine triphosphate
ATXN1	Ataxin 1
BACCS	Blue light-activated Ca ²⁺ channel switch
bFGF	Basic fibroblast growth factor
BHQ	2,5-Di-(tert-butyl)-1,4-benzohydroquinone
BKCas	Big conductance Ca ²⁺ -activated K ⁺ channels

BTP2	N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-
0112	methyl-1,2,3-thiadiazole-5-carboxamide
Ca ²⁺	Calcium
CAD	Channel-activating domain
CaM	Calmodulin
CaMK	Ca ²⁺ -/CaM-dependent protein kinase
cAMP	Cyclic adenosine monophosphate
CaN	Calcineurin
CAPE	Caffeic acid phenethyl ester
CAR	Ca^{2+} accumulation region
CASK	Ca^{2+} -/CaM-dependent serine protein kinase
cat-SOC	Cation store-operated channel
Cav-1	Caveolin-1
CAX	Ca ²⁺ /hydrogen exchanger
CC	Coiled coil
CCE	Capacitative Ca ²⁺ entry
CCh	Carbachol
CDC42	Cell division control protein 42 homolog
CDI	Ca^{2+} -dependent inactivation
cER	Cortical endoplasmic reticulum
CFP	Cyan fluorescent protein
CGD	Chronic granulomatous disease
cGMP	Cyclic guanosine monophosphate
CIRB	CaM- and IP ₃ R-binding site
CK1	Casein kinase 1
Cl^{-}	Chloride
CLEM	Correlative light and electron microscopy
СМ	Cardiac myocyte
CnA	Catalytic A subunit of calcineurin
CnB	Calcineurin B
Co-IP	Co-immunoprecipitation
COX	Cyclooxygenase
CPA	Cyclopiazonic acid
CPAE	Calf pulmonary endothelial cell
CRAC	Ca ²⁺ release-activated Ca ²⁺ channel
CRACR2A	CRAC regulator 2A
CREB	cAMP response element-binding transcription factor
CRMP2	Collapsin response mediator protein-2
cRNA	Complementary RNA
CRYs	Cryptochromes
CSQ	Calsequestrin
CTID	C-terminal inhibitory domain
DAG	Diacylglycerol
DAPC	Dystrophin-associated protein complex
DBD	DNA-binding domain

DC	Dendritic cell
DC	Doublecortin
DHPR	Dihydropyridine receptor
DKO	Double knockout
dLNs	
	Draining lymph nodes
DMD	Duchenne muscular dystrophy
DN	Dominant negative
DTS	Dense tubular system
DVF	Divalent-free
DYRK	Dual-specificity tyrosine phosphorylation-regulated kinase
EAE	Experimental autoimmune encephalomyelitis
EB1	End-binding 1 protein
EC	Endothelial cell
ECC	Excitation-contraction coupling
ECCE	Excitation-coupled Ca ²⁺ entry
ECM	Extracellular matrix
EDCF	Endothelium-derived contracting factor
EDL	Extensor digitorum longus
EDRF	Endothelium-derived relaxing factor
EE	Early endosome
EGFR	Epidermal growth factor receptor
EGTA	Ethylene glycol-bis(β -aminoethyl ether)- N , N , N' , N' -tetraacetic
EMRE	Essential MCU regulator
En	Endosome
eNOS	Endothelial NO synthase (NOS III)
EPAC	Exchange protein directly activated by cAMP
ER	Endoplasmic reticulum
$E_{\rm rev}$	Reversal potential
ERM	Ezrin–radixin–moesin
ESCRT	Endosomal sorting complex required for transport
E-Syt	Extended synaptotagmin
ET-1	Endothelin 1
ETC	Excitation–transcription coupling
ETON	Extended transmembrane Orail N-terminal
EVH1	Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein)
L VIII	homology 1
FAD	Familial Alzheimer's disease
FAK	Focal adhesion kinase
FCCP	Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
FCDI	Fast Ca^{+2} -dependent inactivation
FF	Diphenylalanine
FFAT	Acidic tract motif
FGF2	
FGF2 FKBP	Fibroblast growth factor 2 FK506-binding protein
TADE	rx500-omaing protein

EDD	EVDD rememusin hinding
FRB	FKBP–rapamycin binding
FRET	Förster/fluorescence resonance energy transfer
GC-A	Guanylyl cyclase-A
GECAs	Genetically encoded Ca^{2+} actuators
GECIs	Genetically encoded Ca ²⁺ -sensitive indicators
GEF	Guanine nucleotide exchange factor
GLP-1	Glucagon-like peptide 1
GLUT4	Glucose transporter 4
GPCR	G protein-coupled receptor
GPN	Glycyl-L-phenylalanine-2-naphthylamide
GqPCR	Gq protein-coupled receptor
Grx's	Glutaredoxins
GSH	Glutathione
GSK-3β	Glycogen synthase kinase 3β
GST	Glutathione S-transferase
H_2O_2	Hydrogen peroxide
H2S	Hydrogen sulfide
HAD	HIV-associated dementia
HCMD	High Ca ²⁺ microdomain
HDAC	Histone deacetylase
hESC-CM	Human embryonic stem cell-derived cardiomyocyte
HF	Heart failure
HIV	Human immunodeficiency virus
HMGB1	High-mobility group box 1 protein
Hrs	Hepatocyte growth factor-regulated tyrosine kinase substrate
HSG	Human submandibular gland
HUVEC	Human umbilical vein EC
I _{CRAC}	Ca^{2+} release-activated Ca^{2+} current
ΙκΒ	Inhibitor of NF-KB
IKK	IkB kinase
IMM	Inner mitochondrial membrane
iNKT	Invariant natural killer T
IP ₃	Inositol 1,4,5-trisphosphate
IP ₃ R	IP ₃ receptor
IQGAP	IQ motif-containing GTPase-activating protein
IRE1	Inositol-requiring protein 1
IS	Immunological synapse
Iso	Isoproterenol
Iso I _{SOC}	Store-operated Ca ²⁺ current
ITAM	Immunoreceptor tyrosine-based activation motif
JNK	c-Jun N-terminal kinase
лк ЛР	
JP K ⁺	Junctophilin Potassium
K KCa	Ca^{2+} -activated K ⁺ channel
KCa KD	Knockdown
кD	NIIUUKUUWII

LB	Lewy body
LCK	Lymphocyte-specific protein tyrosine kinase
LOV	Light–oxygen–voltage sensing
LOXs	Lipoxygenases
LOAS	Lipopolysaccharide
LRC	LTC_4 -regulated Ca ²⁺ channel
LRD	Lipid raft domain
LRD LRRK2	•
	Leucine-rich repeat kinase 2
LTC ₄	Leukotriene C_4
LTCCs	L-type Ca ²⁺ channels
MAM	Mitochondria-associated membrane
MAPK	Mitogen-activated protein kinase
MAPPER	Membrane-attached peripheral ER
MBP	Myelin basic protein
MCP-1	Monocyte chemoattractant protein-1
MCS	Membrane contact site
MCU	Mitochondrial Ca ²⁺ uniporter
MCUP	Mitochondrial Ca^{2+} uniporter complex
MCUR1	Mitochondrial Ca ²⁺ uniporter regulator 1
MEF	Mouse embryonic fibroblast
MEF2	Myocyte enhancer factor 2
MEK	Mitogen-activated protein kinase kinase
MG	Myasthenia gravis
MHC	Major histocompatibility complex
MICU	Mitochondrial calcium uptake
mitoNOS	Mitochondria-specific NO synthase
MLC	Myosin light chain
MLCK	Myosin light chain kinase
MMP	Matrix metalloproteinase
MORN	Membrane occupation and recognition nexus
MPF	M-phase promoting factor
MPTP	1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MRs	Mineralocorticoid receptors
MRF	Myogenic regulatory factor
mRFP	Mitochondrially targeted red fluorescent protein
MS	Multiple sclerosis
MT	Microtubule
Mwk mice	Moonwalker mice
Na ⁺	Sodium
NAADP	Nicotinic acid adenine dinucleotide phosphate
NAD(P)H	
NAD(P)H NAFLD	Nicotinamide adenine dinucleotide phosphate
	Nonalcoholic fatty liver disease
NASH	Nonalcoholic steatohepatitis Na $^{+}/Ca^{2+}-K^{+}$ exchanger
NCKX	
NCX	Na ⁺ /Ca ²⁺ exchanger

NCXmito	Mitochondrial Na ⁺ /Ca ²⁺ exchanger
NPC1	Niemann–Pick type C protein 1
NFATs	Nuclear factor of activated T cells
NF-κB	Nuclear factor kappa-light-chain-enhancer of activated B cells
NIK	NF-KB-inducible kinase
NIR	Near infrared
NKA $\alpha_{2,3}$	Na ⁺ /K ⁺ -ATPase isoforms $\alpha_{2,3}$
NKAu _{2,3} NLS	Nuclear localization sequence
NMR	Nuclear magnetic resonance
nNOS	e e
	Neuronal nitric oxide synthase
NO	Nitric oxide
NOX	NADPH oxidase
NRON	Noncoding RNA repressor of NFAT
NSC	Cortical neural stem cell
O_2^{\bullet}	Superoxide anion
OASF	Orai-activating small fragment
OMM	Outer mitochondrial membrane
ORP	Oxysterol-binding protein-related protein
ox-LDL	oxidized low-density lipoprotein
P2Y receptor	Purinergic G protein-coupled receptor
PA	Phosphatidic acid
PAEC	Porcine aortic endothelial cell
PAH	Pulmonary arterial hypertension
PAMs	Plasma membrane-associated membranes
PAR	Protease-activated receptor
PARP	Poly ADP ribose polymerase
PASMC	Pulmonary artery smooth muscle cell
PC	Polycystin
PD	Parkinson's disease
PDAC	Pancreatic ductal adenocarcinoma cell
PDGF	Platelet-derived growth factor
PDZ	PSD95-disc large-zonula occludens protein
PE	Phenylephrine
PERK	RNA-like ER kinase
Ph	Phagosome
PHR	Photolyase homology region
PhyBs	Phytochromes
PI	Phosphoinositide
PI4P	Phosphatidylinositol-4-phosphate
PIP ₂	Phosphatidylinositol 4,5-bisphosphate
PKA	Protein kinase A
PKB/Akt	Protein kinase B
PKC	Protein kinase C
PKG	Protein kinase G
PLB	Phospholamban

PLC	Phospholipase C
PLN	Phospholamban
PM	Plasma membrane
PMCA	Plasma membrane Ca ²⁺ ATPase
POST	Partner of STIM
PRD	Proline-rich domain
PS	Phosphatidylserine/presenilin
PTP1B	Protein tyrosine phosphatase 1B
RA	Rheumatoid arthritis
RAAS	Renin–angiotensin–aldosterone system
Rab 7	Ras-related protein 7
RasGRP1	Ras guanine nucleotide-releasing protein 1
RBL	Rat basophil leukemia
REG	Regulatory domain
RHD	Rel homology domain
RNAi	RNA interference
ROCs	
ROCE	Receptor-operated channels Receptor-operated Ca ²⁺ entry
ROS	Reactive oxygen species
RR	Ruthenium red
RTKs	Receptor tyrosine kinases
RyR	Ryanodine receptor
S/ER	Sarcoplasmic/endoplasmic reticulum
S/P S1 ^{CT}	Serine/proline rich
	Soluble STIM1
S1P	Sphingosine-1-phosphate
SA node	Sinoatrial node
SACs	Stretch-activated cation channels
SACE	Stretch-activated Ca ²⁺ entry
SAM	Sterile alpha motif
SARAF	SOC-associated regulatory factor
SCA	Spinocerebellar ataxia
SCD	Sudden cardiac death
Scgd ^{-/-} mice	δ-Sarcoglycan deleted mouse model for muscular dystrophy
SCID	Severe combined immune deficiency
SD	Sporadic Alzheimer's disease
SERCA	Sarcoplasmic/endoplasmic reticulum Ca ²⁺ -ATPase
SF	Shape factor
SICE	Store-independent Ca ²⁺ entry
SLP76	SH2 domain-containing leukocyte protein of 76 kDa
SMC	Smooth muscle cell
SMOCE	Second messenger-operated Ca ²⁺ entry
SNAP25	Synaptosome-associated protein 25
SNARE	Soluble <i>N</i> -ethylmaleimide-sensitive factor attachment receptor
sNPF	Short neuropeptide F

	٠	•	•	
YYV/	1	I	I	
~~~	•	•	•	

SOAP	STIM1–Orail association pocket
SOAR	STIM1–Orai-activating region
SOC	Store-operated channel
SOCE	Store-operated Ca ²⁺ entry
SOCIC	Store-operated Ca ²⁺ influx complex
SOD	Superoxide dismutase
SPCA	Secretory pathway Ca ²⁺ -ATPase
SPL	Subplasmalemmal
SR	Sarcoplasmic reticulum
SR/ER	Sarcoplasmic/endoplasmic reticulum
SRR	Serine-rich region
STARD	(StAR)-related lipid transfer domain protein
STIM	Stromal interaction molecule
STIMATE	STIM-activating enhancer
Synta66	N-(2',5'-Dimethoxy[1,1'-biphenyl]-4-yl)-3-fluoro-4-
	pyridinecarboxamide
TAC	Transverse aortic constriction
TAD-C	C-terminal transcription activation domain
TAM	Tubular aggregate myopathy
TBHQ	2,5-Di-(tert-butyl)-1,4-benzohydroquinone
TCR	T-cell receptor
TG	Thapsigargin
TGN	Trans-Golgi network
Th _{eff}	T helper effector cells
TIRF	Total internal reflectance fluorescence
ТМ	Transmembrane
TMD	Transmembrane domain
TPC	Two-pore domain channel
TPEN	N, N, N', N'-Tetrakis(2-pyridylmethyl)ethylenediamine
TRP	Transient receptor potential
TRPCs	Transient receptor potential canonical family of ion channels
TRPL	TRP-like
Trx	Thioredoxin
TTCC	T-type $Ca^{2+}$ channel
t-tubules	Transverse tubules
UCP	Uncoupling protein
UPR	Unfolded protein response
UVRs	Ultraviolet-B receptors
VAP	Vesicle-associated membrane protein-associated protein
VAPA	Vesicle-associated membrane protein-associated protein A
VDAC	Voltage-dependent anion channel
VEC	Vascular endothelial cell
VEGF	Vascular endothelial growth factor
VEGFR	VEGF receptor
VGCCs	Voltage-gated Ca ²⁺ channels
, 0000	, shage guide ou chamiens

VM	Ventricular myocyte
VOCC	Voltage-operated Ca ²⁺ channel
VSMC	Vascular smooth muscle cell
VT	Ventricular tachycardia
WT	Wild type
YFP	Yellow fluorescent protein
YPS	York platelet syndrome
ZAP-70	Z chain-associated protein kinase 70

Part I

# **SOCE: Fundamental Mechanistic Concepts**

#### Introduction

#### James W. Putney

#### Abstract

This second edition volume will present an updated, state-of-the art description and analysis of the rapidly expanding field of store-operated  $Ca^{2+}$  entry (SOCE). And this first part will deal with the most fundamental mechanistic concepts underlying this process. In this brief introduction, I will try to summarize the historical development of the concept of store-operated  $Ca^{2+}$  entry and say a bit about some recent work that speaks to its general function in cell signaling. Much of the material below is taken from the Introduction to the first edition, updated for the second edition.

#### Keywords

Calcium channels • Orai • STIM1 • Oscillations • Store-operated channels • Mouse models

#### 1.1 SOCE: Historical Development of the Concept

Many would attribute the origins of this concept to my 1986 hypothesis paper in *Cell Calcium* (Putney 1986), but in fact no idea is born in a vacuum, and much of the key elements for this concept developed from much earlier findings. One earlier and fundamental concept is that  $Ca^{2+}$  signals can arise in two very general ways: either by influx to the cytoplasm across the plasma membrane or by discharge to the cytoplasm from storage depots within the cell. Although it is now clear that this is a general property of  $Ca^{2+}$  signaling pathways, it was the smooth muscle physiologists who first appreciated it, based largely on the differential sensitivity

3

J.W. Putney (🖂)

The Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences – NIH, Research Triangle Park, NC, USA e-mail: putney@niehs.nih.gov

[©] Springer International Publishing AG 2017

K. Groschner et al. (eds.), *Store-Operated Ca²⁺ Entry (SOCE) Pathways*, Advances in Experimental Medicine and Biology 993, DOI 10.1007/978-3-319-57732-6_1