VOLUME I & II

FRUIT AND FRUIT AND VEGETABLE PHYTOCHEMICALS

CHEMISTRY AND HUMAN HEALTH

EDITED BY ELHADI M. YAHIA

WILEY Blackwell

Fruit and Vegetable Phytochemicals

Fruit and Vegetable Phytochemicals

Chemistry and Human Health

Edited by Elhadi M. Yahia Faculty of Natural Sciences, Autonomous University of Querétaro, Mexico

Second Edition

Volume I & II

WILEY Blackwell

This edition first published 2018

© 2018 John Wiley & Sons Ltd

First edition published 2010 by Blackwell Publishing

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Elhadi M. Yahia to be identified as the editor of this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The publisher and the authors make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or website is referred to in this work as a citation and/or potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this works was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising here from.

Library of Congress Cataloging-in-Publication Data

Names: Yahia, Elhadi M., editor.

Title: Fruit and vegetable phytochemicals : chemistry and human health / edited by Elhadi M. Yahia, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro.

Description: 2nd edition. | Chichester, UK ; Hoboken, NJ : John Wiley & Sons Ltd, 2018. |

Enlarged edition of: Fruit and vegetable phytochemicals : chemistry, nutritional value and stability / [editors] Laura A. de la Rosa, Emilio Alvarez-Parrilla, Gustavo A. Gonzalez-Aguilar. Ames, Iowa : Wiley-Blackwell, 2010 | Includes index. |

Identifiers: LCCN 2017001113 (print) | LCCN 2017014328 (ebook) | ISBN 9781119157960 (pdf) | ISBN 9781119157977 (epub) | ISBN 9781119157946 (cloth)

Subjects: LCSH: Phytochemicals. | Phytochemicals–Health aspects. | Fruit–Health aspects. | Vegetables–Health aspects. | Fruit–Postharvest physiology. | Vegetables–Postharvest physiology.

Classification: LCC QK898.P764 (ebook) | LCC QK898.P764 F78 2017 (print) | DDC 572/.2-dc23

LC record available at https://lccn.loc.gov/2017001113

[9781119157946]

Cover Design: Wiley

Cover Images: (Background) © Larry Washburn/Gettyimages; (Chemical structure) © chromatos/Shutterstock; (Inset images: From left to right) © IgorDutina/Gettyimages; © Adisa/Shutterstock; © DNY59/Gettyimages; © S-F/Shutterstock; © monticello/Shutterstock

Set in 10/12pt WarnockPro-Regular by Thomson Digital, Noida, India

 $10\quad 9\quad 8\quad 7\quad 6\quad 5\quad 4\quad 3\quad 2\quad 1$

- To Mariam, Nadia-Amina, and Tarek
 To my students, who taught me more than I taught them
 To the health of the world

Contents

List of Contributors xiii Foreword xxvii Jeffrey K. Brecht About the Editor xxix Introduction xxxi Elhadi M. Yahia

Volume I

Part I Chemistry and Biological Functions 1

- 1 The Contribution of Fruit and Vegetable Consumption to Human Health 3 Elhadi M. Yahia, María Elena Maldonado Celis, and Mette Svendsen
- 2 Anticarcinogenic Phytochemicals 53 Adriana Cavazos-Garduño, Julio C. Serrano-Niño, Rebeca García-Varela, and Hugo S. García
- **3** Beneficial Effects of Phytochemicals on the Endocrine System 67 Juan Carlos Solís-S, Pablo García-Solís, Ludivina Robles-Osorio, and Hebert Luis Hernández-Montiel
- 4 Phytochemicals Effects on Neurodegenerative Diseases 85 Hebert Luis Hernández-Montiel, Juan Carlos Solís-S, Pablo-García Solís, Mónica López Hidalgo, Nancy Georgina Hernández Chan, Lorena Asucena García Noguez, Julián Valeriano Reyes López, Ana Gabriela Hernández Puga, Haydé Azeneth Vergara Castañeda, Lorena Méndez Villa, and Nelly Angélica Morales Guerrero
- 5 Synthesis and Metabolism of Phenolic Compounds 115 Mikal E. Saltveit
- 6 Biological Actions of Phenolic Compounds 125 Ana Elena Quirós Sauceda, Sonia Guadalupe Sáyago-Ayerdi, Jesús Fernando Ayala-Zavala, Abraham Wall-Medrano, Laura A. de la Rosa, Gustavo A. González-Aguilar, and Emilio Álvarez-Parrilla
- 7 Flavonoids and Their Relation to Human Health 139 J. Abraham Domínguez-Ávila, Francisco J. Olivas-Aguirre, Laura A. de la Rosa, Abraham Wall-Medrano, and Gustavo A. González-Aguilar

Wall-	זייס R. Velderrain Rodríguez, Francisco J. Blancas-Benítez, Abraham Medrano, Sonia Guadalupe Sáyago-Ayerdi, and Gustavo A. González-Aguilar
Mang Mark	gosteen Xanthones: Bioavailability and Bioactivities 165
Meth	nylxanthines: Dietary Sources, Bioavailability, and Health Benefits 183
Maríc	a Raquel Mateos Briz, Beatriz Sarriá Ruiz, and Laura Bravo-Clemente
Gluce	osinolates and Isothiocyanates: Cancer Preventive Effects 199
Ahme	ad Faizal Abdull Razis, Asvinidevi Arumugam, and Nattaya Konsue
Effec	t of Soy Isoflavones on DNA Metabolic Enzyme Inhibitory Activity and
Antic	cancer Activity 211
Yoshi	iyuki Mizushina and Shinko Hata
Tann	ins in Fruits and Vegetables: Chemistry and Biological Functions 221
Julio	Montes-Ávila, Gabriela López-Angulo, and Francisco Delgado-Vargas
Chlo i	rophylls: Chemistry and Biological Functions 269
Sunil	Pareek, Narashans Alok Sagar, Sunil Sharma, Vinay Kumar, Tripti Agarwal,
Gusta	avo A. González-Aguilar, and Elhadi M. Yahia
Chen	n <mark>istry, Stability, and Biological Actions of Carotenoids</mark> 285
Elhad	li M. Yahia, José de Jesús Ornelas-Paz, Tatiana Emanuelli, Eduardo Jacob-Lopes,
Leila	Queiroz Zepka, and Braulio Cervantes-Paz
Prote	ective Effects of Carotenoids in Cardiovascular Disease and Diabetes 347
Tatia	na Emanuelli, Paula Rossini Augusti, and Miguel Roehrs
Betal	lains: Chemistry and Biological Functions 383
Arma	ando Carrillo-López and Elhadi M. Yahia
Dieta	ary Fiber and Associated Macromolecular Antioxidants in Fruit and
Vege	etables 393
Jara	Pérez-Jiménez and Fulgencio D. Saura-Calixto
Impa	act of Fruit Dietary Fibers and Polyphenols on Modulation of the Human
Gut I	Microbiota 405
Ana E	E. Quirós Sauceda, Ramón Pacheco-Ordaz, Jesús Fernando Ayala-Zavala, Adrián
Herna	ández Mendoza, Aarón F. González-Córdova, Belinda Vallejo-Galland, and
Gusta	avo A. González-Aguilar
Lipid	is in Fruits and Vegetables: Chemistry and Biological Activities 423
Rami	Tro Baeza-Jiménez, Leticia X. López-Martínez, Rebeca García-Varela, and Hugo
S. Ga	rcía
Vitan	nin E (Tocopherols and Tocotrienols) in Fruits and Vegetables with Focus
on Cl	hemistry and Biological Activities 451
Ibrah	im Elmadfa and Alexa L. Meyer
Plant	Vitamin C: One Single Molecule with a Plethora of Roles 463

Bioaccessibility and Bioavailability of Phenolic Compounds from Tropical

viii Contents

Fruits 155

- 23 Capsaicinoids: Occurrence, Chemistry, Biosynthesis, and Biological Effects 499 Mathias Kaiser, Inocencio Higuera, and Francisco M. Goycoolea
- 24 Flavors and Aromas: Chemistry and Biological Functions 515 Charles F. Forney and Jun Song
- 25 Recent Advances in Bioactivities of Common Food Biocompounactives 541 Abdelkarim Guaâdaoui
- 26 Biomarkers for the Evaluation of Intake of Phytochemicals and Their Bioactive Effect 595 María Tabernero Urbieta and José C.E. Serrano
 - Part II Influence of Postharvest Handling and Processing Technologies, and Analysis of Phytochemicals 609
- 27 Influence of Postharvest Technologies and Handling Practices on Phytochemicals in Fruits and Vegetables 611 Elhadi M. Yahia, María Serrano, Daniel Valero, and Gustavo A. González-Aguilar
- 28 Phytochemical Changes during Minimal Processing of Fresh Fruits and Vegetables 629 Gustavo A. González-Aguilar, Jesús Fernando Ayala-Zavala, Laura A. de la Rosa, Emilio Alvarez-Parrilla, A. Thalía Bernal-Mercado, and Cintia Anabela Mazzucotelli
- 29 Conventional and Novel Thermal Processing Used for the Improvement of Bioactive Phytochemicals in Fruits and Vegetables 649 Sirithon Siriamornpun and Niwat Kaewseejan
- **30** Non-thermal Processing Effects on Fruits and Vegetables Phytonutrients 677 Noor Akhmazillah Mohd Fauzi and Alifdalino Sulaiman
- **31** Chlorophylls and Colour Changes in Cooked Vegetables 703 Maria Paciulli, Mariantonella Palermo, Emma Chiavaro, and Nicoletta Pellegrini
- 32 Pressurized Fluid Extraction of Phytochemicals from Fruits, Vegetables, Cereals, and Herbs 721 Marleny D.A. Saldaña, Idaresit Ekaette, Carla S. Valdivieso Ramirez, Jane S. dos Reis Coimbra, and Lucio Cardozo-Filho
- 33 Supercritical Fluid Extraction of Bioactive Compounds from Fruits and Vegetables 749
 Raghuraj Singh, Tushar Dhanani, and Satyanshu Kumar
- 34 The Use of Non-destructive Techniques to Assess the Nutritional Content of Fruits and Vegetables 763 Maria L. Amodio, Muhammad M.A. Chaudhry, and Giancarlo Colelli
- 35 Rapid Estimation of Bioactive Phytochemicals in Vegetables and Fruits Using Near Infrared Reflectance Spectroscopy 781 Satyanshu Kumar, Raghuraj Singh, and Tushar Dhanani
- **36** Methods for Determining the Antioxidant Capacity of Food Constituents 803 María Janeth Rodríguez-Roque, Robert Soliva-Fortuny, and Olga Martín-Belloso

x Contents

37	Enhancement of Phytochemicals Using Next-Generation Technologies for the Production of High Quality Fruits and Vegetables 817 Bhavneet Kaur, Avtar K. Handa, and Autar K. Mattoo
38	Modeling Shelf Life of Packaged, Ready-to-Eat Fruits and Vegetables with Reference to the Fate of Nutritional Compounds 833 Maria L. Amodio, Antonio Derossi, and Giancarlo Colelli
	Volume II
	Part III Phytochemicals in Some Fruits and Vegetables 857
39	Ackee (Blighia sapida Koenig) 859 Machel A. Emanuel
40	Andean Berry (Vaccinium meridionale Swartz) 869 María Elena Maldonado Celis, Yuly Nataly Franco Tobón, Carlos Agudelo, Sandra Sulay Arango, and Benjamin Rojano
41	Berries 883 Luca Mazzoni, Jessica Scalzo, Lucia Di Vittori, Bruno Mezzetti, and Maurizio Battino
42	Bottle Gourd (Lagenaria siceraria) 909 Debjani Nath, Pratyusha Banerjee, Mithun Shaw, and Manas Kumar Mukhopadhyay
43	Cacao (Theobroma cacao L.) 921 Alfonso A. Gardea, Mónica L. García-Bañuelos, J. Antonio Orozco-Avitia, Esteban Sánchez-Chávez, Bethzabet Sastré-Flores, and Graciela Ávila-Quezada
44	Cactus Pear Fruit and Cladodes 941 Elhadi M. Yahia and Carmen Sáenz
45	Capsicums 957 Puran Bridgemohan, Majeed Mohammed, and Ronell S.H. Bridgemohan
46	Carrots (Daucus carota L.) 969 Cielo D. Char
47	Chayote (Sechium edule (Jacq.) Swartz) 979 Oscar Andrés Del Ángel Coronel, Elizabeth León-García, Gilber Vela-Gutiérrez, Javier De la Cruz Medina, Rebeca García-Varela, and Hugo S. García
48	Cherimoya (Annona cherimola Mill.) 993 Luis M. Anaya-Esparza, Marco V. Ramírez-Marez, Efigenia Montalvo-González, and Jorge A. Sánchez-Burgos
49	Citrus 1003 Ahmed Ait-Oubahou, Mohamed Benichou, Maha Sagar, Amar Kaanane, and Elhadi M. Yahia
50	Dates (Phoenix dactylifera L.) 1023 Elhadi M. Yahia, Ahmed Ait-Oubahou, and Mohammad Al Abid
51	Grapes 1041 Alvaro Peña-Neira

- 52 Grape Bagasse: A Potential Source of Phenolic Compounds 1055 Fabiola C. Muñoz-De la Cruz, Frida R. Cornejo-García, Nadia M. Vázquez-Díaz, Miriam A. Anaya-Loyola, and Teresa García-Gasca
- 53 Guava (*Psidium guajava*) 1067 Francisco J. Blancas-Benitez, Gustavo A. González-Aguilar, and Sonia Guadalupe Sáyago-Ayerdi
- 54 Indian Gooseberry (Emblica officinalis Gaertn.) 1077 Sunil Pareek, Alexander N. Shikov, Olga N. Pozharitskaya, Valery G. Makarov, Gustavo A. González-Aguilar, Suyare A. Ramalho, and Narendra Narain
- 55 Loquat (Eriobotrya japonica Lindl.) 1107 Mostafa Z. Sultan
- 56 Maqui (Aristotelia chilensis (Mol.) Stuntz) 1127 Carolina Fredes and Paz Robert
- 57 Pecans (Carya illinoinensis) 1137 Jose Alberto Gallegos-Infante, Nuria Elizabeth Rocha-Guzman, Ruben Francisco Gonzalez-Laredo, and Martha Rocio Moreno-Jimenez
- 58 Onion (Allium cepa L.) 1145 Sunil Pareek, Narashans Alok Sagar, Sunil Sharma, and Vinay Kumar
- **59 Papaya (Carica papaya)** 1163 Laura E. Gayosso-García Sancho, Gilber Vela-Gutiérrez, and Hugo S. García
- 60 Pineapples (Ananas comosus) 1173 Jorge A. Sánchez-Burgos and María de Lourdes García-Magaña
- 61 Pomegranates (Punica granatum L.) 1179 Asghar Ramezanian and Mustafa Erkan
- 62 Potato and Other Root Crops 1195 Anne Pihlanto
- 63 Prunus 1215 Francisco J. Luna-Vázquez, César Ibarra-Alvarado, Alejandra Rojas-Molina, Juana I. Rojas-Molina and Moustapha Bah
- 64 Rambutan (*Nephelium lappaceum L.*) 1227 Muhammad Tayyab Akhtar, Siti Nazirah Ismail, and Khozirah Shaari
- 65 Rose Apple (Syzygium jambos (L.) Alston) 1235 Manjeshwar Shrinath Baliga, Karkala Shreedhara Ranganath Pai, Elroy Saldanha, Vikram Singh Ratnu, Rashmi Priya, Mohammed Adnan, and Taresh S. Naik
- **66 Soursop (Annona muricata)** 1243 Ana V. Coria-Téllez, Efigenia Montalvo-González, and Eva N. Obledo-Vázquez
- **67 Sugar Apple (Annona squamosa)** 1253 Andrés E. León-Fernández and Efigenia Montalvo-González

xii Contents

- 68 Tomato (Solanum lycopersicum) 1259 Elizabeth León-García, Oscar Andrés Del Ángel Coronel, Gilber Vela-Gutiérrez, Javier De la Cruz Medina, and Hugo S. García
- **69 Wild and Cultivated Mushrooms** *1279 Pirjo H. Mattila, Pertti Marnila, and Anne Pihlanto*
- **70 Phytochemicals in Organic and Conventional Fruits and Vegetables** 1305 Giuseppina Pace Pereira Lima, Cristine Vanz Borges, Fabio Vianello, Luis Cisneros-Zevallos, and Igor Otavio Minatel
- **71 Recent Advances in Phytochemicals in Fruits and Vegetables** 1323 Fereidoon Shahidi, Priyatharini Ambigaipalan, and Anoma Chandrasekara

Index 1357

List of Contributors

Ahmad Faizal Abdull Razis

Laboratory of Molecular Biomedicine Institute of Bioscience Laboratory of Food Safety and Food Integrity Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia Selangor Malaysia

Mohammed Adnan

Mangalore Institute of Oncology Pumpwell Mangalore Karnataka India

Tripti Agarwal

Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Ministry of Food Processing Industries Kundli Sonepat Haryana India

Carlos Agudelo

Nutrition and Dietetic School University of Antioquia Medellín Colombia

Ahmed Ait-Oubahou

Agronomic and Veterinary Institute Hassan II Agadir Morocco

Muhammad Tayyab Akhtar

Laboratory of Natural Products Institute of Bioscience Universiti Putra Malaysia Selangor Malaysia

Mohammad Al Abid

Mantrust Services Inc Brampton Canada

Emilio Álvarez-Parrilla

Autonomous University of the City of Juarez Juarez, Anillo Envolvente del PRONAF y Estocolmo s/n Chihuahua Mexico

Priyatharini Ambigaipalan

Department of Biochemistry Memorial University of Newfoundland St. John's Newfoundland Canada

Maria L. Amodio

Department of the Science of Agriculture, Food, and Environment University of Foggia Foggia Italy

Luis M. Anaya-Esparza

Integral Food Research Laboratory Technological Institute of Tepic Tepic Nayarit Mexico

Miriam A. Anaya-Loyola

Faculty of Natural Sciences Autonomous University of Querétaro Querétaro Mexico xiv List of Contributors

Sandra Sulay Arango Faculty of Sciences Metropolitan Institute of Technology Medellín Colombia

Asvinidevi Arumugam

Laboratory of UPM-MAKNA Cancer Research Institute of Bioscience Universiti Putra Malaysia Selangor Malaysia

Graciela Ávila-Quezada

University Autonomous of Chihuahua Zootechnics and Ecology Department Chihuahua Mexico

Jesús Fernando Ayala-Zavala

Technology of Food of Vegetable Origin Research Center for Food and Development Hermosillo Sonora Mexico

Ramiro Baeza-Jiménez

Research Center for Food and Development (CIAD) Delicias Chihuahua Mexico

Moustapha Bah

Laboratory of Chemical and Pharmacological Research of Natural Products Faculty of Chemistry Autonomous University of Querétaro Querétaro Mexico

Manjeshwar Shrinath Baliga

Mangalore Institute of Oncology Pumpwell Mangalore Karnataka India

Pratyusha Banerjee

Department of Zoology University of Kalyani Nadia West Bengal India

Maurizio Battino

Department of Odontostomatology and Specialized Clinical Sciences Faculty of Medicine Polytechnic University of Marche Ancona Italy

Mohamed Benichou

Food Sciences Laboratory Faculty of Sciences Cadi Ayyad University Marrakech Morocco

A. Thalía Bernal-Mercado

Technology of Food of Vegetable Origin Research Center for Food and Development Hermosillo Sonora Mexico

Francisco J. Blancas-Benítez

Integral Food Research Laboratory Technological Institute of Tepic Tepic Nayarit Mexico

Cristine Vanz Borges

Department of Chemistry and Biochemistry Institute of Biosciences Paulista State University (UNESP) Botucatu São Paulo Brazil

Laura Bravo-Clemente

Department of Metabolism and Nutrition Institute of Food Science Technology, and Nutrition (ICTAN-CSIC) Spanish National Research Council (CSIC) Madrid Spain

Jeffrey K. Brecht

Horticultural Sciences Department Institute of Food and Agricultural Sciences University of Florida Gainesville Florida USA

Puran Bridgemohan

University of Trinidad and Tobago Centre of Biosciences Agriculture and Food Technology Waterloo Research Campus Carapichaima Trinidad

Ronell S.H. Bridgemohan

Georgia College and State University Milledgeville Georgia USA

Lucio Cardozo-Filho

Department of Chemical Engineering State University of Maringá Maringá Brazil

Armando Carrillo-López

Food Science and Technology Postgraduate Program Faculty of Chemical-Biological Science Autonomous University of Sinaloa Sinaloa Mexico

Adriana Cavazos-Garduño

University Center for Exact Science and Engineering (CUCEI) Pharmacobiology Department University of Guadalajara Guadalajara Jalisco Mexico

Braulio Cervantes-Paz

Faculty of Natural Sciences Autonomous University of Querétaro Querétaro Mexico

Anoma Chandrasekara

Department of Applied Nutrition Wayamba University of Sri Lanka Makandura (Gonawila) Sri Lanka

Cielo D. Char

Biopolymer Research and Engineering Laboratory School of Nutrition and Dietetics University of the Andes Las Condes Santiago Chile

Fani Chatzopoulou

Group of Biotechnology of Pharmaceutical Plants Laboratory of Pharmacognosy Department of Pharmaceutical Sciences Aristotle University of Thessaloniki Thessaloniki Greece

Muhammad M. A. Chaudhry

Department of the Science of Agriculture Food, and Environment University of Foggia Foggia Italy

Emma Chiavaro

Department of Food and Drug University of Parma Parma Italy

Luis Cisneros-Zevallos

Department of Horticultural Sciences Texas A&M University College Station Texas USA

Giancarlo Colelli

Department of the Science of Agriculture Food, and Environment University of Foggia Foggia Italy

Ana V. Coria-Téllez

Laboratory of Analysis of Heritage The College of Michoacan La Piedad Michoacan Mexico

Frida R. Cornejo-García

Faculty of Natural Sciences Autonomous University of Querétaro Querétaro Mexico

Javier De la Cruz Medina

UNIDA Technological Institute of Veracruz Veracruz Mexico xvi List of Contributors

Oscar Andrés Del Ángel Coronel

Superior Techological Institute of Huatusco Food Industry Engineering Division Huatusco Veracruz Mexico

Laura A. de la Rosa

Autonomous University of the City of Juarez Juarez, Anillo Envolvente del PRONAF y Estocolmo s/n Chihuahua Mexico

Francisco Delgado-Vargas

School of Chemical and Biological Sciences Autonomous University of Sinaloa Ciudad Universitaria s/n Culiacan Sinaloa Mexico

Antonio Derossi

Department of the Science of Agriculture, Food, and Environment University of Foggia Foggia Italy

Tushar Dhanani

ICAR-Directorate of Medicinal and Aromatic Plants Research Anand Gujarat India

Lucia Di Vittori

Department of Agricultural, Food and Environmental Sciences Polytechnic University of Marche Ancona Italy

J. Abraham Domínguez-Ávila

Technology of Food of Plant Origin Research Center for Food and Development Hermosillo Sonora Mexico

Jane S. dos Reis Coimbra

Department of Food Technology Federal University of Viçosa Viçosa Brazil

Idaresit Ekaette

Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta Canada

Ibrahim Elmadfa

IUNS Past-President TR Department of Nutritional Sciences Faculty of Life Sciences University of Vienna Vienna Austria

Machel A. Emanuel

Department of Life Sciences Faculty of Science and Technology University of the West Indies Kingston Jamaica

Tatiana Emanuelli

Integrated Center for Laboratory Analysis Development (NIDAL) Department of Food Technology and Science Federal University of Santa Maria Santa Maria Brazil

Mustafa Erkan

Department of Horticulture Faculty of Agriculture Akdeniz University Antalya Turkey

Mark L. Failla

Human Nutrition Program The Ohio State University Columbus Ohio USA

Charles F. Forney

Kentville Research and Development Centre Agriculture and Agri-Food Canada Kentville Nova Scotia Canada

Yuly Nataly Franco Tobón

Faculty of Pharmaceutical and Food Sciences University of Antioquia Hospital Pablo Tobón Uribe Medellín Colombia

Carolina Fredes

Department of Food Science and Chemical Technology Faculty of Chemical and Pharmaceutical Sciences University of Chile Santiago Chile

Jose Alberto Gallegos-Infante

Chemical and Biochemical Department Durango Institute of Technology Durango Mexico

Hugo S. García

UNIDA Technological Institute of Veracruz Veracruz Mexico

Mónica L. García-Bañuelos

Research Center for Food and Development, A.C. (C.I.A.D.) Hermosillo Sonora Mexico

Teresa García-Gasca

Faculty of Natural Sciences Autonomous University of Querétaro Querétaro Mexico

María de Lourdes García-Magaña

Integral Food Research Laboratory Technological Institute of Tepic Tepic Nayarit Mexico

Lorena Asucena García Noguez

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Pablo García-Solís

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Rebeca García-Varela

CIATEJ Apodaca Nueva Leon Mexico

Alfonso A. Gardea

Research Center for Food and Development, A.C. (C.I.A.D.) Hermosillo Sonora Mexico

Laura E. Gayosso-García Sancho

Engineering in Food Technology State University of Sonora Ley Federal del Trabajo s/n Hermosillo Sonora Mexico

Gustavo A. González-Aguilar

Technology of Food of Vegetable Origin Research Center for Food and Development Hermosillo Sonora Mexico

Aarón F. González-Córdova

Center for Food Research and Development (CIAD) Hermosillo Samara Mexico

Ruben Francisco Gonzalez-Laredo

Chemical and Biochemical Department Durango Institute of Technology Durango Mexico

Francisco M. Goycoolea

School of Food Science and Nutrition University of Leeds Leeds UK

Abdelkarim Guaâdaoui

Laboratory of Genetics and Biotechnology (LGB) Team (2) Valorisation of Natural and Synthetic Products and Biotechnologies Department of Biology, Faculty of Sciences (FSO) Mohammed the First University (UMP) Oujda Morocco Fabiola Gutiérrez-Orozco Mead Johnson Nutrition Evansville Indiana USA

Avtar K. Handa

Department of Horticulture Purdue University West Lafayette Indiana USA

Shinko Hata

Research Laboratory Ig-M Co. Ltd. Nakamachi Minatojima Chuo-ku Kobe Japan

Nancy Georgina Hernández Chan

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Adrián Hernández Mendoza

Center for Food Research and Development (CIAD) Hermosillo Sonora Mexico

Hebert Luis Hernández-Montiel

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Ana Gabriela Hernández Puga

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Inocencio Higuera

Food Technology Unit Center for Research and Assistance in Technology and Design of the State of Jalisco A.C. (CIATEJ) Zapopan Jalisco Mexico

César Ibarra-Alvarado

Laboratory of Chemical and Pharmacological Research of Natural Products Faculty of Chemistry Autonomous University of Querétaro Querétaro Mexico

Siti Nazirah Ismail

Laboratory of Natural Products Institute of Bioscience Universiti Putra Malaysia Selangor Malaysia

Eduardo Jacob-Lopes

Department of Food Technology and Science Federal University of Santa Maria Santa Maria Brazil

Amar Kaanane

Agronomic and Veterinary Institute Hassan II Rabat Morocco

Niwat Kaewseejan

Department of Chemistry Faculty of Science Mahasarakham University Maha Sarakham Thailand

Mathias Kaiser

University of Münster IBBP Münster Germany

Angelos K. Kanellis

Group of Biotechnology of Pharmaceutical Plants Laboratory of Pharmacognosy Department of Pharmaceutical Sciences Aristotle University of Thessaloniki Thessaloniki Greece

Bhavneet Kaur

Sustainable Agricultural Systems Laboratory The Henry A. Wallace Agricultural Research Center Agricultural Research Service United States Department of Agriculture Beltsville Maryland USA

Nattaya Konsue

School of Agro-Industry Mae Fah Luang University Chiang Rai Thailand

Stefanos Kostas

Department of Horticulture School of Agriculture Aristotle University of Thessaloniki Thessaloniki Greece

Athanasios Koukounaras

Department of Horticulture School of Agriculture Aristotle University of Thessaloniki Thessaloniki Greece

Satyanshu Kumar

ICAR-Directorate of Medicinal and Aromatic Plants Research Anand Gujarat India

Vinay Kumar

Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Ministry of Food Processing Industries Kundli Sonepat Haryana India

Manas Kumar Mukhopadhyay

Department of Zoology University of Kalyani Nadia West Bengal India

Andrés E. León-Fernández

Integral Food Research Laboratory Technological Institute of Tepic Tepic Nayarit Mexico

Elizabeth León-García

UNIDA Technological Institute of Veracruz Veracruz Mexico

Gabriela López-Angulo

School of Chemical and Biological Sciences Autonomous University of Sinaloa Ciudad Universitaria s/n Culiacan Sinaloa Mexico

Mónica López Hidalgo

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Leticia X. López-Martínez

CONACYT-Research Center for Food and Development (CIAD) Culiacán Sinaloa Mexico

Francisco J. Luna-Vázquez

Laboratory of Chemical and Pharmacological Research of Natural Products Faculty of Chemistry Autonomous University of Querétaro Querétaro Mexico

Valery G. Makarov

St-Petersburg Institute of Pharmacy Leningrad Region Vsevolozhsky Russia

María Elena Maldonado Celis

Nutrition and Dietetic School University of Antioquia Medellín Colombia xx List of Contributors

Pertti Marnila Natural Resources Institute Finland (Luke) Jokioinen Finland

Olga Martín-Belloso

Department of Food Technology UTPV-CeRTA University of Lleida Lleida Spain

María Raquel Mateos Briz

Department of Metabolism and Nutrition Institute of Food Science Technology, and Nutrition (ICTAN-CSIC) Spanish National Research Council (CSIC) Madrid Spain

Pirjo H. Mattila

Natural Resources Institute Finland (Luke) Jokioinen Finland

Autar K. Mattoo

Sustainable Agricultural Systems Laboratory The Henry A. Wallace Agricultural Research Center Agricultural Research Service United States Department of Agriculture Beltsville Maryland USA

Luca Mazzoni

Department of Agricultural, Food and Environmental Sciences Polytechnic University of Marche Ancona Italy

Cintia Anabela Mazzucotelli

Engineering Faculty National University of Mar del Plata Mar del Plata Argentina

Ifigeneia Mellidou

Group of Biotechnology of Pharmaceutical Plants Laboratory of Pharmacognosy Department of Pharmaceutical Sciences Aristotle University of Thessaloniki Thessaloniki Greece

Lorena Méndez Villa

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Alexa L. Meyer

Department of Nutritional Sciences Faculty of Life Sciences University of Vienna Vienna Austria

Bruno Mezzetti

Department of Agricultural, Food and Environmental Sciences Polytechnic University of Marche Ancona Italy

Igor Otavio Minatel

Department of Chemistry and Biochemistry Institute of Biosciences Universidade Estadual Paulista (UNESP) Botucatu São Paulo Brazil

Yoshiyuki Mizushina

Research Laboratory Ig-M Co. Ltd. Nakamachi Minatojima Chuo-ku Kobe Japan

Majeed Mohammed

Department of Food Production Faculty of Food and Production The University of the West Indies St. Augustine Trinidad

Noor Akhmazillah Mohd Fauzi

Department of Chemical Engineering Technology Faculty of Engineering Technology Universiti Tun Hussein Onn Malaysia (UTHM) Batu Pahat Johor Malaysia

- -- -

Efigenia Montalvo-González Integral Food Research Laboratory Technological Institute of Tepic Tepic Nayarit Mexico

Julio Montes-Ávila

School of Chemical and Biological Sciences Autonomous University of Sinaloa Ciudad Universitaria s/n Culiacan Sinaloa Mexico

Nelly Angélica Morales Guerrero

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Martha Rocio Moreno-Jimenez

Chemical and Biochemical Department Durango Institute of Technology Durango Mexico

Manas Kumar Mukhopadhyay

Department of Zoology University of Kalyani Nadia West Bengal India

Fabiola C. Muñoz-De la Cruz

Faculty of Natural Sciences Autonomous University of Querétaro Querétaro Mexico

Taresh S. Naik

Father Muller Medical College Mangalore Karnataka India

Narendra Narain

Laboratory of Flavor and Chromatographic Analysis Federal University of Sergipe Sao Cristovao-SE Brazil

Debjani Nath

Department of Zoology University of Kalyani Nadia West Bengal India

Eva N. Obledo-Vázquez

Unit of Plant Biotechnology Center for Research and Assistance in Technology and Design of the State of Jalisco Guadalajara Mexico

Francisco J. Olivas-Aguirre

Department of Chemical-Biological Sciences Autonomous University of the City of Juarez Chihuahua Mexico

José de Jesús Ornelas-Paz

Center for Research in Food and Development Unidad Cuauhtémoc, Laboratory of Phytochemicals and Nutrients, Cuauhtémoc Chihuahua Mexico

J. Antonio Orozco-Avitia

Research Center for Food and Development, A.C. (C.I.A.D.) Hermosillo Sonora Mexico

Ramón Pacheco-Ordaz

Center for Food Research and Development A.C. (CIAD) Hermosillo Sonora Mexico

Maria Paciulli

Department of Food and Drug University of Parma Parma Italy

Mariantonella Palermo

Department of Agriculture and Food Science University of Naples Federico II Naples Italy xxii List of Contributors

Sunil Pareek

Department of Agriculture & Environmental Sciences National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Ministry of Food Processing Industries Kundli Sonepat Haryana India

Nicoletta Pellegrini

Department of Food and Drug University of Parma Parma Italy

Alvaro Peña-Neira

Faculty of Agronomical Sciences University of Chile Campus Antumapu La Pintana Santiago Chile

Giuseppina Pace Pereira Lima

Department of Chemistry and Biochemistry Institute of Biosciences Universidade Estadual Paulista (UNESP) Botucatu São Paulo Brazil

Karkala Shreedhara Ranganath Pai

Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal University Manipal Karnataka India

Jara Pérez-Jiménez

Department of Metabolism and Nutrition Institute of Food Science Technology, and Nutrition (ICTAN-CSIC) Spanish National Research Council (CSIC) Madrid Spain

Anne Pihlanto

Natural Resources Institute Finland (Luke) Jokioinen Finland

Olga N. Pozharitskaya

St-Petersburg Institute of Pharmacy Leningrad Region Vsevolozhsky Russia

Rashmi Priya

Institute for Molecular Biosciences University of Queensland Brisbane Australia

Leila Queiroz Zepka

Department of Food Technology and Science Federal University of Santa Maria Santa Maria Brazil

Ana Elena Quirós Sauceda

Center for Food Research and Development (CIAD) Hermosillo Sonora Mexico

Suyare A. Ramalho

Laboratory of Flavor and Chromatographic Analysis Federal University of Sergipe Sao Cristovao-SE Brazil

Asghar Ramezanian

Department of Horticultural Science College of Agriculture Shiraz University Shiraz Iran

Marco V. Ramírez-Marez

Department of Biochemical Engineering Technological Institute of Morelia Morelia Mich Mexico

Vikram Singh Ratnu

Queensland Brain Institute University of Queensland Brisbane Australia

Julián Valeriano Reyes López

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Paz Robert

Department of Food Science and Chemical Technology Faculty of Chemical and Pharmaceutical Sciences University of Chile Santiago Chile

Ludivina Robles-Osorio

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Nuria Elizabeth Rocha-Guzman

Chemical and Biochemical Department Durango Institute of Technology Durango Mexico

María Janeth Rodríguez-Roque

Faculty of Agrotechnological Sciences Autonomous University of Chihuahua Av. Universidad s/n Chihuahua Mexico

Miguel Roehrs

University Hospital of Santa Maria (HUSM) Integrated Center for Laboratory Analysis Development (NIDAL) Federal University of Santa Maria Santa Maria Brazil

Benjamin Rojano

Faculty of Sciences National University of Colombia Medellín Colombia

Alejandra Rojas-Molina

Laboratory of Chemical and Pharmacological Research of Natural Products Faculty of Chemistry Autonomous University of Querétaro Querétaro Mexico

Juana I. Rojas-Molina

Laboratory of Chemical and Pharmacological Research of Natural Products Faculty of Chemistry Autonomous University of Querétaro Querétaro Mexico

Paula Rossini Augusti

Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil

Carmen Sáenz

Department of Agroindustry and Oenology Faculty of Agricultural Sciences University of Chile Santiago Chile

Maha Sagar

Food Sciences Laboratory Faculty of Sciences Cadi Ayyad University Marrakech Morocco

Narashans Alok Sagar

Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Ministry of Food Processing Industries Kundli Sonepat Haryana India

Marleny D.A. Saldaña

Department of Agricultural, Food and Nutritional Sciences Faculty of Agricultural, Life and Environmental Sciences University of Alberta Edmonton Alberta Canada

Elroy Saldanha

Father Muller Medical College Mangalore Karnataka India

Mikal E. Saltveit

Mann Laboratory Department of Plant Sciences University of California Davis California USA

Jorge A. Sánchez-Burgos

Integral Food Research Laboratory Technological Institute of Tepic Tepic Nayarit Mexico

Esteban Sánchez-Chávez

Research Center for Food and Development, A.C. (C.I.A.D.) Hermosillo Sonora Mexico

Beatriz Sarriá Ruíz

Department of Metabolism and Nutrition Institute of Food Science Technology, and Nutrition (ICTAN-CSIC) Spanish National Research Council (CSIC) Madrid Spain

Bethzabet Sastré-Flores

Virginia Cooperative Extension Loudoun Office Leesburg Virginia USA

Fulgencio D. Saura-Calixto

Department of Metabolism and Nutrition Institute of Food Science Technology, and Nutrition (ICTAN-CSIC) Spanish National Research Council (CSIC) Madrid Spain

Sonia Guadalupe Sáyago-Ayerdi

Integral Food Research Laboratory Technological Institute of Tepic Tepic Nayarit Mexico

Jessica Scalzo

Costa Berry Category Range Road Corindi New South Wales Australia

José C.E. Serrano

NUTREN Nutrigenomics University of Lleida Lleida Spain

María Serrano

Department of Applied Biology Superior Polytechnic School of Orihuela University Miguel Hernández Orihuela (Alicante) Spain

Julio César Serrano-Niño

University Center for Exact Science and Engineering (CUCEI) Pharmacobiology Department University of Guadalajara Guadalajara Jalisco Mexico

Khozirah Shaari

Laboratory of Natural Products Institute of Bioscience Universiti Putra Malaysia Selangor Malaysia

Fereidoon Shahidi

Department of Biochemistry Memorial University of Newfoundland St. John's Newfoundland Canada

Sunil Sharma

Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Ministry of Food Processing Industries Kundli Sonepat Haryana India *Mithun Shaw* Department of Zoology University of Kalyani Nadia West Bengal India

Alexander N. Shikov

St-Petersburg Institute of Pharmacy Leningrad Region Vsevolozhsky Russia

Raghuraj Singh

ICAR-Directorate of Medicinal and Aromatic Plants Research Anand Gujarat India

Sirithon Siriamornpun

Department of Food Technology and Nutrition Faculty of Technology Mahasarakham University Maha Sarakham Thailand

Juan Carlos Solís-S

Laboratory of Molecular and Cellular Physiology Department of Biomedical Sciences Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Robert Soliva-Fortuny

Department of Food Technology UTPV-CeRTA University of Lleida Lleida Spain

Jun Song

Postharvest Physiologist Kentville Research and Development Centre Agriculture and Agri-Food Canada Kentville Nova Scotia Canada

Alifdalino Sulaiman

Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia (UPM) Selangor Malaysia

Mostafa Z. Sultan

Horticultural Department Faculty of Agriculture Al-Azhar University Nasr City Cairo Egypt

Mette Svendsen

Section for Preventive Cardiology Centre of Preventive Medicine Oslo University Hospital Norway

María Tabernero Urbieta

Imdea Food Institute Carretera de CantoBlanco Madrid Spain

Carla S. Valdivieso Ramirez

Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta Canada

Daniel Valero

Department of Applied Biology Superior Polytechnic School of Orihuela University Miguel Hernández Orihuela (Alicante) Spain

Belinda Vallejo-Galland

Center for Food Research and Development (CIAD) Hermosillo Sonora Mexico

Nadia M. Vázquez-Díaz

Faculty of Natural Sciences Autonomous University of Querétaro Querétaro Mexico

Gilber Vela-Gutiérrez

University of Sciences and Arts of Chiapas Faculty of Nutrition and Food Sciences Tuxtla Gutiérrez Chiapas Mexico xxvi List of Contributors

Gustavo R. Velderrain Rodríguez

Technology of Food of Vegetable Origin Research Center for Food and Development Hermosillo Sonora Mexico

Haydé Azeneth Vergara Castañeda

Faculty of Medicine Autonomous University of Querétaro Querétaro Mexico

Fabio Vianello

Department of Comparative Biomedicine and Food Science University of Padua (UNIPD) Padua Italy

Abraham Wall-Medrano

Department of Health Sciences Institute of Biomedical Sciences Autonomous University of the City of Juarez Chihuahua Mexico

Elhadi M. Yahia

Faculty of Natural Sciences Autonomous University of Querétaro Avenida de las Ciencias s/n Juriquilla Querétaro Mexico

Foreword

The importance of including a variety of fruits and vegetables in our diet in order to maintain our general health and to avoid chronic diseases is recognized by both the scientific community and the public. Increasing public awareness of the health benefits to be accrued from consuming plant foods containing high levels of nutrients is illustrated by, and has been exploited by, the marketing of the so-called "superfoods," which include fruits and vegetables like açaí, blueberry, broccoli, kale, pomegranate, and others. This is despite there actually being no scientific or legal definition of a superfood – just that a marketer has highlighted its nutrient density. A similar situation exists for so-called "functional foods," usually meaning processed foods that have been fortified with biologically active compounds (often or even usually plant based) that have been related to health promotion. A distinction between superfoods and functional foods is that, in contrast to super foods, products marketed as functional foods usually are required by law to contain compounds that have clinically proven and documented health benefits.

The phytochemicals that are responsible for the nutritional and health benefits accruing from consumption of fruits and vegetables are numerous and varied. While many of these phytochemicals are ubiquitous, such as the vitamins and dietary fiber, many more are unique to different groups of produce or even to individual species. Arguably, the nutritionally important phytochemicals are a subset of an even larger array, all with critical functions in the physiology of the plants in which they are found. Much research has been conducted for the purpose of identifying either the biological function of phytochemicals in plant physiology or their biological activity in animals and humans leading to health-related effects. However, with over 8000 phytochemicals known, this work is far from complete. Indeed, matters are complicated by accumulating evidence that the actions of phytochemicals, in both plant physiology and animal or human health, are synergistic. This means that studying individual phytochemicals in isolation, although to some extent unavoidable, is probably a mistake in terms of developing a complete understanding of their roles. At

this time, there is clearly a need for the current phytochemical picture, incomplete as the knowledge still may be, to be assembled in one place for the benefit of the scientific and academic communities. This book, *Fruit and Vegetable Phytochemicals: Chemistry and Human Health*, which Elhadi Yahia has assembled with the assistance of more than 200 individual chapter authors, admirably addresses that need.

The chapters in the first part of this book explore either the biological activity and bioavailability of phytochemicals from fruits and vegetables, and the benefits in terms of human health when they are included in the diet, or the biological function of phytochemicals in the physiology of fruits and vegetables. Fruits and vegetables have always been considered to be healthy foods containing essential vitamins, minerals, and dietary fiber. This group of chapters includes coverage of those basics, but ventures beyond to examine the full array of phytochemicals for which evidence has been found that they either promote general health and vitality, such as through their action as antioxidants, or exhibit more specific effects in protecting against the onset of cancer, cardiovascular and neurodegenerative diseases, and diabetes. Other chapters describe the biosynthesis and biological functions of various phytochemicals in fruits and vegetables. In sum, these chapters bring the reader up to date on the body of scientific knowledge concerning phytochemistry, phytochemicals, and their influence on human health.

The 12 chapters in the second part of the book address the influence of postharvest handling and technologies on fruit and vegetable phytochemicals as well as methods to measure both the amounts of phytochemicals and their functional properties in fruits and vegetables. How fresh fruits and vegetables are handled, stored, and transported can have important consequences in terms of their phytochemistry. How they are processed and cooked also impacts phytochemical composition. Methods of extraction of phytochemicals from fruits and vegetables for use in functional foods and nutritional supplements are also covered. Several of the chapters here address sensory and other quality aspects in relation

to phytochemicals, including the technologies of handling and processing that influence phytochemical composition and therefore fruit and vegetable quality. Phytochemicals certainly contribute to the sensory appeal of fruits and vegetables. For many fruiting organs, this likely relates to evolutionary selection favoring consumption by animals and leading to seed dispersal. Fruits and vegetables contain diverse arrays of colored compounds, including chlorophyll, carotenoids, flavonoids, and betalains, which contribute to the attractiveness of produce to animals and humans. Fruits and vegetables also produce complex and varied arrays of volatile aroma compounds and soluble taste compounds that are incredibly important in our enjoyment of these healthy foods. Employing proper harvesting, handling, storage, and processing practices to ensure the highest possible desirability of fruits and vegetables has many benefits. As expressed by the late Dr. Adel Kader, "Providing better flavored fruits and vegetables is likely to increase their consumption, which would be good for the producers and marketers (making more money or at least staying in business) as well as for the consumers (increased consumption of healthy foods)."

The third part of this book comprises about three dozen individual chapters covering the phytochemistry of different fruit and vegetable species. These chapters serve to further illustrate the wonderful diversity of phytochemicals found in fruits, vegetables, and nuts.

Dr. Yahia's effort in bringing together this gathering of experts to compile the state of the art on the phytochemistry of fruits and vegetables is praiseworthy. This book is sure to be used to guide future research on the topics included within it – both for identifying what is known and for revealing that which is still unknown. This book will also be appreciated for pointing out the important future research directions that need to be taken in order for us to make full use of fruits and vegetables in our diet for improving human health. My hope is that you, as a reader, appreciate the effort that went into creating this encyclopedic coverage of fruit and vegetable phytochemicals and the roles they play in plant and human life, as I am sure that it will inspire many of you in your future research and teaching.

> Jeffrey K. Brecht, Ph.D University of Florida