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Abstract

A suspension system is an essential element of a vehicle to isolate the frame of the

vehicle from road disturbances. It is required to maintain continuous contact

between a vehicle’s tyres and the road. In order to achieve the desired ride comfort

and road handling performance, many types of research have been conducted. A

new modified skyhook control strategy with an adaptive gain that dictates the

vehicle’s semi-active suspension system is presented. The proposed closed-loop

feedback system first captures the road profile input over a certain period. Then it

calculates the best possible value of the skyhook gain for the subsequent process.

Meanwhile, the system is controlled according to the new modified skyhook control

law using an initial or previous value of the skyhook gain. In this book, the proposed

suspension system is compared with passive and three other recently reported

skyhook controlled semi-active suspension systems through a virtual environment

with MATLAB/Simulink as well as an experimental analysis with Quanser sus-

pension plant. Its performances have been evaluated in terms of ride comfort and

road handling performance. The model has been validated in accordance with the

international standards of admissible acceleration levels ISO2631 and human

vibration perception. This control strategy has also been employed on the full car

model to improve the isolation of the vibration and handling performance of the

road vehicle.

This book also describes the development of a new analytical full vehicle model

with nine degrees of freedom, which uses the new modified skyhook strategy to

control the full vehicle vibration problem. Nowadays, many researchers are work-

ing on active tilting technology to improve vehicle cornering. But in those work, the

effect of road bank angle is not considered in the control system design or in the

dynamic model of the tilting standard passenger vehicles. The non-incorporation of

road bank angle creates a non-zero steady-state torque requirement. Therefore, in

this manuscript, this phenomenon was addressed while designing the direct tilt

control and the dynamic model of the full car model.

ix



This book has indicated the potential of the SKDT suspension system in improv-

ing cornering performances of the vehicle and paves the way for future work on

vehicle’s integrated system for chassis control.

Keywords Quarter-car • Vehicle • Suspension • Semi-active • Skyhook •

Adaptive • Control • Damper • Quanser
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Chapter 1

Introduction

Abstract In this chapter, background of this book has been described. Motivation

and methodologies has been depicted in the later section. A brief outline of this

manuscript has been included in the last section.

1.1 Background

One of the most important considerations of the present automotive industry is to

provide passenger safety, through optimal ride comfort and road holding, for a large

variety of vehicle manoeuvres and road conditions. The comfort and safety of the

passenger travelling in a vehicle can be improved by minimizing the body vibra-

tion, roll and heave of the vehicle body through an optimal road contact for the

tyres. The system in the vehicle that provides these actions is the vehicle suspen-

sion, i.e. a complex system consisting of various arms, springs and dampers that

separate the vehicle body from the tyres and axles (Fig. 1.1). In general, vehicles are

equipped with fully passive suspension systems due to their low cost and simple

construction. The passive suspension consists of springs, dampers and anti-roll bars

with fixed characteristics. The major drawback of the passive suspension design is

that you cannot simultaneously maximize both vehicle ride and handle perfor-

mance. To achieve better ride performance, a “soft” suspension needs to be

introduced to maintain contact between the vehicle body and the tyre. The “soft”

suspension easily absorbs road disturbances. That is why most of the luxury cars

employ “soft” suspensions to provide a comfortable ride. The second characteristic

of vehicle performance is the road handling. This refers to a vehicle’s ability to

maintain contact between the vehicle’s tyre and the road during turns and other

dynamic manoeuvres. This can be achieved by “stiff” suspensions as seen in sports

cars. The challenge of the passive suspension system is in achieving the right

compromise between the two characteristics of vehicle performance which will

best suit the targeted consumer. However, by introducing the active or semi-active

suspension system in the vehicle (Fig. 1.2), a more desirable compromise can be

achieved between the benefits of the soft and stiff suspension system.

The active or semi-active suspension systems are incorporated with the active

components, such as actuators and semi-active dampers, coupled with various
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dynamic control strategies. With active components, these systems can provide

adjustable spring stiffness and damping coefficients adapted to various road

conditions.

Since the early 1970s, many types of active and semi-active suspension systems

have been proposed to achieve better control of damping characteristics. Although

the active suspension system shows better performance in a wide frequency range,

its implementation complexity and cost prevent wider commercial applications.

That is why the semi-active suspension system has been widely studied to achieve

Fig. 1.1 Rear suspension system without wheel of a vehicle

Fig. 1.2 The passive, semi-active and active suspension system
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high levels of performance in terms of vehicle suspension system. To control the

damper of the semi-active suspension system, many control strategies including

skyhook surface sliding mode control [1], neural network control [2], H-infinity

control [3], skyhook control, ground hook control, hybrid control [4, 5], fuzzy logic

control [6, 7], neural network-based fuzzy control [8], neuro-fuzzy control [9],

discrete time fuzzy sliding mode control [10], optimal fuzzy control [11], and

adaptive fuzzy logic control [12, 13] have been explored. Between all of the

above control systems, the skyhook control proposed by Karnopp et al. in 1974

[14] is widely used since it yields the best compromise between vehicle perfor-

mance and practical implementation of semi-active suspension systems.

In the past few decades, researchers have modified the basic skyhook control

strategy by adding some variations and have named them optimal, modified or

adaptive type skyhook control strategies [15, 16]. But in most of these studies,

skyhook gain (SG) of the control strategy remains as a constant value, and it is

usually chosen from a set of values as suited for the vehicle in the simulation

environment. One of the major goals of this manuscript is to present a new modified

skyhook control strategy with adaptive SG.

This control strategy has also been employed on the full car model to improve

the isolation of the vibration and handling the performance of the road vehicle. The

full car model designed in this manuscript has nine degrees of freedom, and those

are the heave modes of four wheels and the heave, lateral, roll, pitch and yaw modes

of the vehicle body.

Nowadays, some researchers have focused on active steering control to improve

vehicle cornering [17–19]. Three types of active steering control strategies have

been proposed. These are the four-wheel active steering system (4WAS), the front

wheel active steering system (FWAS) and the active rear wheel steering system

(RWAS). The four-wheel active steering system (4WAS) is the combination of the

rear active steering system and the front active steering system. In the FWAS

system, the front wheel steer angle is determined by the steering angle generated

due to the driver’s direct steering input and a resultant corrective steering angle

input that is produced by the design of the active front wheel steering controller.

Vehicle performance during cornering has been improved by most of the car

manufacturers by using electronic stability control (ESC). Car manufacturers use

different brand names for ESC, such as Volvo named it DSTC (Dynamic Stability

and Traction Control); Mercedes and Holden called it ESP (Electronic Stability

Program); and DSC (Dynamic Stability Control) is the term used by BMW and

Jaguar, but despite the term used, the processes are almost the same. To avoid

oversteering and understeering during cornering, ESC extends the brake and dif-

ferent torque on each wheel of the vehicle. But ESC reduces the longevity of the

tyre as the tyre skids while random braking. To overcome this problem, a vehicle

can be tilted inward via an active or semi-active suspension system.

The concept of “active tilting technology” has become quite popular in narrow

tilting road vehicles and modern railway vehicles. Now in Europe, most new high-

speed trains are fitted with active tilt control systems, and these trains are used as

regional express trains [20, 21]. To tilt the train inward during cornering, tilting

1.1 Background 3



actuators are used as an element of the secondary active suspension system. These

actuators are named as bolsters. In a road vehicle, actuators are also used to affect

the vehicle roll angle via an active suspension system. Since the beginning of the

1950s, there has been extensive work done in developing the narrow tilting vehicle

by both the automotive industry [22–25] and academic researchers [26–30].

This particular small and narrow geometric property of the vehicle poses stabil-

ity problems when the vehicle needs to corner or change a lane. There are also two

types of control schemes that have been used to stabilize the narrow tilting vehicle.

These control schemes are defined as direct tilt control (DTC) and steering tilt

control (STC) systems as detailed in [27, 31, 32]. A typical passenger vehicle body

can be tilted up to ten degrees as the maximum suspension travel is around 0.25 m.

Then, the lateral acceleration of the tilted vehicle caused by gravity can reach a

maximum of about 0.17 g [33]. Since the lateral acceleration produced by normal

steering manoeuvres is around 0.3–0.5 g, the active or semi-active suspension

systems have the potential of improving vehicle ride handling performance

[33]. Semi-active or active suspension systems can act promptly to tilt the vehicle

with the help of semi-active dampers or actuators. However, the active suspension

systems need to avoid over-sensitive reaction to driver’s steering commands for

vehicle safety. Recently Bose Corporation presented the Bose suspension system

[34] in which the high-bandwidth linear electromagnetic dampers improved vehicle

cornering. It is able to counter the body roll of the vehicle by stiffening the

suspension while cornering. Car giant Nissan has developed a four-wheeled ground

vehicle named Land Glider [35]. The vehicle body can lean into a corner up to 17�

for sharper handling considering the speed, steering angle and yaw rate of the

vehicle. In addition, in the works stated above and other research, the effect of road

bank angle is neither considered in the control system design nor in the dynamic

model of the tilting standard passenger vehicles [26, 27, 31, 32, 36–44]. Not

incorporating the road bank angle creates a non-zero steady-state torque require-

ment. So this phenomenon needs to be addressed while designing the tilt control

and the dynamic model of the full car model. To lean a vehicle which incorporates

the road bank angle, the response time of the actuator or semi-active damper plays

an important role.

The majority of the semi-active suspension systems use pneumatic or hydraulic

solutions as the actuator or semi-active damper [45–49]. These systems are char-

acterized by high force and power densities but suffer from low efficiencies and

response bandwidths. Commercial systems incorporating electromagnetic elements

(combine rotary actuators and mechanical elements) illustrate the properties of the

magneto-rheological fluids in damper technology to provide adjustable spring

stiffness. However, linear electromagnetic actuators appear as a better solution

for a semi-active suspension system in respect of their high force densities, form

factor, and response bandwidth. The motivation and the methodology of this

manuscript are described in the next section.
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