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Chapter 1
Introduction

The Early Toarcian Oceanic Anoxic Event (T-OAE) was one of the most important
environmental changes of the Mesozoic, resulting in a mass extinction event of
benthic and pelagic groups in marine ecosystems (Hallam 1996; Wignall et al.
2005). Typically, the T-OAE is characterised by the record of organic-rich sedi-
ments associated with a negative excursion in 3'*C (Jenkyns and Clayton 1997;
Cohen et al. 2004; Hesselbo et al. 2007; Suan et al. 2008; Hermoso et al. 2009;
Bodin et al. 2010; Gémez and Arias 2010; Littler et al. 2010; Izumi et al. 2012;
Ait-Itto et al. 2017; among others).

There is no consensus about the genesis of the T-OAE. Proposals include the
massive enrichment of isotopically light carbon and its transfer between the dif-
ferent reservoirs, now interpreted in light of diverse phenomena such as a massive
dissociation of methane hydrates in marine sediments (e.g., Hesselbo et al. 2000,
2007), or the production of thermogenic methane during the concomitant intrusive
eruption in the Karoo-Ferrar province (e.g., McElwain et al. 2005). Several envi-
ronmental changes may have been involved in the mass extinction event, including
generalised anoxia, the enhancement of greenhouse conditions and a warming
trend, and/or the incidence of sea-level changes (e.g., Hallam 1986, 1987; Elmi
1996; Hylton and Hart 2000; McArthur et al. 2000; Bailey et al. 2003; Ruban and
Tyszka 2005; Wignall et al. 2005; Goémez and Goy 2011; Suan et al. 2011).
Although considered as a global phenomenon, the expression of the T-OAE varies
worldwide as revealed, for example, by the diachronous record, the associated
facies, and the distinctive incidence on benthic and nektonic environments between
the Tethyan and Boreal provinces (Wignall et al. 2005).

The South Iberian Palacomargin during the Pliensbachian and Toarcian was a
complex context, where the deposits are actually represented by the Subbetic
outcrops (Betic Cordillera, southern Spain). The Toarcian deposits of the Subbetic
represent a hemipelagic marine setting close to the Hispanic Corridor, a passage
between the Western Tethys and the Proto-Atlantic seaway (Aberhan 2001; Bailey
et al. 2003; Rodriguez-Tovar and Reolid 2013), at an approximate palaeolatitude of
30° N, near the Iberian Meseta (Osete et al. 2011). The fragmentation of the
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2 1 Introduction

palaeomargin during the Late Pliensbachian and the configuration in different tilted
blocks with variable subsidence determined differences in thickness and facies
during the Toarcian. In this context, the record of the T-OAE is not homogeneous in
the palaeomargin and is very different to the typical black shales of the central and
North Europe sections. Nevertheless, data from the Subbetic allow understanding
the evolution of this part of the Western Tethys, being essential for the advance of
the knowledge of the complexity of the global T-OAE. In this book we report the
state of the art for the T-OAE in the Subbetic from the analysis of well studied
reference sections of the Subbetic taking into account the biotic and abiotic signals.
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Chapter 2
The Betic External Zones

The Betic Cordillera is the major geological domain situated to the S and SE of the
Iberian Peninsula. It is bounded by the Iberian Massif and the Iberian Mountain
Range to the N and by the Atlantic Ocean and Mediterranean Sea to the SW, S, and
SE (Fig. 2.1). It belongs, along with other mountain ranges of North Africa, to the
western segment of the Perimediterranean Alpine Orogen. In the Betic Cordillera,
three main geological domains of greater rank are differentiated: the Betic External
Zones, the Betic Internal Zones and the Campo de Gibraltar Complex. The general
knowledge of the geology of the Betic Cordillera has been shown with in previous
works (Sanz de Galdeano 1997; Gibbons and Moreno 2002; Vera 2004) and its
exhaustive analysis is not the objective of this publication. However, we will
present here a synthesis of the External Zones focused in the Subbetic domain.

2.1 The External Zones and the South Iberian
Palaeomargin

The outcropping sedimentary rocks of the Betic External Zones were deposited in
the South Iberian Palaecomargin (Western Tethys) during the Mesozoic and most of
the Cenozoic, and were mainly deformed during the Miocene, between the
Burdigalian and the Late Miocene. Garcia-Hernandez et al. (1980) proposed a first
model of the palacogeographic evolution of this margin during the Mesozoic, and
established a tectonic and palaecogeographic subdivision in geological units that,
with some nuances, is still used nowadays (Vera 2004).
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6 2 The Betic External Zones
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Fig. 2.1 Geological map of the Betic Cordillera

2.1.1 Tectonic Units and Palaeogeographic Domains

In the Betic External Zones units of diverse range have been defined by tectonic and
stratigraphic criteria. These units comprise deposits accumulated in the South
Iberian Palacomargin, in palacogeographic domains individualised throughout the
successive stages of its Mesozoic history. The higher rank division of the Betic
External Zones is into Prebetic and Subbetic. These terms designate areas clearly
differentiated by its regional geographic position as well as by its structural,
stratigraphic or palaeogeographic characteristics. This terminology has been used
with equivalent meaning since its original definition (Blumenthal 1927; Fallot
1945, 1948; Fontboté 1970). From a tectonic point of view, the Prebetic, located to
the north, consists of parauthocthonous or moderately allochthonous sedimentary
rocks, whereas the Subbetic allochthony is beyond doubt and the rocks generally
more deformed than those of the Prebetic. The Subbetic is relatively well-organised
from a structural point of view, but the deformation is locally such intense that large
sections of it, predominantly made up of Triassic terrains, have lost their internal
coherence and have been transformed into disorganised masses called Subbetic
Chaotic Complexes. Part of these chaotic masses was gravitationally slipped and
included in the mid-Miocene sediments of the southern edge of the Guadalquivir
Basin, forming the Guadalquivir Olisthostromic Complex, or Subbetic
Olisthostromic Complex (Pérez-Lopez and Sanz de Galdeano 1994) or Evaporite-
bearing Accretionay Complex (Pérez-Valera et al. 2017).

The subdivision in Prebetic and Subbetic is even more necessary from a
stratigraphic and palaeogeographic point of view. The Prebetic successions mainly
contain shallow marine facies, with important continental episodes, even with



