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Preface 

The numerical simulation of combustion processes in internal combustion engines, including 

also the formation of pollutants, has become increasingly important in the recent years, and 

today the simulation of those processes has already become an indispensable tool when de-

veloping new combustion concepts. While pure thermodynamic models are well-established 

tools that are in use for the simulation of the transient behavior of complex systems for a long 

time, the phenomenological models have become more important in the recent years and have 

also been implemented in these simulation programs. In contrast to this, the three-

dimensional simulation of in-cylinder combustion, i.e. the detailed, integrated and continuous 

simulation of the process chain injection, mixture formation, ignition, heat release due to 

combustion and formation of pollutants, has been significantly improved, but there is still a 

number of challenging problems to solve, regarding for example the exact description of sub-

processes like the structure of turbulence during combustion as well as the appropriate choice 

of the numerical grid. 

While chapter 2 includes a short introduction of functionality and operating modes of internal 

combustion engines, the basics of kinetic reactions are presented in chapter 3. In chapter 4 the 

physical and chemical processes taking place in the combustion chamber are described. Chap-

ter 5 is about phenomenological multi-zone models, and in chapter 6 the formation of pollut-

ants is described. In chapter 7 and chapter 8 simple thermodynamic models and more com-

plex models for transient systems analyses are presented. Chapter 9 is about the three-

dimensional simulation of combustion processes in engines. 

We would like to thank Dr. B. Settmacher for reviewing and formatting the text, for preparing 

the layout, and for preparing the printable manuscript. Only due to her unremitting dedication 

and her excellent time management the preparation of this book has been possible in the 

given timeframe. Further on, we would also like to thank Mrs. C. Brauer for preparing all the 

figures and diagrams contained in this book. The BMW group and the DaimlerChrysler AG 

contributed to this book by releasing the figures they provided. Last but not least, we would 

like to thank the Springer-Verlag for the always excellent collaboration. 

This book is largely a translation of the second German edition, which has been published in 

2004 by the B.G. Teubner-Verlag, whereas the text has been updated if necessary. We would 

like to thank Mr. Aaron Kuchle for translating the text into English. 

Hannover/München/Friedrichshafen/Stuttgart, July 2005 Günter P. Merker 

 Christian Schwarz

 Gunnar Stiesch 

Frank Otto 
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1  Introduction 

1.1  Preface 

One of the central tasks of engineering sciences is the most possibly exact description of 

technical processes with the goal of understanding the dynamic behavior of complex systems, 

of recognizing regularities, and thereby of making possible reliable statements about the fu-

ture behavior of these systems. With regard to combustion engines as propelling systems for 

land, water, and air vehicles, for permanent and emergency generating sets, as well as for air 

conditioning and refrigeration, the analysis of the entire process thus acquires particular im-

portance.

In the case of model-based parameter-optimization, engine behavior is described with a 

mathematical model. The optimization does not occur in the real engine, but rather in a 

model, which takes into account all effects relevant for the concrete task of optimization. The 

advantages of this plan are a drastic reduction of the experimental cost and thus a clear saving 

of time in developmental tasks, see Kuder and Kruse (2000). 

The prerequisite for simulation are mechanical, thermodynamic, and chemical models for the 

description of technical processes, whereby the understanding of thermodynamics and of 

chemical reaction kinetics are an essential requirement for the modeling of motor processes. 

1.2  Model-building 

The first step in numeric simulation consists in the construction of the model describing the 

technical process. Model-building is understood as a goal-oriented simplification of reality 

through abstraction. The prerequisite for this is that the real process can be divided into single 

processual sections and thereby broken down into partial problems. These partial problems 

must then be physically describable and mathematically formulatable. 

A number of demands must be placed upon the resulting model: 

• The model must be formally correct, i.e. free of inconsistencies. As regards the question of 

"true or false", it should be noted that models can indeed be formally correct but still not 

describe the process to be investigated or not be applicable to it. There are also cases in 

which the model is physically incorrect but nevertheless describes the process with suffi-

cient exactness, e.g. the Ptolemaic model for the simulation of the dynamics of the solar 

system, i.e. the calculation of planetary and lunar movement. 

• The model must describe reality as exactly as possible, and, furthermore, it must also be 

mathematically solvable. One should always be aware that every model is an approxima-

tion to reality and can therefore never perfectly conform with it. 

• The cost necessary for the solution of the model with respect to the calculation time must 

be justifiable in the context of the setting of the task. 

• With regard to model-depth, this demand is applicable: as simple as possible and as com-

plex as necessary. So-called universal models are to be regarded with care. 
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It is only by means of the concept of model that we are in the position truly to comprehend 

physical processes. 

In the following, we will take a somewhat closer look into the types of models with regard to 

the combustion engine. It must in the first place be noted that both the actual thermodynamic 

cycle process (particularly combustion) and the change of load of the engine are unsteady 

processes. Even if the engine is operated in a particular operating condition (i.e. load and 

rotational speed are constant), the thermodynamic cycle process runs unsteadily. With this, it 

becomes obvious that there are two categories of engine models, namely, such that describe 

the operating condition of the engine (total-process models) and such that describe the actual 

working process (combustion models). 

With respect to types of models, one distinguishes between: 

• linguistic models, i.e. a rule-based method built upon empirically grounded rules, which 

cannot be grasped by mathematical equations, and 

• mathematical models, i.e. a method resting on mathematical formalism. 

Linguistic models have become known in recent times under the concepts "expert systems" 

and "fuzzy-logic models". Yet it should thereby be noted that rule-based methods can only 

interpolate and not extrapolate. We will not further go into this type of model. 

Mathematical models can be subdivided into: 

• parametric, and 

• non-parametric 

models. Parametric models are compact mathematical formalisms for the description of sys-

tem behavior, which rests upon physical and chemical laws and show only relatively few 

parameters that are to be experimentally determined. These models are typically described by 

means of a set of partial or normal differential equations. 

Non-parametric models are represented by tables that record the system behavior at specific 

test input signals. Typical representatives of this type of model are step responses or fre-

quency responses. With the help of suitable mathematical methods, e.g. the Fourier transfor-

mation, the behavior of the system can be calculated at any input signal. 

Like linguistic models, non-parametric models can only interpolate. Only mathematical mod-

els are utilized for the simulation of the motor process. But because the model parameters 

must be adjusted to experimental values in the case of these models as well, they are funda-

mentally error-prone. These errors are to be critically evaluated in the analysis of simulation 

results. Here too, it becomes again clear that every model represents but an approximation of 

the real system under observation. 

1.3  Simulation 

For the construction of parametric mathematical models for the simulation of temporally and 

spatially variable fluid, temperature, and concentration fields with chemical reactions, the 

knowledge of thermodynamics, fluid dynamics, and of combustion technology is an essential 

prerequisite, see Fig. 1.1. 
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Fig. 1.1:  Area of knowledge important for process simulation 

With respect to the simulation of fluid fields with chemical reactions, it should be noted that 

physical and chemical processes can progress at very different temporal and linear scales. The 

description of these process progressions is usually simpler when the time scales are much 

different, because then simplifying assumptions can be made for the chemical or physical 

process, and it is principally very complex when the time scales are of the same order of mag-

nitude. This is made clear by means of the examples in Fig. 1.2. 
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Fig. 1.2:  Time scales of physical and chemical processes influencing process simulation
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Yet in addition, knowledge of modeling methods is also necessary. Although some universally 

valid rules can be given for this, this step allows a lot of free room for the creativity and 

imagination of the modeler. Essentially, the modeling procedure can be subdivided into the 

following steps: 

1st step: define the system and boundaries from the environment, determine the relevant 

reservoirs as well as the mass and energy flow between them. 

2nd step: draw up balance sheets according to the unified scheme: temporal change of the 

reservoir is equal to the inflow minus the outflow. 

3rd step: with the help of physical laws, describe the mass and energy flows. 

4th step: simplify the resulting model, if necessary by neglecting secondary influences. 

5th step: integrate the model numerically, i.e. execute the simulation. 

6th step: validate the model, compare the calculated data with experimentally obtained data. 

In the utilization of an existing simulation program for the solution of new tasks, the prereq-

uisites which were met in the creation of the model must always be examined. It should 

thereby be clarified whether and to what extent the existing program is actually suitable for 

the solution of the new problem. One should in such cases always be aware of the fact that 

"pretty, colorful pictures" exert an enormous power of suggestion upon the "uncritical" ob-

server. 

The prerequisite for the acceptance of what we nowadays designate as computer simulation 

was a gradual alteration in philosophical thought and in the conceptualization and understand-

ing of the world in which we live. In the past, humanity perceived the world and its processes 

predominately as linear and causal, and we are gradually comprehending the decisive proc-

esses flow in a non-linear and chaotic fashion. Only with the rise of the sciences and with the 

development of their methodological foundations could the basis for computer simulation be 

created.

Numeric simulation opens up unimagined possibilities. We can get an idea of what is to be 

expected in this field if we bear in mind the rapid development in the information sector and 

compare the present condition of "email" and the "internet" with that of ten years past. 

With respect to technological progress and the ecological perspectives related to it, the reader 

is referred to Jischa (1993). Also, Kaufmann and Smarr (1994) have provided interesting 

insight into the topic of simulation. 



2  Introduction into the functioning of internal com-
bustion engines 

2.1  Energy conversion 

In energy conversion, we can distinguish hierarchically between general, thermal, and motor 

energy conversion. 

Under general energy conversion is understood the transformation of primary into secondary 

energy through a technical process in an energy conversion plant, see Fig. 2.1. 
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Fig. 2.1: Diagram of general energy conversion

Thermal energy conversion is subject to the laws of thermodynamics and can be described 

formally, as is shown in Fig. 2.2. 
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Fig. 2.2:  Diagram of thermal energy conversion

The internal combustion engine and the gas turbine are specialized energy conversion plants, 

in which the chemical energy bound in the fuel is at first transformed into thermal energy in 
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the combustion space or chamber, this being then transformed into mechanical energy by the 

motor. In the case of the stationary gas turbine plant, the mechanical energy is then converted 

into electrical energy by the secondary generator.  
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Internal
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Gas
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Fig. 2.3:  Diagram of energy conversion in an internal combustion engine or gas turbine

2.2  Reciprocating engines 

Internal combustion engines are piston machines, whereby one distinguishes, according to the 

design of the combustion space or the pistons, between reciprocating engines and rotary en-

gines with a rotating piston movement. Fig. 2.4 shows principle sketches of possible struc-

tural shapes of reciprocating engines, whereby today only variants 1, 2, and 4 are, practically 

speaking, still being built.

1

2

3 5

4

1 In-lineengine
2 V-engine

3 Radial engine
4 Flat engine

Multi-pistonunits:
5 Dual-pistonengine
6 Opposedpistonengine

6

Fig. 2.4:  Types of reciprocating engines 
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For an extensive description of other models of the combustion engine, see Basshuysen and 

Schäfer (2003) and Maas (1979). 

2.2.1  The crankshaft drive 

The motor transforms the oscillating movement of the piston into the rotating movement of 

the crankshaft, see Fig. 2.5. The piston reverses its movement at the top dead center (TDC) 

and at the bottom dead center (BDC). At both of these dead point positions, the speed of the 

piston is equal to zero, whilst the acceleration is at the maximum. Between the top dead cen-

ter and the underside of the cylinder head, the compression volume cV  remains (also the so-

called dead space in the case of reciprocating compressors). 
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Fig. 2.5:  Assembly of the reciprocating engine 

Fig. 2.6 shows the kinematics of a crankshaft drive with crossing, in which the longitudinal 

crankshaft axle does not intersect with the longitudinal cylinder axle, but rather is displaced

by the length e .


