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Abstract

The study of cuprate high-temperature superconductors has undergone a recent
resurgence due to the discovery of charge order in several families of cuprate
materials. While its existence is now well established, little is known about its
microscopic origins or its relationship to high-temperature superconductivity and
the pseudogap. The aim of the research presented in this thesis is to address these
questions.

In this thesis, I will report on the use of spectroscopic imaging scanning tun-
neling microscopy (SI-STM) to visualize the short-ranged charge density wave
(CDW) in Bi2Sr2CaCu2O8þ – and NaxCa2�xCuO2Cl2. Building on previous mea-
surements of the intra-unit-cell electronic structure of cuprates, I introduce
sub-lattice segregated SI-STM to individually address the atomic sub-lattices in the
CuO2 plane with spatial phase sensitivity. Using this technique, I establish that the
CDW in Bi2Sr2CaCu2O8þ – and NaxCa2�xCuO2Cl2 has a previously unobserved
d-symmetry form factor, where a breaking of rotational symmetry within the unit
cell is modulated periodically in space.

Toward identifying a mechanism of CDW formation, I establish that the
amplitude of CDW modulations in the electronic structure is maximal at the
pseudogap energy scale and that these modulations exhibit a spatial phase differ-
ence of … between filled and empty states. Together with the doping evolution
of the CDW wave vector, this highlights the role of the low-energy electronic
structure of the pseudogap regime in CDW formation.

To elucidate the relationship between the CDW and the superconducting con-
densate, I will introduce nanometer resolution scanned Josephson tunneling
microscopy (SJTM). In this approach, the Cooper-pair (Josephson) tunneling cur-
rent between a Bi2Sr2CaCu2O8þ – sample and a scannable Bi2Sr2CaCu2O8þ –

nano-flake STM tip is used to directly visualize the superconducting condensate.
I will report the observation of a periodic modulation in the Cooper-pair condensate
at the same wave vector as the CDW, the first direct detection of a periodically
modulating condensate in any superconductor.
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Chapter 1
Introduction to Unconventional
Superconductivity and Density Waves
in Cuprates

Superconductors, known for their ability to conduct electricity without resistance,
are fairly common in nature. This is a result of the fact that, despite the strong
interactions between their electrons, most of the metals we know can be described
by a liquid of electron-like quasi-particles. This liquid, known as a Fermi liquid, is
intrinsically unstable to the formation of superconductivity. The vastmajority of these
superconductors only superconduct below a transition temperature which is within
a few degrees of absolute zero, limiting their widespread commercial exploitation.

This thesis concerns a family of superconductors whose superconducting transi-
tion temperatures were unprecedentedly high upon their discovery by Bednorz and
Muller in 1986 [1]. These materials, known as cuprates because their common con-
stituents are copper and oxygen, won Bednorz and Muller the 1987 Nobel Prize for
Physics for their discovery [2]. Although the cuprates lost their status as the highest
temperature superconductors in the past couple of years to hydrides at ultra-high
pressures, they retain the name “high temperature superconductors” and are still a
system of unparalleled interest [3]. The high transition temperatures of the hydrides
seems to be well understood in terms of extensions of traditional theory, but the
mechanism of the more exotic superconductivity in cuprates is still the subject of
active debate.

In addition to superconductivity, the cuprates also exhibit what is called a charge
density wave (CDW). In a CDW the charge density in the material modulates with a
periodicity that is different from that of the material’s crystal structure. In this thesis
I utilise recent developments in scanning tunnelling microscopy (STM), and develop
nanometer-resolution scanned Josephson tunnelling microscopy (SJTM) with the
aim of elucidating the role of CDW in the physics of these materials.
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2 1 Introduction to Unconventional Superconductivity …

1.1 Superconductivity

1.1.1 What Is a Superconductor?

The concept of spontaneous symmetry breaking is a cornerstone of 20th century
physics [4]. In condensed matter physics we have chosen to classify different phases
of matter by the symmetries they break. If the state of a system is not invariant under
an element of the symmetry group of the Hamiltonian to which it is a statistical
solution, then it is said to break the corresponding symmetry.

As an example take amacroscopic number of particles in free spacewhich interact
with each other. The Hamiltonian which governs these particles is invariant under
spatial translations. However, the particles could condense into a crystal. This is
clearly a state which breaks translational symmetry as depicted in Fig. 1.1 in one
dimension.

The crystal has broken translational symmetry by “choosing” where to fix the
j th particle in space, the positions of the others following directly from the lattice
constant a0 in a perfect crystal. Any choice of position for this first particle would
have resulted in a state with the same free energy. The crystal has spontaneously
broken translational symmetry by its choice of a position for the j th particle from a
degenerate manifold.

We can expand the density of particles in Fourier components,

〈n(x)〉 = n0 + Re{nQ(x)eiQx } + . . . , (1.1)

where Q = 2π/a0. The complex field nQ(x) = |nQ(x)|ei arg{nQ(x)} is a sensible
choice of order parameter for our crystalline phase. It will be zero above the melting
temperature of the crystal and non-zero below. In this language, choosing a particular
position for the j th particle corresponds to choosing a particular phase of nQ(x),
φ(x) = arg{nQ(x)}. This corresponds to spontaneously breaking a U(1) symmetry.
The concept of spatial phase in a crystal will be a key theme in this thesis which I
will return to in Chaps. 3 and 4, where the spatial phase sensitivity of spectroscopic-
imaging STM (SI-STM) will be used to probe the intra unit cell electronic structure
of cuprates.

Part of the utility of the classifying phases of matter by their broken symmetries is
that the broken symmetry has an attendant generalised rigidity [4], i.e. a stiffness to

Fig. 1.1 Cartoon one-dimensional crystal with lattice constant a0. The distance between the j th
and j + 1th particle is stretched by a distance �x

http://dx.doi.org/10.1007/978-3-319-65975-6_3
http://dx.doi.org/10.1007/978-3-319-65975-6_4


1.1 Superconductivity 3

spatial gradients in the order parameter. For the crystal there is a very tangible rigidity
to changing the separation between any two atoms, akin to stretching a spring. If we
consider the order parameter description of this crystal then we can recast this as
a phase rigidity. To change the distance between two particles, j and j + 1 by an
amount �x requires a phase gradient φ(x j+1) − φ(x j ) = Q�x , for which there is
an energy cost.

If we make the constraint that the order parameter amplitude is spatially uniform
so that nQ(x) = |n0|eiφ(x) we can make the following expansion of the free energy

F[φ(x)] = F0 +
∫

dxK (∇φ(x))2 + . . . (1.2)

where K is a positive constant and F0 is the energy of the uniform crystal. Here there
is a clear energy cost to gradients in φ(x); a phase rigidity. Viewed this way, that fact
that crystals behave like rigid bodies is a natural consequence of their phase stiffness,
which in turn is a direct consequence of breaking translational symmetry.

For a superconductor the relevant broken symmetry of the Hamiltonian is a global
phase symmetry. This is the invariance of the Hamiltonian under a transformation
of the quasi-particle operators of the form ψ̂†(�r) → eiθψ̂†(�r), as must be the case
if the number of particles is conserved. What are the consequences of breaking this
symmetry?

An order parameter describing this phase would be a complex scalar field of
the form �(�r) = |�(�r)|eiφ(�r). If this order parameter is non-zero then everywhere
this state breaks the U(1) phase symmetry of the Hamiltonian. We can construct a
Ginzburg–Landau expansion of the Helmholtz free energy functional in this order
parameter

F[�(�r)] =
∫

d3�rα(T −Tc)|�(�r)|2+ β

2
|�(�r)|4+ 1

2m
|
(
−i�∇ − 2e �A

)
�(�r)|2+ | �B|2

2μ0
+. . .

(1.3)
where �A is the magnetic vector potential and �B = ∇ × �A [5]. This is the simplest
expansion of an electrically charged complex scalar field that is gauge invariant. In
anticipation of the microscopic description of a superconductor in terms of Cooper-
pairs of electrons I have given the field a charge 2ewhere e is the electron charge. That
the field is scalar implies that these Cooper-pairs are in a spin-singlet state. Below
a critical temperature Tc the order parameter � will become non-zero to minimise
this free energy.

Now consider the case where the order parameter amplitude is everywhere con-
stant so that �(�r) = |�0|eiθ(�r). We can write the free energy functional as,

F[θ(�r)] = F0 + ρs

∫
d3�r

(
∇θ(�r) + 2e

�

�A
)2

+ . . . , (1.4)

with F0 the free energy of the uniform superconducting state and ρs , the superfluid
stiffness, given by
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ρs = �
2

2m
|�0|2 . (1.5)

It is informative at this point to revisit the discussion of crystallisation and the
analogies that can be drawn between that process and the formation of the supercon-
ducting condensate. The 1D crystal considered above breaks a global U(1) symmetry
by choosing a lattice phase. This broken symmetry results in a generalised rigidity,
a rigidity against deforming the inter-particle separation from its equilibrium value.
This can be expressed as a phase stiffness. This phase stiffness essentially defines
this 1D crystalline state of matter.

The same is true of the superconductor. It breaks a U(1) phase symmetry resulting
in a stiffness, ρs , to gradients in the phase of the order parameter θ(�r). Below I will
show that the physical properties of a superconductor follow immediately from this
broken phase symmetry and its resultant phase stiffness. This phase stiffness is the
defining property of a superconductor.

Making a Legendre transformation, g = f −μ0 �H · �B, of Eq.1.4 to the Gibbs free
energy and minimising with respect to variations δ �A yields a current

�js = −2e

�
ρs

(
∇θ(�r) + 2e

�

�A
)

. (1.6)

This expression has profound consequences.
The first is that superconductors should expel magnetic flux from their bulk: the

Meissner effect [6]. To see this we can take the curl of both sides resulting in the
following differential equation for the magnetic field

∇2 �B = �B
λ2

, (1.7)

where λ = √
�2/4μ0e2ρs is a phenomenological constant called the penetration

depth. This implies that magnetic fields must exponentially decay into the bulk of a
superconductor over a length scale λ. Thus superconductors expel magnetic fields
from their bulk.

To act as perfect diamagnets and expel magnetic fields from their bulk, super-
conductors must produce screening currents that oppose an applied magnetic field.
These must be equilibrium currents, implying that they experience zero resistance.
These zero resistance equilibrium currents suggest the possibility of non-equilibrium
currents with zero resistance which are a hallmark of superconductivity and give it
its name.

A zero resistance transport current, the passing of current without any voltage
dropped, was measured by Kamerlingh Onnes in mercury in 1911, heralding the
discovery of superconductivity [7]. Clearly this property is remarkable and of great
technological importance. However, it is not fundamental to superconductivity in the
way that the equilibrium screening currents of the Meissner effect are.
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1.1.2 BCS Theory of Superconductivity

Having considered what a superconductor is from a phenomenological point of view,
I now turn to a microscopic description of such a state. Key insight into this came
in 1957 with a paper from Bardeen, Cooper and Schrieffer, the exposition of what is
now called the BCS theory of superconductivity [8].

Prior to this Cooper had shown that, in the presence of a Fermi surface and arbi-
trarily weak attractive interactions, two quasi-particles with opposite momenta are
unstable to the formation of a bound state or Cooper pair. One way of demonstrat-
ing this instability of the Fermi liquid is to calculate the particle-particle (pairing)
susceptibility within the random phase approximation (RPA),

χpp(�q,ω) = χ0
pp(�q,ω)

1 + gχ0
pp(�q,ω)

, (1.8)

which measures the response to a field that acts to pair particles [9]. Here g is an
effective point-like interaction between Fermi liquid quasi-particles with spin σ of
momentum �k and energy εσ,�k . χ0

pp is the bare (non-interacting) susceptibility,

χ0
pp(�q = 0,ω) = 1

�

∑
�k

f (εσ,�k) − f (−εσ−�k)
�ω − εσ,�k − ε−σ,−�k + i0+ , (1.9)

where f (εσ,�k) is the occupation factor of a quasi-particle state labelled by �k and σ
and � is the volume of the system.

In the limit where ω, �q → 0

χ0
pp(�q = 0,ω = 0) ∼ N (ε = 0) log(�/T ) . (1.10)

Here N (ε = 0) is the density of states of the Fermi energy and� is an ultra-violet cut-
off [9]. Equation1.10 shows that χ0

pp(�q = 0,ω = 0) is positive and logarithmically
divergent with decreasing temperature. This results from the fact that, in the presence
of time reversal symmetry, εσ,�k = ε−σ,−�k . Examination of Eq.1.8 then shows that for
any arbitrarily small attractive interaction (g < 0) the particle-particle susceptibility
will diverge at non-zero temperature. This signals an intrinsic instability of the metal
towards forming Cooper pairs.

In the simplest case, the wave-function of the Cooper-pair can be written as a
product of orbital and spin parts. Anti-symmetry under exchange then dictates that
if the pair is in a spin-singlet state it must have an even parity orbital wave-function.
If the pair is a spin-triplet state it must have an odd parity orbital wave-function. If
we were to expand the orbital wave-function in spherical harmonics (which is valid
in free space), spin-singlet pairs will have angular momentum quantum number
l = 0, 2, . . . which we call s- and d-wave respectively, by analogy with the orbitals
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of the hydrogen atom. Likewise, spin-triplet superconductors will have l = 1, 3, . . .
corresponding to p- and f -wave respectively.

With the insight that the Fermi liquid is unstable to the formation of Cooper-
pairs in the presence of an attractive interaction, Bardeen, Cooper and Schrieffer
considered the equivalent of the Hamiltonian,

Ĥ =
∑
�kσ

ε�k ĉ
†
�kσ ĉ�kσ +

∑
�k �q

V�k �q ĉ
†
�k↑ĉ

†
−�k↓ĉ−�q↓ĉ−�q↑, (1.11)

where

V�k �q =
{

−V if |ε�k | and |ε�q | ≤ �ωc

0 otherwise
(1.12)

so that there is an attractive interaction between quasi-particles up to a energy cut-off
�ωc away from the Fermi energy. It is manifest in the form of the interaction chosen
that any Cooper pairs formed will be of the spin-singlet type and thus must have an
even parity orbital wave-function.

Anticipating the formation of a condensate of Cooper-pairs BCS introduced the
variational wave-function,

|�BCS〉 =
∏

�k

(
|u�k | + |v�k |eiθ ĉ†�k↑ĉ

†
−�k↓

)
|0〉 , (1.13)

where |u�k |2 + |v�k |2 = 1, θ is an arbitrary phase factor and |0〉 corresponds a sea
of Fermi liquid quasi-particle states filled up to the Fermi wave-vector �kF [8]. This
many-body wave-function takes the form of a superposition of a filled Fermi surface
plus a Fermi surface with 0, 1, 2,…Cooper pairs. Making a connection with the
previous section, this is a coherent state of Cooper pairs, with minimum uncertainty
in the phase and indefinite particle number. It thus manifestly breaks phase symmetry
and we can associate θ with the phase of the condensate.

BCSwent on to find the parameters u�k and v�k of the ground state by the variational
method. In Chap.2 we will need to calculate the single-particle tunnelling current
between a superconductor and either a normal metal or another superconductor. For
this we will need to know the single-particle excitation spectrum of the superconduc-
tor. To calculate this one can follow Bogoliubov [10] who considered the following
mean-field decoupling of Eq.1.11

Ĥ =
∑
�kσ

ε�k ĉ
†
�kσ ĉ�kσ +

∑
�kσ

��k ĉ
†
�k↑ĉ

†
−�k↓ + �∗

�k ĉ−�k↓ĉ−�k↑ , (1.14)

with mean-field ��k given by the self-consistency condition

��k =
∑

�q
V�k �q〈ĉ−�q↓ĉ�q↑〉 . (1.15)
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