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Foreword

This monograph is devoted to topical problems of the contemporary theory of wave
propagation and diffraction. It starts from the brief account of mathematical
methods related to studying the problems of wave diffraction theory. Then spectral
methods in the theory of wave propagation are considered in more detail. The
refraction of surface gravity waves is studied with the use of the ray method that
originates from geometrical optics. Various problems pertaining to the diffraction
and scattering of hydrodynamic, acoustic, electromagnetic, and elastic waves by
local inhomogeneities in infinite and semi-infinite domains are considered and their
solutions are provided. Some aspects of the problem of generation and propagation
of tsunami waves are analysed. Finally, the evolution of wave trains in a two-layer
fluid is studied by the method of multiple scales.

We hope that this work would be of interest for the researchers working in the
field of applied and engineering mechanics, mathematical and computational
physics, hydrodynamics, etc. It would also be useful for lecturers and postgraduate
students of relevant specialties.
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Preface

Wave phenomena represent a fairly intriguing area of the contemporary applied
mathematics and physics. Wave processes have numerous applications in hydro-
dynamics, electromagnetism, magnetohydrodynamics, biophysics and biomechan-
ics, acoustics, etc. This monograph is devoted to two distinct aspects of wave
dynamics: wave propagation and diffraction, with the main focus put on the wave
diffraction.

Wave interaction with rough bottom surfaces (topography), offshore drilling
platforms, and wave energy collectors is accompanied by the diffraction of waves.
The diffraction theory lies at the interface between physics and applied mathe-
matics. In the broad sense, wave diffraction means any deviation of the wave
motion from the laws of geometrical optics. From a mathematical point of view, the
purpose of the diffraction theory is to develop analytical and numerical methods for
solving diffraction problems, to classify the corresponding solutions, and to
investigate their properties.

It is possible to distinguish three stages in the development of the diffraction
theory: (i) Fresnel (1818) formulated the Huygens–Fresnel principle that combines
the geometric approach (Huygens 1690) and interference approach (Young 1800);
(ii) Helmholtz (1859) gave a strict formulation of the Huygens principle and
demonstrated that it results in an integral formula (as in the potential theory) that
makes it possible to calculate the value of the field at some point in terms of the
field values (including the field’s normal derivative) on some auxiliary closed
surface enclosing that point; (iii) Poincaré (1892) and Sommerfeld (1896) showed
the diffraction problems to be ordinary boundary-value problems of mathematical
physics. Sommerfeld (1912) also formulated the radiation conditions. Then
Meixner (1948) established the boundary conditions on the edge.

The rigorous diffraction theory distinguishes three approaches: the method of
surface currents, where the diffracted field is represented as a superposition of
secondary spherical waves emitted by each element (the Huygens–Fresnel princi-
ple); Fourier method; method of separation of variables and Wiener–Hopf trans-
formation. In this monograph, we apply various mathematical methods to the
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solution of typical problems in the theory of wave propagation and diffraction and
analyse the results obtained.

Chapter 1 presents some of the methods that are useful for solving the problems
of wave diffraction theory: method of separation of variables, method of power
series, method of spline functions, and method of an auxiliary boundary. We also
consider some algorithms for the numerical inversion of the Laplace transform,
which is often used to solve the wave diffraction problems. Finally, we give a brief
account of the method of multiple scales that is often used to study the propagation
of transient waves.

Chapter 2 deals with spectral methods in the theory of wave propagation. The
main focus is given to the Fourier methods in application to studying the Stokes
(gravity) waves on the surface of an inviscid fluid. A spectral method for calculating
the limiting Stokes wave with a corner at the crest is considered as well. We also
briefly consider the evolution of narrow-band wave trains on the surface of an ideal
finite-depth fluid. Finally, a two-parameter method for describing the nonlinear
evolution of narrow-band wave trains is described by the example of the Klein–
Gordon equation with a cubic nonlinearity. The problem is reduced to a high-order
nonlinear Schrödinger equation for the complex amplitude of wave envelope. This
equation is integrated numerically using a split-step Fourier technique to describe
the evolution of quasi-solitons.

Chapter 3 presents some results of modelling the refraction of surface gravity
waves in terms of the ray method that originates from geometrical optics. Wave
refraction essentially depends on the bed topography. As a result, the convergence
of wave energy (or its divergence) can be observed in some water areas. The ray
method makes possible the discrete or analytical assignment of the bed topography.
This approach can be realised in the form of a computational programme and allows
the distribution of wave fronts, rays, and heights to be constructed and analysed for
the case of the transition of regular waves from deep to shallow waters. The model
is verified by comparing the results with exact analytical solutions and field
observations. The asymptotic analysis of the nonlinear refraction theory extends the
limits of applicability of the traditional theory and provides the prediction of ray
bending at approaching the wave breaking conditions. Moreover, we study the
anomalous refraction in caustics.

Chapter 4 is devoted to the diffraction of surface gravity waves. Main aspects
of the wave diffraction theory are described. Specific aspects and methods used to
solve the problems of the wave diffraction theory are described in brief. Wave
diffraction by a partially submerged elliptical cylinder with elliptical front surface
and by a circular submerged cylinder is considered. Ellipticity is demonstrated to
have strong effect on the wave load and its extremums, depending on the wave
number. Solutions to the problem of wave diffraction by a system of vertical
cylinders are presented and analysed. In this case, the wave force does not attain its
maximum on the front vertical cylinder because of the significant reconstruction
of the diffracted wave fields in multiply connected regions. An exact solution to the
problem of wave diffraction by an asymmetrically nonuniform cylindrical scatterer is
derived in the case when the scatterer parameters depend on the two coordinates—
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radial and angular. The scatterer inhomogeneity is demonstrated to affect the cross
scattering. The method of auxiliary boundary is used to study the diffraction of
waves by a vertical column of arbitrary revolution shape. The extremums of the
wave force and overturning moment applied to a cone column are found as functions
of the wave number. The numerical method of spline collocation is used to study the
problem of diffraction of acoustic waves by an arbitrary body of revolution. The
accuracy of the numerical solution is analysed. The problem of wave scattering by a
truncated cone with smooth spherical ends is considered. The effect of wave inci-
dence angle is studied.

Chapter 5 deals with the approach that is based on the repeated use of the
method of images to solve the problems of stationary acoustic, electromagnetic, and
elastic wave scattering and diffraction by cylindrical and spherical obstacles in a
semi-infinite domain. The solution is written in terms of an infinite series of mul-
tiply diffracted fields. Explicit approximate asymptotic solutions are found and
investigated for the case of distant scattered fields in the longwave approximation.
The known solutions for point obstacles are obtained as special cases described by
the first terms of the series.

Chapter 6 deals with some aspects of the initial-boundary-value problems of the
initiation, generation, and propagation of tsunami waves. The generation of tsunami
waves by bottom movements is considered. We formulate an appropriate
initial-boundary-value problem and analyse the effect of the sharpness of vertical
axisymmetric bottom disturbance and the disturbance duration on the generation of
tsunami waves. The propagation of nonlinear waves on water and their evolution
over a nonrigid elastic bottom are investigated. Some aspects and indeterminacy
of the formulation of the initial-boundary-value problems dealing with the initiation
and generation of tsunami waves are considered. We consider some typical types of
tsunami waves that demonstrate the indeterminacy of their initiation in time because
of the indeterminacy in the physical trigger mechanism of underwater earthquakes.
Based on the three-dimensional formulation, evolution equations describing the
propagation of nonlinear dispersive surface waves on water over a spatially inho-
mogeneous bottom are obtained with allowance for the bottom disturbances in time.
We use the Laplace transform with respect to the time coordinate and the power
series method with respect to the spatial coordinate to find a solution to the non-
stationary problem of the diffraction of surface gravity waves by a radial bottom
inhomogeneity that deviates from its initial position. The propagation and stability
of nonlinear waves in a two-layer fluid with allowance for surface tension are
analysed by the asymptotic method of multiscale expansions.

Some insights on the directions of further development of the wave diffraction
theory are outlined in the conclusion.

Kyiv, Ukraine Igor T. Selezov
Yuriy G. Kryvonos

Ivan S. Gandzha
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Chapter 1
Some Analytical and Numerical Methods
in the Theory of Wave Propagation
and Diffraction

1.1 Method of Separation of Variables

The wave propagation, diffraction, and scattering in continuous media are described
by a system of partial differential equations with relevant initial and matching
conditions [37]. In the case of inhomogeneous media, these equations have variable
coefficients that depend on spatial coordinates. In many cases, such equations can
be reduced to one higher order equation [12]. Following Ref. [18], consider a linear
equation

Lu x, tð Þ=0. ð1:1Þ

Here, x= ðx1, x2, x3Þ is a vector of spatial coordinates, t≡ x4 is the temporal
coordinate, L is a differential operator of order m defined in some domain D of the
three-dimensional Euclidean space ℝ3 and in the range t∈ ½t0, T �:

L= ∑
m

j=0
∑

i1, i2...ij =1
ai1, ..., ij xð Þ ∂

j

∂xi1 . . . ∂xij
. ð1:2Þ

The coefficients ai1, ..., ijðxÞ are assumed to be defined for ðx1, x2, x3Þ∈D,
symmetric with respect to indices i1, i2, . . . , ij, and differentiable in ℝ3 as many
times as needed. For j=0 the operator L in (1.2) is defined as the operator of
multiplication by u.

In what follows, we limit our consideration to a class of such equations of type
(1.1) that admit the separation of variables. This means that the solution can be
looked for as follows

u x1, x2, x3, tð Þ = X1 x1ð ÞX2 x2ð ÞX3 x3ð ÞT tð Þ. ð1:3Þ

© Springer Nature Singapore Pte Ltd. 2018
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Substituting (1.3) into (1.1), we obtain independent ordinary differential equa-
tions for each XkðxkÞ, k = 1, 2, 3, 4:

∑
m

j=0
bkj xkð Þ d j

dx jk
Xk xkð Þ=0. ð1:4Þ

Going over from Eq. (1.1) to (1.3) and (1.4) is possible only under significant
restrictions imposed on the differential operator L and the coefficients ai1, ..., ijðxÞ.
Suppose that the variables can also be separated in the initial and matching
conditions.

The authors of Ref. [65] showed how a linear partial differential equation with
variable coefficients can be reduced to an equation with constant coefficients.
Consider the following second-order partial differential equation:

α xð Þ ∂
2g x, tð Þ
∂x2

+ β xð Þ ∂g x, tð Þ
∂x

+ γ xð Þg x, tð Þ = a
∂g x, tð Þ

∂t
+ b

∂
2g x, tð Þ
∂t2

. ð1:5Þ

It can be reduced to the canonical form

C Xð Þ ∂

∂X
1

C Xð Þ
∂f
∂X

� �
= a

∂f
∂t

+ b
∂
2f
∂t2

ð1:6Þ

by simple transformations:

X =
Z x

α τð Þj j− 1 ̸2dτ and f X, tð Þ= g x, tð Þ
g0 xð Þ , ð1:7Þ

provided that g= g0ðxÞ is a nonzero equilibrium solution to Eq. (1.5) (when
a = b = 0Þ. The function CðXÞ in (1.6) is completely determined by the functions
αðxÞ, βðxÞ, and γðxÞ in (1.5).

Equation (1.5) is rather general and includes the wave equation, heat conduction
equation, Laplace equation, Schrödinger equation, and Fokker–Planck equation as
particular cases. It was shown that for certain functions CðXÞ any solution to
Eq. (1.6) can be expressed in terms of solutions to the equation with constant
coefficients,

∂
2F X, tð Þ
∂X2 = a

∂F X, tð Þ
∂t

+ b
∂
2F X, tð Þ
∂t2

, ð1:8Þ

namely,

f X, tð Þ = ∑
N

n=0
fn Xð Þ ∂

nF X, tð Þ
∂Xn , ð1:9Þ

2 1 Some Analytical and Numerical Methods …



where the functions fnðXÞ ðn = 0, 1, 2, . . . ,NÞ and CðXÞ satisfy a system of
coupled nonlinear ordinary differential equations with constant f0 = f0ðXÞ. The
choice of N in (1.9) is rather broad, so that any given function CðXÞ in (1.6) could
be approximated by a function that satisfies the above system.

Note that solutions to ordinary differential equations of type (1.8) with variable
coefficients cannot be expressed in terms of elementary or special functions in the
general case, in particular in reference to distributed inhomogeneities that are of
great practical interest. Below we consider some methods that allow solutions to
such equations to be constructed.

1.2 Method of Power Series

Consider a localised inhomogeneity that occupies a closed domain Ω⊂ℝ3 in the ℝ3

space. In this case, we deal with a typical problem of wave diffraction by a scatterer
with variable properties. The difficulties of solving such a problem are related to the
consideration of partial differential equations with variable coefficients even in the
case of linear problems. The methods used to solve such problems include
the method of exact analytical solutions that are possible in some cases [55]; the
asymptotic method of Born approximations [7]; the Bremmer series method, in
which the first term represents the WKB approximation [9]; and the method of
power series [56].

The Born approximations (or approximations of weak scattering) can be used in
the case when ðkR δp ̸pÞ≪ 1, where the ratio δp ̸p characterises the magnitude of
the inhomogeneity and kR=2πR ̸λ is the ratio of the inhomogeneity size to the
typical wavelength λ. This approach was particularly developed in Refs. [49, 73].
Two main approximations are usually considered in this regard. The Rayleigh
approximation refers to the case when the inhomogeneity magnitude is not small,
i.e. δp ̸p=Oð1Þ, but the inhomogeneity size is small, kR ≪ 1 . The optical Ray-
leigh–Hans approximation holds true in the case of weak inhomogeneity whose size
cannot be regarded small, δp ̸p≪ 1, kR=Oð1Þ.

The Bremmer series method is discussed in Refs. [24, 68]. In this approach, the
continuous functions characterising the inhomogeneity are approximated by
piecewise constant functions, and the solutions for the reflected and transmitted
waves are written for each particular layer. Then the passage to the limit for an
infinite number of layers is performed with the separation of the first WKB term.

The method of generalised power series is most useful in analysing the structure
of the scattered wave field. Under certain mild constraints on the inhomogeneity
magnitude and size, solutions to the wave scattering problem can be obtained in the
form of convergent power series. Thus, the method of power series can be used in
the case of arbitrary inhomogeneities, in contrast to the Born approximations.

Consider a linear second-order differential equation with variable coefficients for
some function yðxÞ:

1.1 Method of Separation of Variables 3



y′′ + f xð Þy′ + g xð Þy = 0. ð1:10Þ

Suppose that f ðxÞ and gðxÞ can be represented as power series in terms of integer
positive powers of x, so that Eq. (1.10) could be written as

y′′ + ∑
∞

n=0
anxn

� �
y′ + ∑

∞

n=0
bnxn

� �
y = 0. ð1:11Þ

We look for a solution to Eq. (1.11) in the form of power series with unknown
coefficients:

y = ∑
∞

n=0
αnxn. ð1:12Þ

Substituting (1.12) into Eq. (1.11), we get

∑
∞

n=2
n n − 1ð Þαnxn− 2 + ∑

∞

n=0
anxn ∑

∞

n=1
nαnxn− 1 + ∑

∞

n=0
bnxn ∑

∞

n=0
αnxn = 0.

By equating the equations at the like powers of x in the lefthand side of the
above equations to zero, we come to an infinite system of recurrence equations [57]:

x0 2 ⋅ 1α2 + a0α1 + b0α0 = 0,
x1 3 ⋅ 2α3 + 2a0α2 + a1α1 + b0α1 + b1α0 = 0,
x2 4 ⋅ 3α4 + 3a0α3 + 2a1α2 + a2α1 + b0α2 + b1α1 + b2α0 = 0,
⋮ ⋮
xn n+2ð Þ n+1ð Þαn+2 +Qn α0, α1, . . . , αn+1ð Þ=0,
⋮ ⋮

ð1:13Þ

Here, Qnðα0, α1, . . . , αn+1Þ is a homogeneous first-degree polynomial in
variables α0, α1, . . . , αn+1 α0ð and α1 being arbitrary constants).

The recurrence equations of system (1.13) can be used to determine consecu-
tively all the coefficients α2, α3, . . . , αn, . . . , but the questions dealing with the
convergence of the obtained series and the existence of solution remain to be open.
The following theorem holds true [57]:

Theorem If the series

f xð Þ = ∑
∞

n=0
anxn, g xð Þ = ∑

∞

n=0
bnxn

are convergent for |x| < R, then the power series constructed in the way described
above is convergent for the same x and is a solution to Eq. (1.11).

In particular, if f(x) and g(x) are the polynomials in x, then the obtained power
series is convergent at any x.
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Consider a linear second-order differential equation,

P0 xð Þy′′ + P1 xð Þy′ + P2 xð Þy = 0, ð1:14Þ

that can be reduced to Eq. (1.10) after the division by P0ðxÞ (when P0ðxÞ ≠ 0 in
some interval ½0, h�Þ with

f xð Þ = P1 xð Þ
P0 xð Þ , g xð Þ = P2 xð Þ

P0 xð Þ .

Then a solution to Eq. (1.14) can also be sought in the power series form. In this
case, it is easier to substitute expression (1.12) directly into Eq. (1.14) and equate
the unknown coefficients at the same powers of x to zero without reducing
Eq. (1.14) to form (1.10).

When the coefficients in the equations of form (1.14) have poles, the use of
power series approach is regulated by the Fuchs theorem [63]:

Theorem If differential equation (1.10) is such that f(x) and g(x) have poles at
x = x0, then its solution can be found in the form of convergent generalised power
series

y xð Þ = x − x0ð Þν ∑
∞

n=0
αn x − x0ð Þn,

provided that the products (x – x0)f(x) and (x – x0)g(x) remain to be finite at x = x0.
In this case, the pole x0 can be translated to the point x = 0 by the change of

variable and the following equation satisfying the Fuchs theorem can be obtained:

x2y′′ + f xð Þxy′ + g xð Þy = 0, y = y xð Þ. ð1:15Þ

This equation can be solved by the method of generalised Frobenius power
series [63] when f(x) and g(x) are holomorphic functions at x < R (R being the
convergence radius) and x = 0 is a regular singular point. In the latter case, the
functions f(x) and g(x) can be expressed in the power series form in terms of integer
positive powers of x or be given by polynomials. Then Eq. (1.15) can be written as

x2y′′ + ∑
∞

n=0
anxn

� �
xy′ + ∑

∞

n=0
bnxn

� �
y = 0, ð1:16Þ

and the solution to Eq. (1.16) is written in the form of convergent power series:

y = xν ∑
∞

n=0
αnxn, α0 = 1. ð1:17Þ
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Hence, the problem reduces to the determination of parameter ν and coefficients αν
from the original equation and the recurrence relations for αν. The corresponding
fundamental system of solutions is

w1 = xν1φ1, w2 = xν2φ2,

where the first coefficient α0 can be regarded to be nonzero in view of the inde-
terminacy of the exponent ν of the multiplier xν.

Substituting series (1.17) into Eq. (1.16) and equating the coefficients at each
power of x to zero, we get an infinite system of coupled algebraic equations for the
exponent ν and coefficients αn:

xν− 2 α0D νð Þ= α0 + ν ν− 1ð Þ+ a0ν+ b0½ �=0,
xν− 1 α1D ν+1ð Þ+ α0 νa1 + b1ð Þ=0,
xν α2D ν+2ð Þ+ α1 ν+1ð Þa1 + b1½ �+ α0 νa2 + b2ð Þ=0,

⋮ ⋮
xν+ n− 2 αnD ν+ nð Þ+ αn− 1 ν+ n− 1ð Þa1 + b1½ �+⋯+ α0 νan + bnð Þ=0,

⋮ ⋮

ð1:18Þ

The first equation of this system is called a governing equation. Let ν1 and ν2 be
its roots. Suppose that they are different and their difference is a noninteger number.
In this case, two sets of the coefficients αn corresponding to each root of the
governing equation can be found consecutively. Hence, we get two generalised
power series of form (1.17) that represent linearly independent solutions to
Eq. (1.16). These solutions converge inside of a circle reaching the nearest special
point of the equation apart from the point x = 0. The coefficient α0, which is present
as a multiplier in all the terms of the series, remains to be arbitrary, i.e. each
solution is determined to within a constant multiplier. The general solution to
Eq. (1.16) is written as the linear combination of these two solutions.

When the governing equation has a double root, there exists only one solution of
type (1.17). The second linearly independent solution can be determined as follows.
Let y1ðxÞ be a solution to Eq. (1.10). Then the Liouville formula [63]

y2 xð Þ = y1 xð Þ B + A
Z

dx

y21 xð Þe
R

f xð Þdx

0
@

1
A

implies that there exists a solution that is linearly independent of the solution of
type (1.17)

y1

Z
e−

R
f xð Þdx

y21
dx. ð1:19Þ
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Finally, consider the case when the roots of the governing equation differ from
one another by an integer, i.e. ν2 = ν1 + n (n being a positive integer). The
coefficients of the series corresponding to the root ν2 can be all calculated, since the
polynomials Dðν2 + 1Þ, Dðν2 + 2Þ, . . . take nonzero values. The coefficients of
the series corresponding to the root ν1 can be calculated only up to order (n – 1)
because the coefficient at αn in the equation

αnD ν1 + nð Þ + αn− 1 a1 n + ν1 − 1ð Þ + b1½ � +⋯+ α0 anν1 + bnð Þ = 0

for αn is equal to zero. This equation can be reduced to the equality

αn− 1 a1 n + ν1 − 1ð Þ + b1½ � +⋯+ α0 anν1 + bnð Þ = 0. ð1:20Þ

If this equality holds, the coefficients αn+1, αn+2, . . . can be expressed in terms
of the coefficient αn, which remains to be undetermined. This implies that the
solution corresponding to ν1 contains two arbitrary parameters: the coefficient α0
that is a common factor in the solution and the coefficient αn that determines the
higher coefficients αn+1, αn+2, . . .ð Þ of the series. If equality (1.20) does not hold,
the second solution can be found using formula (1.19), namely,

y2 = y1 ln x + xν2 ∑
∞

n=0
βnx

n. ð1:21Þ

The coefficients βn can be found by substituting expression (1.21) into Eq. (1.16)
and equating the coefficients at the like powers of x.

In particular, the method of power series was used to solve the problems of wave
diffraction by radially inhomogeneous obstacles [56].

1.3 Method of Spline Functions

Solving the problems of wave diffraction by obstacles of complex shape is related
to the approximation of functions. One of the most efficient approaches in this
regard is the surface interpolation with piecewise polynomials, which is used
instead of constructing the high-order interpolation polynomials. Third-order (cu-
bic) polynomial interpolation splines S3ðxÞ are most widely used in practical
applications.

Spline approximation methods are closely related to solving partial differential
equations numerically by the finite-difference method with the use of the Ritz
method with specially selected basis functions. An account of using this method to
the investigation of wave diffraction is given in Sect. 4.7 and Ref. [36]. Here, we
briefly outline the basic concepts of spline function theory [75].

Consider some partition Δ: a = x0 < x1 <⋯< xk = b of the interval ½a, b�. Let
Ck = Ck½a, b� be a set of k times continuously differentiable functions on ½a, b�

1.2 Method of Power Series 7



(k being an integer), and C − 1ða, bÞ be a set of piecewise-continuous functions with
points of discontinuity of the first kind.

The function Sn, νðxÞ is called an n-order spline of defect ν (ν is an integer such
that 0 ≤ ν ≤ n + 1Þ with nodes on the mesh Δ if

(i) the function Sn, νðxÞ is a polynomial of order n on each interval ½xi, xi+1�, i.e.

Sn, ν xð Þ = ∑
n

α=0
aiα x − xið Þα for x ∈ xi, xi+1½ �, i = 0, . . . ,N − 1; ð1:22Þ

(ii) Sn, ν xð Þ ∈ Cn− ν a, b½ �.
The spline definition is valid on the whole real axis if we set a = −∞, b = +∞.

Besides formula (1.22), the following representation is possible for the spline on each
interval ½xi, xi+1�:

Sn, ν xð Þ = ∑
n

α=0
biα x − xi+1ð Þα, i = 0, . . . ,N − 1.

For cubic splines of class C2, which have been used most frequently, we can
introduce an interpolation spline function that is continuous together with its
derivative on each of the intervals ½xi, xi+1�.

Consider the spline collocation method by the example of an ordinary differ-
ential equation that can be obtained after the separation of variables in the wave
diffraction problems described by partial differential equations [36]. We look for a
solution to the equation [75]

L y xð Þ½ � ≡ y′′ xð Þ + p xð Þy′ xð Þ + q xð Þy xð Þ = r xð Þ, x ∈ a, b½ �, ð1:23Þ

that satisfies the following boundary conditions:

α1y að Þ + β1y′ að Þ = γ1, α2y bð Þ + β2y′ bð Þ = γ2. ð1:24Þ

We assume that the two-point boundary problem (1.23), (1.24) has a unique
solution yðxÞ. The requirements in regard to the smoothness of yðxÞ and constraints
imposed on the given coefficients pðxÞ, qðxÞ, rðxÞ; αi, βi, γi, i = 1, 2 should be
stipulated in each particular case.

We introduce the partition Δ: a = x0 < x1 <⋯< xN = b on ½a, b� and look for
an approximate solution to problem (1.22), (1.23) in the form of a cubic spline SðxÞ
of class C2 with nodes on the mesh Δ. The spline SðxÞ is required to satisfy
Eq. (1.23) in the points ξk ∈ ½a, b�, k = 0, . . . , N (collocation conditions) and
boundary conditions (1.24):
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L S ξkð Þ½ � ≡ S′′ ξkð Þ + p ξkð ÞS′ ξkð Þ + q ξkð ÞS ξkð Þ = r ξkð Þ, k = 0, . . . , N, ð1:25Þ

α1S að Þ + β1S′ að Þ = γ1, α2S bð Þ + β2S′ bð Þ = γ2. ð1:26Þ

Relations (1.25), (1.26) represent the set of algebraic equations for the spline
parameters. The points ξk are called the collocations nodes, and their number is
determined by the dimension of the space formed by splines of class C2. This
dimension is equal to N + 3. Since SðxÞ satisfies two boundary conditions (1.26),
the number of collocation nodes should be equal to N + 1. Note that the positions
of collocation nodes on the interval ½a, b� cannot be arbitrary.

1.4 Method of an Auxiliary Boundary

The idea behind this method is that a scatterer of an arbitrary convex shape is
enclosed by an auxiliary canonical surface—cylindrical in the two-dimensional case
or spherical in the three-dimensional case [47]. Then the external problem is solved
exactly, and the problem in the interior domain between the scatterer and the
canonical surface is solved numerically. The corresponding matching conditions
need to be satisfied on the scatterer’s boundary.

Suppose that we need to determine the field uðx, tÞ scattered by a local inho-
mogeneity of an arbitrary (noncanonical) shape in the infinite exterior domain
(Fig. 1.1). Let us enclose the inhomogeneity by an auxiliary surface B and employ a
numerical method in the domain Ω between B and the surface S of the inhomo-
geneity. For the problem in Ω to be correctly defined, u has to satisfy the boundary
conditions on the surface B that needs to be nonreflective. Such formulations, which
involve the nonreflective boundary conditions on the auxiliary boundary, were
considered, in particular, for elastic and electromagnetic waves in Refs. [26, 29–32]
and for acoustic waves in Ref. [20]. The method of an auxiliary boundary was also
used in the problem of scattering of electromagnetic waves by an obstacle of
arbitrary shape [33] and in the problem of diffraction of surface gravity waves [47].
The diffraction of surface gravity waves by inhomogeneities was studied in Ref.

Fig. 1.1 An obstacle
enclosed by an auxiliary
boundary B (cylindrical or
spherical)
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[64] in the framework of an approximate model involving a canonical auxiliary
surface. The auxiliary boundary approach was also used in studying the scattering
of flexural waves by cavities in Ref. [44].

Noteworthy also are two other numerical methods that were developed in the
theory of wave diffraction by obstacles of complex shape. The first one is based on
the integral equation approach and was mainly used in the problems with a single
obstacle [6]. The second method involves the so-called T-matrices (scattering
matrices) [8]. The T-matrix method was proposed in Ref. [70]. In this approach, the
field scattered by an inhomogeneity is sought in the form of expansion in terms of
cylindrical (in 2D) or spherical (in 3D) functions. The matching conditions for the
incident and scattered fields on the boundary result in infinite sets of equations that
are represented in the form of T-matrices [60]. The T-matrix allows both the
scattered and internal fields to be defined at an arbitrary point for a scatterer of
arbitrary convex shape, size, and properties [71]. However, the more the scatterer
shape deviates from the canonical one (cylindrical or spherical), the more terms in
the expansions must be retained in order to obtain a solution with desired accuracy.

1.5 Some Algorithms for the Numerical Inversion
of the Laplace Transform

The numerical inversion of the Laplace transform has been thoroughly studied, in
particular, in Refs. [10, 13, 17, 19, 25, 45, 66, 74]. Some asymptotical methods
were also discussed in Refs. [4, 5, 58]. The numerical inversion with the use of
Laguerre polynomials was considered in Refs. [1, 22, 23, 72], and Ref. [39] deals
with Jacobi polynomials. Refs. [3, 11, 14, 16, 21, 27, 28, 40, 41, 61, 67, 69] deal
with the implementation of the numerical inversion of the Laplace transform in the
problems of mechanics and physics.

Here, we analyse several algorithms for the numerical inversion of the Laplace
transform and compare the results with reference originals and some exact solu-
tions. It is shown that there is an optimal number of the expansion terms, i.e. the
number of terms in the convergent series that can be taken into account is limited by
the number of significant digits available in a particular numerical realisation. We
also demonstrate that the accuracy of all the algorithms decreases for larger times.
These two conclusions are the consequence of the fact that the inversion of the
Laplace transform is an ill-posed problem [35, 38, 50].

The Laplace transform of function f (t) is defined by the following operator for a
complex parameter p = σ + iτ [27]:

F pð Þ =
Z∞

0

f tð Þe− ptdt, ð1:27Þ
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provided that FðpÞ is a uniformly convergent analytical function in the domain
Re p > σc and FðpÞ → 0 with respect to Arg p at p → ∞. If (1.27) is absolutely
convergent for all Re p > σc, then there exists the operator of the inverse transform,

f tð Þ= 1
2πi

Zσc + i∞

σc − i∞

F pð Þeptdp. ð1:28Þ

The inverse problem consists in finding a solution f ðtÞ to the integral equation of
the first kind (1.27), with FðpÞ being a given function of complex variable p. Since
the kernel exp(−pt) is a smooth function of t and p, averaging of f with weight
function exp(−pt) can considerably smooth out the singularities of f(t). Therefore, to
recover all the local irregularities of f(t), one needs to use methods that are sensitive
to minor peculiarities of FðpÞ.

Since f(t) is unstable with respect to small variations of FðpÞ, the inversion
problem is ill-posed: its solutions do not exist for some values of numerical or
functional parameters, and small variations of these parameters can lead to large
variations of the solution [59, 62]. This is the main reason why all the known
inversion algorithms are limited. In order to keep the inversion accuracy high
enough, one has to retain as many terms in the expansions as possible. However,
this requires that the expansion coefficients be calculated with higher accuracy,
which is usually limited by the available computational resources. For nonanalytic
and discontinuous functions, the largest errors are expected to accumulate in the
vicinity of points of discontinuity. Respectively, the numerical inversion results in a
nonphysical peak at small t. On the other hand, asymptotic expansions should be
involved at large t.

1.5.1 Shifted Legendre Polynomials

The change of variable e− t = ζ transforms the interval ð0, ∞Þ of variable t into the
interval ð0, 1Þ of variable ζ, and transform (1.27) takes the form

FðpÞ =
Z1

0

f ðζÞζp− 1dζ, ð1:29Þ

where f(ζ) is expressed as a convergent series in terms of polynomials that are
orthogonal on the segment ½0, 1�. The orthogonal polynomials can be chosen in the
form of the so-called shifted Legendre polynomials P*

n ζð Þ [38]:

1.5 Some Algorithms for the Numerical Inversion of the Laplace Transform 11



f ζð Þ = ∑
∞

n=0
2n + 1ð ÞanP*

n ζð Þ, an = ∑
n

k=0
α nð Þ
k F k + 1ð Þ, ð1:30Þ

where,

P*
n ζð Þ = − 1ð Þn ∑

n

k=0
α nð Þ
k ζk , α nð Þ

k = − 1ð Þk n
k

� �
n + kð Þ!
n!k!

.

The coefficients an are calculated at a finite number k of points evenly spaced
along the real axis of the complex parameter p.

Figures 1.2 and 1.3 demonstrate some results of our calculations performed with
5, 6, and 10 terms taken into account in series (1.30) (the authors are grateful to Dr.
V.A. Tkachenko for his assistance in producing these plots). Ten terms proved to be
optimal for the approximation with nine significant digits. In all the cases, the
accuracy of calculations increases with n.

This algorithm was used to solve a number of problems in the theory of wave
propagation and diffraction, including the initial-boundary-value problems for a
hydraulic shock [53], pulse impact on an open spherical elastic shell [54], tsunami
wave generation [48], etc.

Fig. 1.2 Results of the numerical inversion in terms of shifted Legendre polynomials for

a linearly increasing function f tð Þ = t ̸ a, 0 < t ≤ a,
1, t > a,

�
FðpÞ = 1 − expð− apÞ

ap2 that reduces to a

constant, b Heaviside step function f tð Þ = Hðt − aÞ, FðpÞ = expð− apÞ
p
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1.5.2 Fourier Sine Series

We introduce the variable θ instead of time t as

cos θ= e− σt, p= 2n+1ð Þσ, σ>0, n=0, 1, . . .

and write the function f(t) in (1.27) in the form of the sine series [15, 43]:

f tð Þ = f −
1
σ

ln cos θð Þ
� �

= Φ θð Þ = ∑
∞

ν=0
Cν sin 2ν + 1ð Þθ. ð1:31Þ

Then we obtain a set of linear equations for the coefficients Cν:

C0 =
4
π
σF σð Þ, C0 +C1 =

42

π
σF 3σð Þ, 2C0 + 3C1 +C2 =

43

π
σF 5σð Þ, . . . .

Note that the realisation of this algorithm essentially depends on the value of
parameter σ and selecting it in the optimal way involves supplementary numerical
calculations. Some results of our test calculations are shown in Fig. 1.4.

This algorithm was used to analyse the propagation of acoustic waves in a
compressible fluid under the surface wave excitation by bottom movements [2].
The corresponding initial-boundary-value problem is formulated as follows

Fig. 1.3 Results of the numerical inversion in terms of shifted Legendre polynomials for
a linearly increasing and then exponentially decreasing function

f tð Þ = t ̸ a, 0 < t ≤ a,
exp − bðt − aÞð Þ, t > a,

�
FðpÞ = 1 − expð− apÞ

ap2 + expð− apÞ
p + b − expð− apÞ

p ,

b f tð Þ = exp − bðt − aÞð ÞHðt − aÞ, FðpÞ = expð− apÞ
p − b
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