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Preface

The conference Karst Groundwater Contamination and Public Health took place in the
Hilton Condado Plaza Hotel in San Juan, Puerto Rico, on January 27–30, 2016. The 76
attendees were 45 professionals, 26 students, and 5 family members. The attendees came from
seven countries: Austria, Denmark, France, Italy, Germany, Switzerland, and the United
States. There were 30 oral presentations, 20 poster presentations, and 12 short, “snap” talks.
The presenters were invited to contribute written versions of their presentations to this volume.

The conference was organized by the Karst Waters Institute, and the program and an initial
set of abstracts were published as KWI Special Publication 19, available on-line at the KWI
website. Special Publication 19 also contains information on the mid-conference field trip and
the guidebook for the two-day field trip that followed the conference.

This volume presents the written contributions. In order to preserve a complete record
of the conference, all presentations are included except for some of the snap talks. They are of
three varieties:

Full papers: These were reviewed by the editors and, if necessary, by outside reviewers.
Authors were asked to revise their papers as needed.
Extended Abstracts: Authors who did not wish to publish their complete work in the
Proceedings were invited to prepare a summary as an extended abstract. These extended
abstracts, essentially short papers, contain figures and references and should be considered
citable sources of information. The extended abstracts were reviewed by the editors and
modified as necessary.
Additional Papers: A few authors who did not wish to contribute to the Proceedings are
represented by their original program abstracts. These have been combined into a single
document that appears in the Summary section of the book.

In addition to the formal papers, the book contains introductory chapters that set forth the
expectations of the conference and its interdisciplinary framework. The conference closed with
an open discussion of needed research directions and opportunities. A summary of this dis-
cussion appears in the final chapter of the book.

University Park, USA William B. White
Charlottesville, USA Janet S. Herman
Lewisburg, USA Ellen K. Herman
Washington, USA Marian Rutigliano
February 2017
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Contaminated Groundwater in Karst: Why Is It
an Issue? An Introduction to the KWI San Juan
Conference

William B. White, Janet S. Herman, Ellen K. Herman,
and Marian Rutigliano

Abstract
The Karst Waters Institute sponsored a conference on karst groundwater contamination and
its impacts on public health. The objective was to facilitate communication between
hydrogeologists and the biomedical community, especially those dealing with public health
issues. This volume contains the papers presented at the conference.

1 The Issue

If one were to compile a list of the necessities for a healthy
human population, a source of pure water would be in the
top tier of the list along with clean air, nutritious food,
adequate shelter, and reliable sanitation. Pure, drinkable
water is a priceless resource that is in limited supply on
Earth, and it is vulnerable to contamination from the very
beings who depend upon it.

Humans produce a wide variety of substances deleterious
to health when introduced into water supplies. Surface
streams, rivers, and reservoirs are easily contaminated, and
as a result, water supplies drawn from surface sources
require extensive filtration and treatment before introduction
into water distribution systems. Water supplies drawn from
wells for individual homes and farms often receive no
treatment, and water supplies from municipal wells require

much less treatment than water from surface sources. This
comfortable assumption of safety without treatment does not
apply to karst aquifers where surface water and groundwater
are intermixed in a complicated way that is highly specific to
individual aquifers. But karst aquifers are not to be ignored.
Although hard data are limited, it has been claimed that 40 or
more percent of the groundwater drawn for domestic and
public water supplies in the USA is drawn from karst
aquifers. Consider the number of towns that have grown up
around the proverbial “big spring.”

2 Karst Aquifers: What’s Special?

Karst aquifers are those for which the host rock has signif-
icant solubility in water. Suitable host rocks for karst
development are mostly carbonates and evaporites. Of these,
only aquifers in carbonate rocks, limestone and dolomite, are
likely to have a sufficiently low concentration of dissolved
solids to be useful as water supplies. Dissolution of the host
rock by infiltrating meteoric water enlarges pore spaces,
widens fractures, and develops integrated systems of con-
duits that act as drainage networks. The process may have
begun as early as the mid-Miocene although the active parts
of the systems frequently date only from the late Pliocene or
early Pleistocene. The consequence of the dissolutional
modification of the aquifer host rock is that the hydraulics of
groundwater flow in karst aquifers is often remarkably dif-
ferent from the hydraulics of porous media.

Because of the open pathways along fractures and con-
duits and the generally high flow velocities, karst aquifers can
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transmit contaminants and sediments that are not even a
threat to porous media aquifers. Pathways from contaminant
sources to actual or potential water supplies are complex and
poorly predictable. There have been a substantial number of
studies of the movement of specific contaminants in specific
aquifer locations—case studies—but much less consideration
of more generalized concepts of contaminant injection,
storage, transmission, and release. More importantly, even
less attention has been given to the actual impact of con-
taminated karst aquifers on public health. It can be estab-
lished that a karst aquifer is contaminated, but what is the
threat to the people who are using the water?

3 The Conference

It was to provide a comprehensive overview of groundwater
contamination in karst aquifers and its impact on public
health that this conference was convened in San Juan, Puerto
Rico. The Puerto Rico karst is an especially appropriate
setting for this meeting in that it provides drinking water for
private residences and municipal water supplies and, at the
same time, has been significantly impacted by unlined
landfills and industrial outfalls. The conference consisted
mainly of invited speakers with a poster session available for
contributed papers. Invited speakers were chosen to provide
the broadest possible coverage and the widest possible range
of points of view. Thus, there are papers on the hydrogeol-
ogy of karst aquifers, mechanisms of contaminant transport,
the epidemiology of contaminated groundwater, and the
impact of contaminated groundwater on public health.

The storage and movement of water in aquifers, including
karst aquifers, is the province of the geological sciences and
the community of hydrogeologists. The investigation of the
effects of contaminated water on public health is the realm of
the biomedical community who have little occasion to
communicate with the earth science community. The con-
ference was designed to encourage cross-disciplinary dis-
cussion by the selection of keynote speakers and by such
devices as long coffee breaks, a poster session with a bar and
snack table, and a mid-session field trip for all participants.
The keynote papers are published together in the first section
of the book and illustrate the range of topics discussed.

4 How to Address the Issue of Contaminated
Karst Groundwater

4.1 Step One: Characterize the Specific Karst
Aquifer of Interest

The term “karst aquifer” is not a label for a specific thing.
Rather, karst aquifers represent a large and complex family

of aquifers ranging from those little different from aquifers in
sandstone or river gravel to “aquifers” that are little more
than roofed-over surface streams. As might be expected, the
devil is in the detail, and the first task of those evaluating
contaminated aquifers is to delineate the hydrogeology, the
effective boundaries of the aquifer—the groundwater basin
—and the characteristics of its internal drainage. To this end,
a large number of tools have been developed over the past
decades (see, e.g., Goldscheider and Drew (2007) or Kresic
(2013)). Some conference papers illustrated contemporary
approaches to the hydrogeology of karst aquifers and are
collected under the heading “Aquifer Studies.”

4.2 Step Two: How Do the Various Types
of Contaminants Move?

The usual suspects that would be a threat to surface waters
and to groundwater in non-karstic aquifers comprise the list
of contaminants that might impact a karst aquifer. The
fundamental differences are the mechanisms by which the
contaminants move and are stored in the aquifers, i.e., their
fate and transport. There are water-soluble contaminants, of
which nitrate is the most widespread, but also agricultural
chemicals and leachates from dumps, landfills, and tailings
piles. There are non-aqueous phase liquids—gasoline, fuel
oil, chlorinated solvents, and many others—that have
movement and storage mechanisms that may be quite dif-
ferent from the movement of water in the aquifer. There are
microorganisms—bacteria, viruses, and protozoa—that
move easily through the karst system. There are particulates,
ranging from colloids to cobbles, some benign and some not,
that are washed through the system by flood pulses. Cleanup
of many of these contaminants ranges from difficult to
impossible.

Investigation of contaminant fate and transport is an
extremely active area of research. Many of the papers pre-
sented at the conference dealt with identification and char-
acterization of contaminated groundwater and with
techniques for evaluating the transport of the contaminants
by the groundwater. These appear in the section labeled
“Karst Groundwater Contaminants and Tools for Their
Evaluation.”

4.3 Step Three: What Is the Threat to Public
Health and What to Do About It?

To return to the initial question: What is the issue? The
motivation for this conference was to bring health sciences
professionals into a conversation with environmental scien-
tists to focus on karst groundwater, its contamination, and
consequent health outcomes. A particular aspect of this

4 W.B. White et al.



intersection of perspectives requires recognition of exposure
levels and timescales. Although public health professionals
are frequently addressing acute health problems, it is often
true that exposure to contaminants of concern in drinking
water is a chronic issue. The distinction between exposure to
a high concentration of contaminant over a short time and
long-term exposures to a ubiquitous background contami-
nant at low concentrations but over a very long time is
crucial to making the connection between contaminated
water and human health. Unfortunately, the cumulative
effects of long exposures are much more difficult to identify
and evaluate. The conference was fortunate to have the
participation of the Puerto Rico Testsite for Exploring
Contamination Threats (PROTECT), a large and long-term
investigation of the effects of low levels of contamination on
preterm birth in the north karst belt of Puerto Rico. There
were multiple papers from the PROTECT group in the
conference. These contributions along with other papers
addressing the driving question about health outcomes are
found in “Contaminant Exposure and Public Health.”

The synthesis of all the scientific contributions to the
conference is an attempt to answer the question, “What do
we do about it?” Why should groundwater contamination in
karst aquifers be treated any differently than contamination
of groundwater in any other aquifer, or for that matter, from
contamination of surface streams and reservoirs? The con-
taminants will be from the same sources, have the same
properties, and have the same effects on public health
regardless of the source from which the contaminated water
is drawn. There are three primary reasons why karst aquifers
should be treated differently, both from a management and
from a regulatory point of view.

(1) The much larger apertures in karst aquifers, ranging
from a few millimeters in solutionally widened joints to
tens of meters in master conduits, permit the passage of
much larger solid contaminants than would be possible
in porous media. Bacteria and other microorganisms,
for example, can easily pass through a karst aquifer to
the point of drinking water extraction, whereas they
would have been filtered out during flow through the
porous medium of a sand aquifer.

(2) Very short travel times. If a tanker truck full of chlo-
rinated solvents goes off the highway, rolls down an
embankment, and breaks open in a river, the authorities

know they have an emergency, especially if the acci-
dent took place only a few kilometers upstream from
the intake to a city water supply. A similar wreck above
a non-karst aquifer is a more leisurely affair. The
authorities will have to quickly constrain surface run-
off, but infiltrating solvent will form a slowly diffusing
plume that can be evaluated and treated. However, if a
tanker truck spills its load into a sinkhole, the travel to
the spring will not take much more time that the flow
down the river. Spills in karst regions are as much of an
emergency as spills into rivers.

(3) Ready communication between the surface, the local-
ization of all human activities, and the groundwater in a
karst aquifer. Wastes from the production of food,
mining, energy, and manufacturing, as well as septic,
sewage, and urban storm water, are all easily directed to
recharging the groundwater via karst features of sinking
streams, sinkholes, and thin soils. Taken all together,
the inescapable realization is perhaps the most impor-
tant outcome of the conference: Both the public and the
responsible authorities must treat water supplies from
karst aquifers with the same level of suspicious eval-
uation and environmental protection that would be
given to a surface water supply. There is a certain
nostalgia about “pure mountain spring water,” harking
to a time when grandmother carried water from the
spring in an oaken bucket. Karst springs are usually
beautiful, but beautiful does not mean that they should
be piped directly into the community’s water mains.
The most important threat from contaminated karst
aquifers may be the lack of understanding on the part of
planners and regional authorities and also on the lack of
a regulatory framework that takes the peculiarities of
karst aquifers into account. This critically important
topic is addressed in the collection of papers on “Risk
Assessment and Regulatory Issues.”

References
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Public Health and Karst Groundwater
Contamination: From Multidisciplinary
Research to Exposure Prevention

Heather F. Henry and William A. Suk

Abstract
Karst aquifers account for up to 20% of the world land area and are a source of drinking
water for much of the world. Despite the critical value of these aquifers as a drinking water
source, there are a growing number of incidences of karst aquifer contamination worldwide,
including inadvertent spills, dumping, industrial discharges, or sewage seepage events.
Given the porous nature of carbonate rocks, the hydrogeology of karstic aquifers is
extremely complex, making it difficult to predict movement of contamination in these
aquifers and to identify exposure risks. These contamination events—together with
emerging issues such as climate change, exposures to infectious agents, as well as the
increase in informal mining practices—indicate the need to explore linkages between karst
groundwater, contamination, and health. Accordingly, the issue of karst groundwater
contamination presents a unique global public health challenge requiring a multidisci-
plinary problem-solving approach. The National Institute of Environmental Health
Sciences (NIEHS) Superfund Research Program’s (SRP) multidisciplinary approach serves
as a model for integrating expertise across health, engineering, geological, and
community-based approaches to solve problems. Using examples relevant to karst
contamination, NIEHS SRP grantees are engaged in research endeavors to address issues of
drinking water safety—from remediation to well-testing best practices. It is recommended
that continued research addresses karst contamination, with particular attention given to
identifying people at risk of exposures and to developing proactive means to prevent further
exposures. This is particularly important in the USA, where two-fifths of the population’s
drinking water comes from karst aquifers. Furthermore, over 40 million US citizens are on
private well water for drinking, yet testing for contamination in these wells is often not
required. Given the challenges predicting contaminant transport in karst and the lack of
uniform private well water testing regulations, there is a need to promote awareness of risks
for people living in karst areas among public health, hydrogeology, and government
officials, and to use community-based approaches as models for intervention and exposure
prevention.

1 Introduction: Karst Contamination—A
Global Concern

Public health implications for contamination in karst aquifers
are of global concern. It is estimated between 12.5 and 20% of
the Earth’s land surface that is composed of carbonaceous
rocks (Fig. 1) (Williams and Fong 2014; USGS 2016b).
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These rock formations—limestone and dolomite—form
karst, meaning the rock material is slowly dissolved through
time leaving behind caves, springs, sinkholes, etc. Unlike
non-carbonaceous rock formations, karst hydrogeology is
governed by small cracks and fractures as well as larger
conduits. These complicated networks of channels create
difficulty in predicting transport of water through karst, as
well as anything transported along with water, such as
contaminants or pathogens (USGS 2016b). Given the porous
nature of carbonate rocks, the hydrogeology of karstic
aquifers is extremely complex, making it difficult to predict
movement of contamination in these aquifers and to identify
exposure risks.

Numerous studies report contamination impacts in karst
aquifers throughout the world (Du Preez et al. 2016;
Xu et al. 2016; Li et al. 2016; Morasch 2013; Krejcova et al.
2013; Huang et al. 2013; Metcalfe et al. 2011). Some studies
indicate linkages to increased risk of disease and dysfunction
as a result of contamination of aquifers by hazardous sub-
stances (Rodriguez et al. 2015; Huang et al. 2013; Long
et al. 2012; Hu et al. 2011). There are several emerging
global issues that would also overlay with the concerns of
contamination in karstic aquifers. Transport of infectious
agents through karst aquifers is well documented throughout
the world (Somaratne and Hallas 2015; Sinreich et al. 2014;
Arcega-Cabrera et al. 2014; Bauer et al. 2013; Wampler and
Sisson 2011; Khaldi et al. 2011; Dussart-Baptista et al.
2007). There is growing evidence that co-exposures between
contamination and infectious agents confer heightened risk

of disease and dysfunction—above what would be expected
from exposure to the contaminant alone (Boldenow et al.
2015; Jaligama et al. 2015; Notch et al. 2015). In the way
that large above ground metal processing shows impacts to
karst aquifers (Du Preez et al. 2016; Deng et al. 2009, 2011),
it should be noted that informal mining practices may release
mixed contaminants that could impact drinking water
resources. Activities on the rise, such as electronic waste
(e-waste) mining (Heacock et al. 2016; Grant et al. 2013) as
well as informal precious metal mining (Maier et al. 2014),
have potential to contaminate water resources, and those in
karst aquifers are particularly vulnerable. Lastly, several
karst researchers are investigating the impacts of severe
weather events related to climate change (Polemio 2016;
Thomas et al. 2016; Dura et al. 2010). These surge events
impact the movement of contaminants in karst—leading to
unanticipated sewage contamination and toxicant transport.

2 Understanding Karst Contamination
Issues Requires Multidisciplinary Research
Framework

The issue of karst groundwater contamination presents a
unique global public health challenge requiring a multidis-
ciplinary problem-solving approach. The National Institute
of Environmental Health Sciences (NIEHS) Superfund
Research Program’s (SRP) multidisciplinary approach
serves as a model for integrating expertise across health,

Fig. 1 Karst aquifers worldwide based on Ford and Williams (1989). From Williams and Fong (2014)
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engineering, geological, and community-based approaches
to solve problems. One such multidisciplinary study is
underway in the northwest karstic region of Puerto Rico
(PR) where fate and transport modeling and environmental
sampling of aquifer contamination are being studied as
variables to understand the high incidence of preterm birth in
PR (NIEHS 2015; Yu et al. 2015). They are applying
state-of-the-art methods to study biological mechanisms
involved in preterm birth related to environmental factors
(Johns et al. 2015; Watkins et al. 2015; Cantonwine et al.
2014; Ferguson et al. 2014). The epidemiological research is
complimented by bidirectional community and stakeholder
engagement through providing culturally sensitive risk
communication information to pregnant mothers, coordi-
nating with organizations that promote karst conservation,
and collaborating with health advocacy groups such as
March of Dimes (NIEHS 2016).

The research in the northwestern karst region of Puerto
Rico also touches on another issue of high relevance to
mainland USA: Contaminant exposure varies widely
depending on whether drinking water comes from public
versus private sources. Under the Safe Drinking Water Act
(SDWA) of 1974, all public drinking water facilities are
required to ensure safety of drinking water through setting
maximum contaminant levels (MCLs), testing for compli-
ance with the MCLs, and maintaining effective operation of
drinking water treatment and delivery systems. Hence, in
cities, towns, and municipalities under public drinking water
works, contaminant levels are tested for and controlled (as-
suming compliance with SDWA). However, a major con-
cern stems from the fact that private well users are not
protected under the testing and maintenance provisions of
the SDWA. These SDWA regulations do not apply to the
estimated 40 million US citizens reliant upon private well
water for their drinking water (Maupin et al. 2014). For
private well water users, rules and regulations for testing are
not uniform and vary from state to state. In general, there
may be some testing required at the time of well installation;
however, these tests rarely account for toxicants that might
be associated with discharges from current and/or legacy
industry operations (e.g., toxicants such as heavy metals,
chlorinated contaminants, or other hazardous substances),
nor geogenic hazardous substances (e.g., naturally occurring
arsenic). Furthermore, for much of the USA, testing of wells
is not required after installation. As a result, the testing of
private well water is largely the responsibility of the indi-
vidual homeowner (EPA 2016a). This places private well
water users in a particularly vulnerable position. They may
not be aware that well testing is their own responsibility and
would not necessarily be aware of contamination sources in
their region that may impact their drinking water aquifer.

Hence, NIEHS SRP-funded research study in north-
western Puerto Rico is investigating linkages between karst

aquifer and drinking water quality (whether private or pub-
lic)—using these data as a model for better understanding
fate and transport of contaminants in karst groundwater.
Furthermore, the researchers are measuring for contaminant
exposure utilizing innovative biomonitoring tools. With this
integrated approach, hydrogeological research has advanced
the understanding of movement of hazardous substances in
the karstic groundwater and provided critical geospatial
information useful for the epidemiological studies (Anaya
et al. 2014). This multidisciplinary research approach is
forging a new model framework to understand the interac-
tions between contamination and human exposures in karst
aquifers—and developing best practices for engaging com-
munities and stakeholders to protect public health, to con-
serve these unique karst ecosystems, as well as protecting
these vulnerable karst aquifers.

3 Future Directions: Drinking Water
Protections in the USA and Karst Aquifers

Given the uncertainty of risk from contaminant transport
through karst aquifers, there is need to develop new policies,
integrate data networks, and expand outreach to those
potentially vulnerable to exposures. Using the USA as an
example, there would be a tremendous benefit to focus
policy, research, and outreach to states/communities/regions
with a high percentage of private well use (Fig. 2) drawing
from karst aquifers (Fig. 3). Overlaying karst aquifer regions
with data about private well usage in the USA can be used to
identify states and communities that would benefit from
targeted communication campaigns to bring awareness about
the nature of karst aquifers in terms of contaminant transport.

Bringing together stakeholders from multiple sectors is a
first step to identify risk factors for environmental exposures
and to develop effective interventions to prevent further
exposures. The Karst Waters Institute’s “Karst, Groundwater
Contamination & Public Health: Moving Beyond Case
Studies” 2016 meeting in Puerto Rico brought to light
concerns from multiple stakeholders, including community
groups, karst conservation groups, health researchers, gov-
ernment regulators (from the USA and worldwide), as well
as experts in hydrogeology and engineering (KWI 2016).
The need for maintaining this community of practice is
evident, as the exchange between and across disciplines is
invaluable for practical solutions such as modeling con-
taminant transport in karst aquifers, developing effective
guidance for private well users, as well as engaging com-
munities. Another recent focus group was convened by the
North Carolina Environmental Health Collaborative (NC
EHC) titled “Safe Water from Every Tap” held in North
Carolina in 2015. This summit identified critical barriers to
well testing by convening a multistakeholder group of local
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health departments, state and federal agency representatives,
water utilities, and industries (RTEHC 2015). In addition to
the recommendation to expand efforts to better inform
communities about well testing, the summit also identified
new well-testing regulations and policies that may be used as
models to reduce the gap of regulation for private well users.
An example is the Private Well Testing Act (PWTA) of New
Jersey (2011), a consumer information law requiring private
drinking well testing for real estate transactions (prior to
closing) and for rental properties (every five years).
The PWTA is a model of new policy relevant to contaminant
transport risks—regardless of the aquifer type—because the
test includes 32 contaminants of human health concern
(metals, hydrocarbons, chlorinated contaminants). Another
provision of the PWTA is that data are incorporated into a
statewide groundwater quality analysis database maintained
by the NJ Department of Environmental Protection (NJDEP)
(Atherholt et al. 2009). This additional effort by NJDEP, to
maintain and analyze their data, addresses challenges iden-
tified in both the Karst Waters Institute and the North Car-
olina Environmental Health Collaborative conferences.
Access to groundwater data is difficult and becomes a lim-
iting factor in reaching out to those who may be at greatest
risk.

It follows that well-testing communication efforts might
prioritize outreach to families, communities, and counties
where drinking water comes from private wells in karstic
aquifers. In terms of data integration, there are several tools,
such as geographical information systems (GIS), that can
be used to overlay multiple data layers—such as hydroge-
ological layers, contaminant-release information, or
locations of Superfund sites (Hollingsworth et al. 2008;

NLM TOXMAP 2016). Tools like these are being used to
explore the extent of contamination in karst, and in one such
study, it is estimated that as many as 23% of Superfund sites
are found in karst regions (Cotto-Ramos 2015). Despite the
availability of hydrogeological and hazardous substance
mapping databases, there remain challenges to identifying
those most at risk in terms of an intersection between karst,
contamination, and private well users. This is because state
and county records of private well locations are not always
available in database form; furthermore, these data are not
often publicly available. Established collaborations between
researchers (i.e., health, geospatial, environmental monitor-
ing) and staff at state departments of health and environment
(where records are often located) can be critical to identi-
fying those who may be at greatest risk for environmental
exposures. An example of such collaboration is the NIEHS
SRP-funded research project mapping high areas of arsenic
and locations of private wells in the state of North Carolina,
a project made successful by interactions between the
researchers and the NC Department of Health (Sanders et al.
2011). The researchers identified areas of high risk of
exposure to arsenic from private wells—and they have since
followed up with outreach to these vulnerable communities.
This reinforces the need for coordination and integration
between multiple sectors: government, health, geological,
and community outreach expertise.

Lastly, translating research findings to stakeholders—as
well as impacted individuals and communities—is important
to bring awareness to the connections of karst, contamina-
tion, and public health. The US EPA provides Web sites
with general guidance for private well owners to help
identify symptoms indicative of well water contamination

Fig. 2 Principal karst aquifers of
the USA (USGS 2016a)
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Fig. 3 Percentage of residents
on private well drinking water
based on data from Maupin et al.
(2014) and Research Triangle
Environmental Health
Collaborative (2015)
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(EPA 2016a, b). They have also developed the Drinking
Water Mapping Application to Protect Source Waters
(DWMAPS) as a resource for communities to answer
questions about potential contaminant impacts on their water
supply (EPA 2016c). The DWMAPS mapping tool inte-
grates information about pollution sources, which can help a
private well user identify potential exposure risks. These are
helpful resources for state and county offices to understand
whether there is cause for concern for their communities—
and for community members who are already aware of
potential contamination concerns with their water.

However, as mentioned previously, many of the 40 mil-
lion private well users may not be aware that well testing is
their own responsibility and would not necessarily be aware
of contamination sources in their region that may impact
their drinking water aquifer. For this reason, a more proac-
tive approach to reaching out to communities at potential
risk is ideal. Utilizing a multidisciplinary framework incor-
porating health, monitoring, and community engagement
research studies, several NIEHS-funded Superfund Research
Centers are engaging with communities to develop effective
communication approaches to help private well owners
navigate the process of well testing. Their efforts range from
using geospatial databases to identify private well-using
communities in areas of elevated groundwater arsenic
(Sanders et al. 2011); identifying socioeconomic patterns
that reveal barriers to testing (Flanagan et al. 2016a, b, c;
Flanagan et al. 2015a, b; Lothrop et al. 2015); developing
communication campaigns to appeal to most vulnerable
citizens; and providing non-technical information about the
advantages and disadvantages of testing and treatment
products on the market (Paul et al. 2015). Through their
successful efforts, it is clear that working within communi-
ties to tailor community-specific outreach campaigns is
essential to inspire individuals to be proactive about well
testing.

4 Summary and Conclusions
Karst aquifers are an important source of drinking water
for much of the world; however, incidences of karst
aquifer contamination worldwide impact global public
health. These contamination events—inadvertent spills,
dumping, industrial discharges, or sewage seepage events
—co-occur with growing emerging issues such as the
impact of climate change on karst flow, infectious agents,
and informal mining. There continues to be a need to
explore linkages between karst groundwater, contamina-
tion, and health. Using a multidisciplinary approach,
NIEHS SRP grantees are engaged in the research
endeavors needed to make the connection between karst
aquifer contamination and the potential health impacts. In
addition, NIEHS SRP researchers design studies to

identify communities of potential high risk of exposure
leading to a possible negative health outcome—and then
translate findings to practitioners (such as state public
health staff) and develop prevention opportunities with
impacted communities. For example, several NIEHS SRP
community engagement leaders have initiated outreach
campaigns for well testing among private well users
where exposure to naturally occurring arsenic may be
possible. This type of outreach is important to promote
public health in that private well users are responsible,
sometimes unknowingly, for testing and treating their
own wells to ensure safe drinking water quality. Of rel-
evance to karst aquifer contamination, there would be a
public health benefit to utilize these effective community
engagement practices to tailor well-testing communica-
tions for private well water users in karst aquifers, where
movement of contaminants are difficult to predict.
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Team Science Applied to Environmental
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and Preterm Birth in Puerto Rico

José F. Cordero, John D. Meeker, Rita Loch-Caruso, Roger Giese,
Ingrid Padilla, Dorothy Vesper, David Kaeli, Thomas Sheahan,
Phil Brown, Carmen M. Vélez-Vega, and Akram N. Alshawabkeh

Abstract
Understanding the interaction of environmental contamination and its impact on human
health stretches the disciplinary demands required for effective research. Team science is
required to understand the origin of contaminants, their pathways to human, their health
effects, and for development of effective mitigation. We describe a team science model
applied to the study of preterm birth in a region of karst hydrogeology, the Puerto Rico
Testsite for Exploring Contamination Threats (PROTECT). This research program uses an
innovative, holistic, source-to-outcome transdisciplinary approach that integrates epidemi-
ological, toxicological, analytical, fate-transport, and remediation studies, along with a
unified sampling infrastructure, a centralized, indexed data repository and a data
management system. PROTECT is contributing new knowledge about the risk that
contaminants may pose in pregnancy resulting in preterm birth, how these contaminants
reach karst aquifers, and what are the biological mechanisms by which environmental
contaminants may promote preterm birth. PROTECT also is developing novel remediation
approaches that will target removal of contaminants linked to preterm births from ground
water. These integrated efforts offer unique opportunities to address a serious public health
problem and its solution would result in a healthier population and a healthier environment.

1 Introduction

Conducting environmental health research today requires a
diverse research team that can address the breadth of disci-
plines needed to understand the complex dynamics of the

environment and its interaction with human populations.
Where biology and chemistry might have once sufficed,
research teams must now include a broad array of disciplines
to (1) identify routes of human exposure to chemicals,
(2) understand the health effects resulting from human
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exposure to these chemicals, (3) recognize their impacts on
public health, and (4) develop effective interventions to
remediate contamination and improve the health of the
impacted population. A transdisciplinary approach, imple-
mented in a team science management structure, can provide
a platform to understand the interactions between the envi-
ronment and human populations and translate research
findings into strategies to improve human health and the
environment. Project PROTECT (Puerto Rico Testsite for
Exploring Contamination Threats) is currently ongoing in
Puerto Rico.

The study of groundwater contamination is an important
component as it is a major threat to water resources and
consequently human health. Understanding the fate and
transport of contaminants in groundwater, that may lead to
human exposure and adverse health outcomes, is needed to
understand health impacts and to develop intervention
strategies. Aquifers in karst systems are highly heteroge-
neous, which complicates understanding fate and transport
of contaminants (Fig. 1). Karst groundwater systems
develop in soluble rocks and are typically characterized by
well-developed conduit porosity and high permeability
zones. These characteristics make aquifers in karst areas
highly productive and an important freshwater resource for
human consumption and ecological integrity. Exposure from
contaminated karst aquifers is very relevant to the U.S. as
about 40% of the groundwater used for drinking comes from
karst aquifers (USGS 2013). Worldwide, karst aquifers
contribute about 25% of the drinking water; these aquifers
are distributed throughout Asia, Europe, other parts of the
Caribbean, and Australia (Hartmann et al. 2014). Karst

aquifers present highly susceptible pathways for contami-
nation of water supplies due to the presence of fissures,
sinkholes and sinking streams that can rapidly inject con-
taminants at or near the land surface. Once in the aquifer, the
contaminants can be readily transported via solutional
openings in the subsurface such as conduits and under-
ground streams. Filtration processes that can retard con-
taminant movement, commonly found in alluvial aquifers,
are rarely present in karst aquifers. There is a significant lack
of understanding of contaminant transport in karst and a
critical need for development of remediation strategies for
such complex and potentially deleterious systems. This is
particularly relevant where availability of water resources
from highly productive aquifers in karst regions spawn
industrial and urban development, which promotes eco-
nomic growth but increases the potential for extensive
contamination of the groundwater resources. The dynamics
of the solubility, flow, and exposure to contaminants through
karstic groundwater is made more complex by the presence
of some contaminants as non-aqueous phase liquids
(NAPLs) and interactions between different contaminant
groups.

In Puerto Rico, risk of exposure to contaminants thorough
groundwater is high because many waste sites exist, partic-
ularly on the north coast. Eight of the 16 Superfund sites,
and many of existing unlined landfills in Puerto Rico, exist
over karstic aquifers in the northern part of the island. Such
high level of contamination is a public health threat on the
island. An overlay of Superfund sites (EPA 2013) on karst
regions in the U.S. (Tobin and Weary 2004) shows that 23%
of all Superfund sites are located in karst areas. In Puerto

Fig. 1 Hydrogeology and major potential contamination sites in Puerto Rico. North coast limestone aquifer in orange and light pink
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Rico, 45% are within the northern karst region of the island
(Fig. 1). This region has been affected by a long history of
toxic spills into the subsurface (EPA 2011; Hunter and
Arbona 1995; Zack et al. 1987) and is coincidentally among
the areas with the highest groundwater extraction in Puerto
Rico (Molina-Rivera and Goméz-Goméz 2008). Serious
contamination has prompted inclusion of 16 National Pri-
ority List (NPL) and 15 corrective action sites within the
Resource Conservation and Recovery Act (RCRA) in the
north coast region of Puerto Rico between 1983 and 2012.
Recent (Padilla et al. 2011) and past (Guzmán-Ríos et al.
1986) studies in this region have consistently reported the
presence of organic contaminants in the karst groundwater
system. In spite of the known contamination, the connection
between exposure to a complex mix of environmental fac-
tors, including drinking water contamination in karst
regions, and the high rates of adverse health outcomes for
children in Puerto Rico has not been comprehensively or
integratively investigated.

From the human population perspective, Puerto Rico has
the highest rate of childhood asthma in the U.S., more than
twice that of Hispanic children on the mainland (16.5% vs.
7.9%) and its preterm birth rate increased dramatically in
1990s and the first decade of the 21st century. In 2009,
Puerto Rico had the highest rate of preterm birth in the US,
and the third highest rate in the world in 2012 (Blencowe
et al. 2012). Infants born preterm are more likely to die in the
first year of life, and those who survive can suffer serious
short- and long-term disabilities, including blindness, deaf-
ness, cerebral palsy and development disorders. Early stud-
ies found that traditional risk factors for preterm births did
not explain the high rate observed (Cordero and Mattei
2009) and placed the focus on potential environmental fac-
tors. The island has suffered extensive hazardous waste
contamination over the years and has the highest density of
hazardous waste sites per square mile than any other juris-
diction in the US. Those findings raised questions about the
role of environmental contaminants in the high rate of pre-
term births in Puerto Rico.

PROTECT addresses critical gaps identified in the 2007
Institute of Medicine report on preterm birth (Behrman and
Stith Butler 2007). Preterm birth is the second leading cause
of death in children under the age of 5 worldwide (Blencowe
et al. 2012), and the leading cause of perinatal and infant
mortality in the U.S. (Klebanoff and Keim 2011; Callaghan
et al. 2006). Reducing preterm birth rates will help save
babies, improve their quality of life, and minimize the
escalating costs of health care. For the U.S. alone, the most
recent estimate is that preterm births cost society over $26
billion annually in 2005 (Behrman and Stith Butler 2007),
not including the costs of medical care beyond early child-
hood or the total cost of special education services and lost
productivity (Klebanoff and Keim 2011). The causes of

preterm births remain largely unexplained, and interventions
geared toward known causes are projected to result in a
reduction in preterm births of only 5% by year 2015 (Chang
et al. 2013). New approaches are needed to identify modi-
fiable risk factors. Environmental pollutants as potential
contributing factors to preterm birth have been greatly
understudied (Behrman and Stith Butler 2007). Thus,
establishing links between environmental exposures and
preterm birth would have major public health significance
since many exposures may be modifiable through new
policies or interventions at the individual, community,
clinical, and state or federal level. Furthermore, by demon-
strating that a common toxicological effect—oxidative stress
—activates pathways associated with parturition, PROTECT
combines new knowledge of biological mechanisms by
which environmental contaminants may promote preterm
birth. Knowledge of these mechanisms, combined with new
information on toxicant-stimulated responses using in vitro
model systems, is leading toward to the development of
assessment tools for toxicological evaluation of potential
chemical risks for preterm birth.

To address these questions, PROTECT, a Superfund
Research Program (SRP) Center, was developed and initi-
ated its research program in 2010. PROTECT employs an
integrated, transdisciplinary approach and team to study the
fate, transport, exposure, health impact and remediation of
contaminants, with particular attention to phthalates and
chlorinated solvents, both suspect and model agents for the
high preterm birth rates in Puerto Rico. To do so, PROTECT
uses an innovative, holistic, source-to-outcome structure,
integrating epidemiological, toxicological, analytical,
fate-transport, and remediation studies, along with a unified
sampling infrastructure, a centralized, indexed data reposi-
tory and a data management system. Administrative,
research translation, training and community engagement
cores engage and inform stakeholders, provide
knowledge-transfer activities to the greater SRP and envi-
ronmental health community, and provide extensive
cross-disciplinary training. In a nutshell, PROTECT is a
transdisciplinary model of team science that is responsive to
NIEHS, EPA and CDC strategic goals, and addresses pri-
ority areas identified by the Institute of Medicine Committee
on preterm birth (Behrman and Stith Butler 2007).

2 Approach

PROTECT is a multi-institutional research center with col-
laborating researchers from Northeastern University; the
University of Puerto Rico (Medical Sciences Campus—
UPR-MSC, and Mayaguez Campus—UPRM); the Univer-
sity of Michigan; the University of Georgia, West Virginia
University, Silent Spring Institute and Earth Soft Inc. The
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central theme of PROTECT is the study of exposure to
Superfund hazardous chemicals and their potential contri-
bution to preterm birth, focusing on Puerto Rico as a testsite
with dynamic contamination exposure pathways through
aquifers in karst regions.

Effort is centered around the problem-based,
solution-oriented theme, to address three goals: (1) define
the contribution of environmental chemical exposure to
preterm birth, (2) develop new technology for discovery,
transport characterization, and green remediation of Super-
fund hazardous chemicals in aquifers in karst region, and
(3) engage stakeholders to support environmental public
health practice, innovation and policy; professional devel-
opment; and awareness around our theme.

The Center is composed of eleven integrated compo-
nents: five biomedical and environmental research projects,
two research support cores and four enrichment cores.
PROTECT encompasses five interrelated research projects.
Project 1 is a targeted molecular epidemiology study of
phthalate exposure and preterm birth in Puerto Rico. This
project is conducting a prospective cohort study to identify
novel risk factors for preterm birth, with a focus on exposure
to phthalates. It utilizes state-of-the-art methods to estimate
phthalate exposure and assess intermediate biomarkers of
effect, to provide much needed human data on environ-
mental and other predictors of preterm birth in Puerto Rico,
and the biological pathways involved. Project 2 on mech-
anistic toxicology explores toxicant activation of pathways
of preterm birth in gestational tissues. This project identifies
toxicological mechanisms for epidemiologic associations
between exposure to select environmental contaminants and
adverse birth outcomes through studies of toxicant actions
on placental and extraplacental tissues. Project 3 conducts
non-targeted chemical analysis with a focus on discovery of
xenobiotics associated with preterm birth. This project seeks
to discover xenobiotics that contribute to preterm birth by
advancing and applying non-targeted chemical analysis by
mass spectrometry to urine from pregnant women in Puerto
Rico, placenta (human and animal) and water (tap and
groundwater; before and after remediation). Project 4
focuses on fate and transport and studies dynamic transport
and exposure pathways of contaminants in karst ground-
water systems in Puerto Rico. This project is characterizing
the fate and transport regions and dynamic mechanisms
controlling the mobility, persistence, and potential pathways
of target contaminants toward exposure and/or remediation
zones in karst groundwater in Puerto Rico. Project 5
focuses on the development of a solar-powered remediation
process for contaminated groundwater. The project is
developing a novel, environmentally-friendly in situ
groundwater remediation technology using solar-powered
electrolysis to regulate groundwater redox for transforma-
tion of contaminants.

These projects are supported by a human subjects and
sampling research support core and by a data management
and modeling core which provides effective management of
collected data and modeling support. These projects have
common requirements of human subject recruitment, col-
lection of human and environmental samples, and manage-
ment of large volume of data and led to the development of
the Research Support Cores. The human subjects and sam-
pling core recruits pregnant women to the cohort, and col-
lects, stores and distributes biological and environmental
specimens and data for use by projects. The data manage-
ment and modeling core provides efficient collection,
cleaning, integration and effective management of biomed-
ical and environmental data being collected and analyzed
across the PROTECT Center. This core provides support for
modeling, GIS, multi-dimensional data mining and visual-
ization, and provide customized user interfaces for efficient
and accurate data entry and analysis.

The four enrichment cores include Administration that
provides integration, coordination, and operational support,
Training, a major component that ensures the development
of the next generation of researchers, Research Translation
that facilitates the application of research findings into
practice, and the Community Engagement Core that ensures
a direct connection to the communities of the Northern karst
region and the participants in the study with a model
report-back system. Figure 2 describes the interaction and
integration of the projects and cores into the overall PRO-
TECT model.

3 Integration of Disciplines

PROTECT’s strong integration of biomedical (epidemiol-
ogy, toxicology) and environmental (analytical chemistry,
engineering, hydrogeology) disciplines is evident in its
goals, each of which requires a highly collaborative
approach with significant interaction and sharing of samples,
testing and results (Fig. 3). The Research Support Cores are
a critical part of the interdisciplinary approach and of the
integration of the research activities across disciplines and
projects. The Data Management and Modeling Core,
through which the projects share and mine results, allows us
to test new hypotheses that are based on integration of the
multidisciplinary data from multiple projects. This core
provides a unified system for data entry, and supplies
complex multidisciplinary datasets in a readily usable for-
mat, as well as technical assistance with multi-layered data
management inquiries, and a centralized repository for all
data collected and analyzed (Fig. 4). Importantly, this core is
enabling us to cross-index these datasets, carry out database
queries and perform data mining, analysis and multilayered
mapping and modeling. The Human Subjects and Sampling
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Core systematically unifies the sampling process for all
projects. These samples, comprising tap water, groundwater,
urine, blood, hair, and placenta, although diverse and for
different projects, are consistently and uniquely indexed so
that data retrieval and mining is multidisciplinary and con-
sistent for all projects. Many of PROTECT’s key outcomes
rely on the ability to access both biomedical data and
environmental data in a unified, coherent data management
and assessment framework (Fig. 4). A critical advantage of
using a centralized data repository is the ability to evaluate
the relation between multiple causes. PROTECT has the
ability to assess cumulative and synergistic risk factors.

In addition to the significant role that the research support
cores play in integration of the projects, there are significant
bidirectional collaborations and integration directly among

the projects. Sharing of samples, data, and results is integral
to the projects. For example, the project on mechanistic
toxicology provides bidirectional collaboration with epi-
demiologic investigations and provides mechanistic links for
epidemiologic associations observed in the targeted epi-
demiologic project. Toxicology studies conducted in col-
laboration with the non-targeted analysis project identified
oxidative stress as a response produced by a phthalate
metabolite in human placental cells (Tetz et al. 2013a).
Stimulated by those findings, the targeted epidemiologic
studies found associations between urinary phthalate
metabolite concentrations and biomarkers of oxidative stress
(Ferguson et al. 2011, 2012). The mechanistic toxicology
project collaborates with non-targeted chemical analysis
project to provide further insight into toxicological

Fig. 3 Flow chart highlighting
relevance of the project to the
program

Fig. 2 PROTECT uses a holistic system of research, training, and stakeholder engagement to study contaminant exposure and its potential
contribution to preterm birth in Puerto Rico
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