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Foreword

Quantum physics is certainly one of the most astonishing intellectual constructions
ever achieved. Its Rosetta stone consisted in some unexplained regularities in the
fluorescence light of simple elements, such as hydrogen or helium atoms. The next
building block was the radiation emitted by an oven in thermal equilibrium, the
famous blackbody problem. From these mere facts and some strokes of genius,
quantum theory was built. Quite rapidly the intuition of the founding fathers
became a well-established theory, still full of surprises and paradoxical conclusions,
but entirely consistent and with an unprecedented range of validity. Quantum
theory applies to microscopic objects like nuclei, atoms, molecules, as well as to
macroscopic systems such as superconductors and superfluids, and even astro-
physical objects. Quantum physics is simultaneously a framework where uncer-
tainty is included at the core of the theory, and a method of calculation that agrees
with experimental facts with an outstanding precision, at the level of 10−12 for some
observables, like the gyromagnetic ratio of the electron.

The present book explains how to use the quantum formalism in order to address
the dynamics of molecular systems, and it provides a nice illustration of the
diversity of the quantum world. I had the chance to have one of its four authors,
Fabien Gatti, in my quantum mechanics class about twenty years ago, and it is a
real pleasure to see how some simple ideas that we had been discussing at that time
have flourished in such a fruitful manner. The book is organized in a remarkably
progressive way, starting with simple systems like the hydrogen molecule, and then
moving towards notably more complex molecular edifices. This smooth progres-
sion is quite valuable for readers with a physics background like me, who were
taught by A. Schawlow, 1981 physics Nobel Prize winner, that “a diatomic
molecule is a molecule with one atom too many”! This statement illustrates the fear
that potential readers could have had in front of the subject if they were not properly
guided. To tell the whole truth, Schawlow himself knew a lot about
“non-monoatomic molecules” and he performed outstanding experiments in
molecular spectroscopy.
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When reading through “Application of Quantum Dynamics in Chemistry”, one
realizes the wealth of phenomena that can occur in the dynamics of two- or
several-atom molecules. With well-conceived lab sessions, the authors guide the
reader through key molecular processes such as photo-dissociation, simple chem-
ical reactions and coherent control. The key notion is the concept of molecular
wave-packets, created and probed using ultra-short pulses of light. This is at the
basis of the rapidly developing field of femto-chemistry initiated by the late Ahmed
Zewail, 1999 chemistry Nobel Prize winner, whose major discoveries were
acknowledged in both the chemistry and the physics communities. With femto-
chemistry it is now possible to manipulate chemical reactions, using proper light
pulses that influence the breaking of particular molecular bonds.

An appealing aspect of this book is that it will ring many bells in the mind of
physicists, in addition of course to the chemistry community towards which it is
targeted at first. Fundamental notions like quantum coherence revealed by inter-
ferences between various quantum paths, atomic or molecular states dressed with
laser light, are very dear to a physicist’s heart. These physicists will thus find in
many instances a renewed playground for such notions, which illustrates once more
the universality of quantum concepts. For instance, the authors discuss the Berry
phase accumulated when travelling along a path around in a conical intersection;
the essence of this phenomenon is very similar to what is found for the properties of
graphene in condensed matter physics, or in quantum gas physics, when atoms
move in an optical lattice with Dirac points in the Brillouin zone. In a different, but
related perspective, the Multi-Configuration Time-Dependent Hartree (MCTDH)
package that is intensively exploited here to address the dynamics of molecular
edifices can be used to approach other problems emerging in quantum many-body
physics. This is notably the case for the non-linear Schrödinger equation that
governs the evolution of light beams in non-linear materials, or of interacting Bose–
Einstein condensates, two research domains that have been also very active
worldwide over the last two decades.

Overall I am convinced that F. Gatti, B. Lasorne, H.-D. Meyer and A. Nauts
have produced a very useful text, with a clear orientation towards solving practical
problems. All the necessary background is presented in a pedagogical manner, with
numerous illustrations. Molecular spectra now replace the hydrogen fluorescence
lines deciphered by the founding fathers, but the desire to understand complex
phenomena from simple microscopic modeling is still present. I am convinced that
the material developed in the book will constitute a perfect guide for the reader who
wishes to start a fruitful journey in the rapidly developing field of Quantum
Molecular Dynamics.

Paris, France
November 2016

Jean Dalibard
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The original version of the book was revised:
Second affiliation for book author has been
included. The erratum to the book is
available at https://doi.org/10.1007/978-3-
319-53923-2_14
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Chapter 1
Introduction

The main goal of this book is to illustrate how the concept of a wavepacket becomes
central in quantum mechanics when turning to concrete applications, for instance
in molecular physics and chemistry. In other words, the Schrödinger equation in its
time-dependent form provides the central framework here. This book is not a text-
book: the foundations of quantum mechanics have been detailed in many seminal
references (see for instance [1, 2]). More recently, D. Tannor has given a compre-
hensive description of the time-dependent perspective in quantum mechanics [3].

Here, our approach is different and complementary. Indeed, the most original
aspect of the present book is to propose lab-sessions using the Heidelberg Multi-
ConfigurationTime-DependentHartree (MCTDH)package. The latter is freely avail-
able and can be easily installed. MCTDH can be seen as an algorithm to solve
the time-dependent Schrödinger equation (i.e. to propagate wavepackets) for mul-
tidimensional dynamical systems consisting of distinguishable particles [4–9]. The
present book and the lab-sessions have two levels: one more dedicated to Master’s
students, typically for advanced courses on quantum mechanics for physicists or
on theoretical chemistry for chemists. The teachers and the students can then use
MCTDH as a black box to visualize the time evolution of quantum systems and
observe pure quantum effects, on which special emphasis will be placed. At a higher
level, the book may come in useful for thematic schools for Ph.D. students and
postdocs in different fields of quantum physics or computational chemistry. Here,
we offer the possibility to have a look at the input files, the users can even change
themselves the characteristics of the wavepackets they propagate. The lab-sessions
should also be helpful for any scientist who wishes to learn how to use the MCTDH
package.

The processes presented as illustrations correspond to realistic situations involv-
ing several degrees of freedom. Most of the examples have been chosen so that the
students can compare their results with data that have been measured experimen-
tally (photoabsorption spectra, cross sections, etc.). The systems studied in this book
are all molecular systems, i.e. we apply quantum physics (more precisely quantum

© Springer International Publishing AG 2017
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2 1 Introduction

dynamics) to chemistry. However, the concepts developed in the present book can be
easily transferred to applications in physics and even in biology. Generally speaking,
quantum dynamics is a very diverse field ranging from entangled photons to biolog-
ically relevant response to laser light, cold atoms and molecules, etc. In this context
it is worth noting that MCTDH has been extended to treat the dynamics of fermions
(MCTDHF) or bosons (MCTDHB) and is commonly used to study Bose-Einstein
condensates [10–13] and the dynamics of electrons in solid-state physics, atomic
physics or in the context of attophysics [14–20].

The authors of the present book are all researchers in the field of “molecular
quantum dynamics”, an emerging field at the border between quantum physics and
chemistry. We do not intend to give a general introduction to this field here and we
refer the readers to a previous book edited in 2014 in the series “physical chemistry in
action” by Springer [21]. We just remind that, from the point of view of a physicist, a
molecule can be viewed as a quantum-mechanical aggregate composed of electrons
and nuclei. However, chemistry is rarely taught within a full quantum-mechanical
perspective. In particular, an elementary chemical process is generally not described
as the evolution of a quantum system. However, very early within the advent of
quantum mechanics, it became clear that the wave aspects of electrons could not be
neglected as well as the quantization of the electronic states. This led to the field
known as quantum chemistry with the concepts of molecular orbitals and potential
energy surfaces. On the other hand, the motion of the nuclei, which is crucial in
chemistry since there is no chemical process if the nuclei in molecules do not change
their relative arrangement (the reaction coordinate describes a collective motion of
the nuclei), is often conceived classically.

However, there is growing evidence that a significant number of chemical reactions
are impacted by strong quantum-mechanical effects involving both the electrons and
the nuclei. Let us simply consider two examples. Chemical reaction rates, when light
particles such as protons, hydrogen atoms, and hydride ions are exchanged, can be
greatly enhanced by quantum tunnelling, namely by the fact that particles can tunnel
through a barrier that they classically cannot surmount [22–25]. Another quantum
effect is the involvement of quantum resonances in reactivity. Resonant states are
metastable states, the nuclei being temporarily trapped during a reactive collision.
The presence of resonances can change a chemical reaction decisively, in particular
at low temperatures [26–28].

Perhaps even more important is the fact that such quantum effects can be used
to create a radically new chemistry at a higher level of efficiency and selectivity.
For instance, lasers are sources of coherent light. After absorption of the latter by a
molecular system, a coherent superposition of quantum eigenstates can be produced,
i.e., a molecular wavepacket. Indeed, we know that, in quantum mechanics, a sys-
tem can be in a coherent superposition of different quantum states. The different
components of the quantum superposition can interfere, yielding new properties that
can be measured and that have no classical counterpart. The exact definitions of a
wavepacket and quantum coherence will be given in Chap.2. We just mention here
that experimentalists can now produce vibrational wavepackets in a systematic way.
In addition, time-resolved pump-probe laser techniques allow them to study chemi-

http://dx.doi.org/10.1007/978-3-319-53923-2_2
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cal processes on the femtosecond time scale (10−15 s), i.e., on the scale of a typical
period of molecular vibrations [29–31]. This was at the origin of the development of
femtochemistry that earned Ahmed Zewail the 1999 Nobel Prize in Chemistry. This
technique allows one to follow the motion of the nuclei in real time: when chemical
bonds break, form, or change geometrically. Moreover, the quantum coherence itself
can be exploited to change and guide the reactivity [32, 33]. The quantum coherence
can be preserved during a time that is sufficient to drastically modify the reactivity
of complex systems even when they are embedded in an environment (in general,
since a system is never isolated, it interacts with its environment that dissipates quan-
tum coherence). In particular, recent experiments provided observation of long-lived
electronic quantum coherence, after excitation by laser pulses, for energy transfer
processes in light-harvesting complexes of biological systems such as photosynthetic
systems at ambient temperature and in the condensed phase [34].

Since the advent of femtochemistry, remarkable and decisive progress has been
achieved on the experimental front with the possibility to align molecules with lasers
[35, 36] and study electron motion using tools from the new field of attophysics [37–
40]. In other words, it is now feasible to create rotational, vibrational, and electronic
wavepackets and to control all the different aspects of a chemical elementary act. In
particular, we are close to what some already call the field of attochemistrywhere, at
each step of a molecular process, the coupled motion of electrons and nuclei could
be controlled on its natural time scale [41]. This will clearly lead, on the long term, to
a major breakthrough: a new chemistry working at an elementary microscopic level
and based on the systematic use of quantum phenomena. It is thus not surprising that
molecular quantum dynamics and the description of molecular systems in terms of
wavepackets has become an enormously active field of research.

As we will show in the present book, for a theoretician, a wavepacket has a
broader significance than a quantum state created in a molecule after absorption of
the light produced by a laser. Most of the wavepackets that we will encounter in
the different chapters can be considered as “artificial” wavepackets, in the sense that
their utility is often independent of whether these wavepackets can be created or not
experimentally. From their mathematical properties, wavepackets can be exploited
to obtain indirectly observable data including all the quantum effects involved in the
process. We will see, for instance in the applications and in the corresponding lab-
sessions, that the propagation of wavepackets can provide access to photoabsorption
spectra of molecules or to cross sections of collisions.

The book is divided into two parts: Part I, Concepts andMethods; Part II, Applica-
tions. Some parts of the book are labelled as advanced topics, indicated by a asterisk
in the table of contents. They can be skipped for teaching at theMaster’s level. In Part
I, Chap.2 is a very brief reminder of themain concepts of quantummechanics that are
essential to the understanding of the book: eigenstate, wavepacket, coherent super-
position, quantum decoherence, etc. Chapter 3 presents the molecular Hamiltonian
operator along with the Born-Oppenheimer separation, i.e. the separation of the elec-
tronic and nuclear motions. The cases where the Born-Oppenheimer approximation
fails are described in detail by the introduction of the diabatic representation and of
conical intersections. Chapter 6 is dedicated to the derivation of the nuclear kinetic

http://dx.doi.org/10.1007/978-3-319-53923-2_2
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energy operator in any set of coordinates and we provide examples of operators for
several molecular systems. In Chap.5, we address the major issue of the choice of
the set of nuclear coordinates used to describe molecular processes. Again several
examples are given. The last chapter of Part I (Chap. 8) contains a rather thorough
description of the numerical methods used to solve the Schrödinger equation for the
nuclei. Special emphasis is placed on the MCTDH algorithm.

Part II focuses on illustrations of the theoretical background described in the first
Part. At the end of each chapter, we propose a lab-session using theMCTDHpackage
that allows one to visualize the evolution of wavepackets for realistic systems. The
input files and a version of the code are provided as supporting material. As they
are conceived, the lab-sessions are rather adapted to Ph.D. students and postdocs.
However, teachers can easily simplify the lab-sessions (by removing some parts of
the text) so that Master’s students can use MCTDH as a “black box”. It is worth
noting that Sect. 9.6 explains how to install the code.

For each chapter of application, there is a preliminary part explaining the physical
context with several figures.We have tried to present a wide variety of processes from
infrared spectroscopy (Chap. 9) to photodissociation processes (Chap. 10); from non-
adiabatic (or non-Born-Oppenheimer) couplings (Chap.12) to reactive collisions
(Chap. 11). To recall that wavepackets are not only “artificial” tools for theoreticians,
and that they can also be produced and measured in experiments, we conclude the
book with applications in the field of coherent control by laser pulses (Chap.13).
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25. Giese K, Petković M, Naundorf H, Kühn O (2006) Multidimensional quantum dynamics and
infrared spectroscopy of hydrogen bonds. Phys Rep 430:211

26. QiuM, Ren Z, Che L, Dai D, Harich SA,WangX,YangX,XuC,XieD, GustafssonM, Skoedje
RT, Sun Z, Zhang D-H (2006) Observation of Feshbach resonances in the F + H2 → HF + H
reaction. Science 311:1440

27. Althorpe SC (2010) Setting the trap for reactive resonances. Science 327:1460
28. Dong W, Xiao C, Wang T, Dai D, Yang X, Zhang DH (2010) Transition-state spectroscopy of

partial wave resonances in the F+HD. Science 327:1501
29. Chergui M (ed) (1996) Femtochemistry. World Scientific, Singapore
30. ZewailAH (1994)Femtochemistry—ultrafast dynamics of the chemical bond.WorldScientific,

Singapore
31. Ihee H, Lobastov V, Gomez U, Goodson B, Srinivasan R, Ruan C-Y, Zewail AH (2001) Direct

imaging of transient molecular structures with ultrafast diffraction. Science 291:385
32. Shapiro M, Brumer P (2003) Principles of the quantum control of molecular processes. Wiley,

New York
33. Fleming GR, Ratner MA (2008) Grand challenges in basic energy sciences. Phys Today 61:28
34. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T, Cheng Y-C, Blankenship RE, Fleming

GR (2007) Evidence forwavelike energy transfer through quantum coherence in photosynthetic
systems. Nature 446:782

35. Holmegaard L, Hansen JL, Kalhøj L, Kragh SL, Stapelfeldt H, Filsinger F, Küpper J, Meijer
G, Dimitrovski D, Martiny C, Madsen LB (2010) Photoelectron angular distributions from
strong-field ionization of oriented molecules. Nat Phys 6:428

36. Madsen CB,Madsen LB, Viftrup SS, JohanssonMP, Poulsen TB, Holmegaard L, Kumarappan
V, Jorgensen KA, Stapelfeldt H (2009) Manipulating the torsion of molecules by strong laser
pulses. Phys Rev Lett 102:073007

37. Drescher M, Hentschel M, Kienberger R, Uiberacker M, Scrinzi A, Westerwalbesloh T,
Kleineberg U, Heinzmann U, Krausz F (2002) Time-resolved atomic inner-shell spectroscopy.
Nature 419:803



6 1 Introduction

38. GoulielmakisE,LohZ-H,WirthA,SantraR,RohringerN,YakovlevVS,ZherebtsovS, Pfeifero
T,AzzeerAM,KlingMF, Leone SR,Krausz F (2010)Real-time observation of valence electron
motion. Nature 466:739

39. Kling MF, Siedschlag C, Verhoef AJ, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M,
Drescher M, Krausz F, Vrakking MJJ (2006) Control of electron localization in molecular
dissociation. Science 312:246

40. Niikura H, Légaré F, Hasbani R, Bandrauk AD, Ivanov MY, Villeneuve DM, Corkum PB
(2002) Sub-laser-cycle electron pulse for probing molecular dynamics. Nature 417:917

41. Kuleff AI, Cederbaum LS (2012) Ultrafact correlation-driven electron dynamics. J Phys B
47:124002



Part I
Concepts and Methods



Chapter 2
Quantum Mechanical Background

Quantum mechanics is certainly one of the most successful theories in science. It
has deeply influenced many areas of pure and applied physics and pervades many
branches of science, from physics, matter sciences, computer science to chemistry
and even to molecular biology. However, quantum mechanics has to face several
conceptual difficulties of which most relate to the process of quantum measurement
and its randomness so that, almost one century after its birth, a complete consensus has
still not been reached concerning the interpretation of the theory and its foundations.

Quantum mechanics is also known to be counter-intuitive and to lead to repre-
sentations of physical phenomena very different from our daily experience, such as
superposition, entanglement and non-locality. To pinpoint this microscopic “quan-
tum strangeness”, the fathers of the quantum theory, especially Einstein and Bohr,
resorted to “thought experiments” involving the manipulations of isolated particles.
These experiments, which were believed to remain virtual, have now been performed
(see “Exploring the Quantum” byHaroche and Raimond [1]) andmay help shed light
on the conceptual difficultiesmentioned above. In their turn, theymay also raise other
intriguing issues such as, for instance, the connection between quantum and classical
physics. Indeed, macroscopic systems, i.e. systems directly accessible to our senses,
never display non-locality and other strange features of quantum mechanics such as
state superposition (Schrödinger’s cat) or quantum interference.

A nice, lively and non-technical overview of themajor interpretations and strange-
ness of quantum mechanics can be found in “Beyond measure” by Baggot [2]. More
in-depth and technical discussions are given in “Do we really understand Quantum
Mechanics?” by Laloë [3].

It is perhaps also worth mentioning that, by casting doubts on fundamental con-
cepts such as space, material objects, and causality quantum mechanics demands
serious reconsideration of most of traditional philosophy and has become a cen-
tral issue in the realm of the philosophy of science. A huge amount of literature
exists on the subject and we will only mention here two examples: “On Physics
and Philosophy” by d’Espagnat [4] and “Making Sense of Quantum Mechanics”
by Bricmont [5].

© Springer International Publishing AG 2017
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10 2 Quantum Mechanical Background

Nevertheless, in spite of all these conceptual difficulties, the extraordinary feature
of quantum mechanics is that, although we do not understand it nor know how to
interpret it, we can apply it and, by means of the rules of calculation it inspires,
compute properties of matter with unparalleled accuracy. However, in the present
book, we will adopt what can be viewed as a pragmatic approach in which quantum
mechanics is regarded as an operational theory designed to predict the outcomes of
measurements on physical systems under well-defined conditions.

The purpose of the present chapter is not to provide a general and detailed intro-
duction to quantum mechanics, which is available in most textbooks, e.g. Refs.
[6–15]. Our purpose here is merely to provide a quantum mechanical background
with emphasis on the concepts and rules needed for the various topics covered in
the book. (for a lively and pedagogical further reading see “Lectures on Quantum
Mechanics” by Basdevant [16].)

2.1 General Principles

2.1.1 Wavefunctions

In quantum mechanics, the state of a system, at a given time t , parametrized by a
set of coordinates R, is completely determined by a complex wavefunction, �(R, t)
[10]. In our case, the system will often be a molecular system in the wider sense of
the term, and the coordinates R, a set of generalized or curvilinear coordinates well-
adapted to the description and the evolution in time of the molecular and chemical
processes under consideration. According to the standard interpretation of quantum
mechanics, the square of the modulus of �(R, t),

|�(R, t)|2 = ��(R, t)�(R, t) , (2.1)

has the meaning of a probability density. The probability of finding the system in the
volume dR around the point R at time t , is given by

dP(R, t) = |�(R, t)|2dR . (2.2)

The wavefunction�(R, t) is also called the probability amplitude of finding the sys-
tem at point R. It is square integrable and, in view of the probabilistic interpretation,
must be normalized to unity1:

∫
|�(R, t)|2dR = 1 . (2.3)

1In the following,
∫
denotes the integral over the complete domain of definition.
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2.1.2 Superposition Principle

Another property of wavefunctions, regarded as a fundamental principle of quantum
mechanics, is the superposition principle: it means that, if �1(R, t) and �2(R, t)
describe possible states for the system, any linear combination

�(R, t) = c1�1(R, t) + c2�2(R, t), (2.4)

where c1 and c2 are arbitrary complex coefficients, also represents a possible state.
The additivity of probability amplitudes is at the origin of interference phenomena
in quantum mechanics (see Eq. (2.38) below). Moreover, from a more theoretical
perspective, this additivity property hints to the fact that the set of all the possible
wavefunctions of a given system has the properties of a linear vector space E (see
below).

The non-classical aspect of the superposition principle is illustrated by
Schrödinger’s famous cat, which can be alive and dead simultaneously. In other
words, Schrödinger’s cat can be in a coherent superposition of both a dead state and
an alive state. These two states can interfere to create new behaviors that cannot be
observed for a cat that is either alive or dead. For instance, let us consider an assembly
of, let us say, one thousand Schrödinger’s cats. This assembly is not constituted of
cats that are either dead or alive but of one thousand cats where the dead and alive
aspects interact to create a completely different behavior. Schrödinger’s cat can be
seen as a paradox only because the cat is a large-scale system and creating a coherent
superposition for a cat is not realistic.

2.1.3 Measurements of Physical Quantities

One of themost intriguing features of quantummechanics is, as indicated by its name,
the hypothesis of quantization. This notion implies that, under particular conditions,
physical observables measured experimentally can only take certain discrete values.
More precisely, in quantummechanics, physical quantities measured experimentally
can only take a restricted set of values that can be discrete or continuous or a mixture
of both.

This is the reason why, whereas in classical mechanics the physical observables
are represented by functions of time such as position, in quantum mechanics, to
each physical quantityA, we associate an observable Â, which is a linear Hermitian
operator acting in the space E of wavefunctions called a Hilbert space.

More explicitly, let us define in the space E a Hermitian scalar product2 of two
wavefunctions �(R) and �(R) as follows

2Equation (2.5) is also known as the overlap between the wavefunctions �(R) and �(R).
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∫
��(R)�(R)dR = 〈�|�〉 , (2.5)

where the so-calledDirac bracket notation is introduced. This bracket notation is very
elegant and allows, among other things, to avoid to explicitly specify the coordinates,
R, their conjugate momenta P, or any other set of coordinates, used to describe the
system.Combinedwith the superpositionprinciple, this leads naturally to considering
|�〉, called a “ket”, as a vector of space E , and 〈�| called a “bra” as a linear form3

that acts on the ket |�〉 to yield the “bracket” 〈�|�〉, which, being a scalar product,
is generally a complex number.

|�〉 and |�〉 are quantum state vectors corresponding to the “R representation”
wavefunctions �(R) and �(R). The normalization condition of Eq. (2.3) now reads

〈�|�〉 = 1 , (2.6)

and the orthogonality condition

〈�|�〉 =
∫

��(R)�(R)dR = 0 (2.7)

may be regarded as an extension of the geometrical notion of orthogonality to state
vectors and wavefunctions.

An operator Â transforms any given vector |�〉 into another vector |� ′〉 =
| Â�〉 = Â|�〉. When acting on a vector α|�〉 + β|�〉, where α and β are com-
plex numbers, such as

Â(α|�〉 + β|�〉) = α Â|�〉 + β Â|�〉 . (2.8)

the operator is called a linear operator. We will work only with linear operators.
Matrix elements of an operator Â are written as

〈�| Â|�〉 = 〈�| Â�〉 =
∫

��(R) Â�(R)dR . (2.9)

3In a finite Hermitian space C
n , the “kets” are the column matrices |u〉 =

⎡
⎢⎢⎢⎣

u1
u2
.
.
.

un

⎤
⎥⎥⎥⎦ and the “bra” are

the row matrices 〈v| = [
v�
1v

�
2 . . . v�

n

]
so that 〈v|u〉 = ∑n

i=1 v�
i ui is a matrix product.
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The product of two operators Â and B̂ is defined as ( Â B̂)|�〉 = Â(B̂|�〉). It is
interesting to note that multiplying a ket by a bra, |�〉〈�| is an operator.4 Indeed,
applied to a vector |ϕ〉, it yields another vector: |�〉〈�|ϕ〉 = 〈�|ϕ〉|�〉, where 〈�|ϕ〉
is a complex number. In particular, �̂� = |�〉〈�| is the projection operator onto
|�〉, since

�̂2
� = |�〉〈�|�〉〈�| = |�〉〈�| = �̂� (2.10)

holds, which shows that �̂� is a projector, and since

�̂� |�〉 = |�〉〈�|�〉 = |�〉 (2.11)

holds, which shows that the projector projects onto |�〉. Note that a normalized |�〉
is assumed.
The commutator of two operators Â and B̂ is defined as

[
Â, B̂

]
= Â B̂ − B̂ Â . (2.12)

When
[
Â, B̂

]
= 0, which implies Â B̂ = B̂ Â, the two operators are said to commute.

For each linear operator Â, there exists an adjoint operator,, Â†, defined as fol-
lows:

〈�| Â†|�〉 = 〈 Â�|�〉 = 〈�| Â|�〉� (2.13)

or, in integral form, with wavefunctions

〈�| Â†|�〉 =
∫

��(R) Â†�(R)dR =
∫

( Â�(R))��(R)dR

=
(∫

��(R) Â�(R)dR
)�

= 〈�| Â|�〉� . (2.14)

An operator Â is Hermitian if
Â† = Â . (2.15)

If Â is Hermitian, its expectation value, i.e. 〈�| Â|�〉 for a given state vector |�〉, is
real. Indeed, in view of Eq. (2.14) and since Â† = Â

〈�| Â|�〉� = 〈�| Â†|�〉 = 〈�| Â|�〉 . (2.16)

4In a finite Hermitian space C
n , |u〉〈v| =

⎡
⎢⎢⎢⎣

u1
u2
.
.
.

un

⎤
⎥⎥⎥⎦

[
v�
1v

�
2 . . . v�

n

]
=

⎡
⎢⎢⎢⎣

u1v�
1 u1v�

2 . . . u1v�
n

u2v�
1 u2v�

2 . . . u2v�
n

.

.

.
.
.
.

.

.

.
.
.
.

unv�
1 unv�

2 . . . unv�
n

⎤
⎥⎥⎥⎦, which

is a (n × n) matrix, i.e. an operator in Cn .
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A nonzero vector |ϕk〉 is said to be an eigenvector of an operator Â if

Â|ϕk〉 = ak |ϕk〉 , (2.17)

and ak is the eigenvalue associated with this eigenvector. The set {ak} is called the
spectrum of Â. For simplicity, we assume the spectrum to be discrete and non-
degenerate (i.e. there are no two or more equal eigenvalues).

If Â isHermitian , the eigenvaluesak are real and the eigenvectors corresponding to
different eigenvalues are orthogonal. Thus, taking eigenvectors normalized to unity,
we have

〈ϕk |ϕl〉 = δkl , (2.18)

where δkl is the Kronecker delta. In addition, the set {ϕk} of normalized eigenvectors
forms a complete set of orthonormal basis vectors (spectral theorem), i.e. any state
vector |�〉 can be expanded as follows

|�〉 =
∑
k

ck |ϕk〉 , (2.19)

or, in terms of wavefunctions,

�(R) =
∑
k

ckϕk(R) , (2.20)

where the ck are complex coefficients. In fact,

ck = 〈ϕk |�〉 =
∫

ϕ�
k(R)�(R)dR , (2.21)

and, since �(R) is normalized to unity, i.e. 〈�|�〉 = 1,

∑
k

|ck |2 = 1 . (2.22)

If two observables commute, there exists a basis of eigenvectors common to the two
operators.

To summarize: to each physical quantity A corresponds an observable Â that is a
Hermitian linear operator acting in the space of wavefunctions E , and characterized
by its spectrum, i.e. the set {ak} of its eigenvalues and the set {ϕk(R)} of the corre-
sponding normalized eigenfunctions, which constitute an orthonormal basis set of E
(spectral theorem).
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We are now ready to state5 the measurement principles of quantum mechanics:
(a) In the measurement of a physical quantity A, the only possible results of the

measurement are the eigenvalues ak of the corresponding observable Â (it is also
known as the quantization principle).

(b) Owing to the spectral theorem, the wavefunction before the measurement can
be expressed in terms of the normalized eigenfunctions of Â:

�(R) =
∑
k

ckϕk(R) . (2.23)

When the measurement occurs, the probability of finding the value ak as result is

P(ak) = |ck |2 = |〈ϕk |�〉|2 . (2.24)

The above equation is also known as Born’s probability rule.
(c) Immediately after the measurement of the physical quantity A has been per-

formed and has given the result ak , the new state wavefunction of the system is the
(normalized) eigenfunctionϕk(R). This “instantaneous” change from�(R) toϕk(R)

is known as the reduction of the wavepacket or wavefunction collapse. According to
the standard interpretation of quantum mechanics, this wavefunction collapse is due
to the interaction between the system and the measuring apparatus.6

As already briefly mentioned, for a given wavefunction �(R), the expectation
value of any physical quantity A is given by

∫
��(R) Â�(R)dR = 〈�| Â|�〉 . (2.25)

Introducing Eq. (2.23) into Eq. (2.25) yields

∫
��(R) Â�(R)dR =

∑
k

∑
l

c�
kcl

∫
ϕ�
k(R) Âϕl(R)dR

=
∑
k

∑
l

c�
kcl

∫
ϕ�
k(R)alϕl(R)dR

=
∑
k

∑
l

c�
kclal

∫
ϕ�
k(R)ϕl(R)dR

=
∑
k

∑
l

c�
kclalδkl , (2.26)

5We do it mainly in terms of wavefunctions since the “R representation” will be predominantly
used in the present book.
6The mechanism and meaning of the wavepacket collapse is a difficult and much debated topic in
quantum mechanics. For an introduction see, for instance Chap.8 of Ref. [3].


