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Foreword

In science, as in other walks of life, we are often tempted to do something that will
have an immediate impact that seems original and that will garner more funding and
get us promoted but that may have little true benefit in the long term. And so we do
it, and thereby make a Faustian bargain, not really thinking about the longer term.
But that long term might be better served if we could make more of a Proustian
bargain in which we remember the accomplishments of the past, search for the
meaning in the science, build on secure foundations and so make true advances,
even if slowly and intermittently. To proceed this way, we need a proper exposition
of those foundations and how they relate to the more applied concerns that we deal
with on a daily basis, and it is this noble task that the authors of this book have set
themselves. They have returned to the very fundamentals of Geophysical Fluid
Dynamics and given us a compelling account of how Hamilton’s principle and
variational methods provide a secure footing to the subject and give an underlying
meaning to its results.

Hamilton’s principle provides one of the most fundamental and elegant ways of
looking at mechanics. The laws of motion—whether they may be Newton’s laws in
classical mechanics or the equations of quantum mechanics—emerge naturally by
way of a systematic variational treatment from clear axioms. The connection of the
conservation properties of the system to the underlying symmetries is made
transparent, approximations may be made consistently, and the formulation pro-
vides a solid basis for practical applications. In this book, the authors apply this
methodology to Geophysical Fluid Dynamics, starting with a derivation of the
equations of motion themselves and progressing systematically to approximate
equation sets for use with the rapidly rotating and stratified flows that we encounter
in meteorology and oceanography. Along the way, we encounter such things as
Noether’s Theorem, Lagrangian and Eulerian viewpoints, the relabelling symmetry
that gives rise to potential vorticity conservation, semi-geostrophic dynamics and
the conservation of wave activity. The method also has great practical benefit, for it
is only by use of approximate equation sets that we are able to compute the future
state of the weather—the lack of the proper use of approximate or filtered equations
can be thought of as the cause of the failure of Richardson’s heroic effort to
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numerically predict the weather in 1922, and the proper use of an approximate set
was vital for the success of the effort some 30 years later by Charney, Fjortoft and
von Neumann, and still today we use approximate equation sets in climate and
weather models.

The treatment in the book is unavoidably mathematical, but it is not “advanced”,
for it makes use only of fairly standard methods in variational calculus and a little
bit of group theory. The book should be accessible to anyone who has such a
background although it is not, reusing one of Clifford Truesdell’s many memorable
remarks, a mountain railway that will take the reader on a scenic tour of all the
famous results with no effort on the reader’s part. But with just a little work, the
book will benefit meteorologists and oceanographers who wish to learn about
variational methods, and it will benefit physicists and applied mathematicians who
wish to learn about Geophysical Fluid Dynamics. And the book reminds us once
again that Geophysical Fluid Dynamics is a branch of theoretical physics, as it has
always been but as we sometimes forget.

April 2017 Geoffrey K. Vallis
University of Exeter, Exeter, England

,

viii Foreword



Preface

The motion of fluids from the smaller to the large scales is described by a complex
interplay between the momentum equations and the equations describing the ther-
modynamics of the system under consideration. The emerging motion comprises
several scales, ranging from microscales, to planetary scales, often linked by non-
trivial self-similar scalings. At the same time, the motion of classic fluids is described
by a specific branch of continuum mechanics. It comes thus natural that one would
like to describe the rich phenomenology of the fluid and geophysical fluid motion in
a systematic way from first principles, derived by continuum mechanics. One
of these first principles is given by Hamilton’s principle, which allows to obtain the
equations of motion through a variational treatment of the system.

A famous call for the need of a systematic derivation of the equations of Fluid
and Geophysical Fluid Dynamics lies in the memorandum sent by the mathe-
matician John von Neumann to Oswald Veblen, written in 1945 and here reported
in the Introduction to Chap. 3. The quote reads: “The great virtue of the variational
treatment […] is that it permits efficient use, in the process of calculation, of any
experimental or intuitive insight […]. It is important to realize that it is not pos-
sible, or possible to a much smaller extent, if one performs the calculation by using
the original form of the equations of motion—the partial differential equations. […]
Symmetry, stationarity, similitude properties […] applying such methods to
hydrodynamics would be of the greatest importance since in many hydrodynamical
problems we have very good general evidence of the above-mentioned sort about
the approximate aspect of the solution, and the refining of this to a solution of the
desired precision is what presents disproportionate computational difficulties […]”
(see reference to von Neumann (1963) of Chap. 3). While sadly von Neumann
intended to make practical use of such a treatment to study the aftershocks created
by nuclear explosions, the quote still summarizes some of the most important
features of the variational method: “Symmetry, stationarity, similitude properties”.
With these properties, von Neumann clearly had in mind the self-similar structure
of fluid flows (“similitude”), which is indeed the feature that allows us to study
different scales of motion through a proper rescaling of the system; he probably had
in mind also the study of the stability of the system under consideration
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(“stationarity”); but he mentions also one of the most important results from
field-theory that is the study of what he calls with the word “symmetry”. Continuous
symmetries in mechanical systems have in fact the property to be related to con-
served quantities, as it is well known by probably the most beautiful theorem in
mathematical physics, the celebrated “Noether’s Theorem”. In the specific case of
fluid dynamics, the continuum hypothesis is associated to a specific symmetry that
is the particle relabelling symmetry. Application of Noether’s Theorem results in
the fundamental conservation of vorticity in fluids, which is itself linked to the
conservation of circulation and of potential vorticity, all quantities that have pri-
mary importance in a huge number of applications, ranging from fluids, geophysical
fluids, plasmas and astrophysical fluids. It is from the particle relabelling symmetry
and Noether’s Theorem that one sees that the conservation of vorticity is a fun-
damental property of the system and does not emerge just from skilful manipulation
of the partial differential equations describing the dynamics.

The aim of this book is to go through the development of these concepts.
In Chap. 1, we give a résumé of the aspects of Fluid and Geophysical Fluid

Dynamics, starting from the continuum hypothesis and then presenting the gov-
erning equations and the conservation of potential vorticity as well as energy and
enstrophy, in various approximations.

In Chap. 2, we review the Lagrangian formulation of dynamics starting from
Hamilton’s Principle of First Action. In the second part of the chapter, Noether’s
Theorem is presented both for material particles and for continuous systems such as
fluids.

In this way, Chap. 1 will serve as an introduction to Fluid and Geophysical Fluid
Dynamics to students and researchers of subjects such as physics and mathematics.
Chapter 2 will instead serve as an introduction to analytical mechanics to students of
applied subjects, such as engineering, climatology, meteorology and oceanography.

In Chap. 3, we first introduce the Lagrangian density for the ideal fluid. The
equations of motion are rederived using Hamilton’s principle first in the Lagrangian
and then in the Eulerian frameworks. The relationship between the two frameworks
is thus revealed from the use of canonical transformations. Noether’s Theorem is
then applied to derive the conservation laws corresponding to the continuous
symmetries of the Lagrangian density. Particular attention will be given to the
particle relabelling symmetry, and the associated conservation of vorticity.

In Chap. 4, we extend the use of Hamilton’s principle to continuously stratified
fluids and to uniformly rotating flows. Different sets of approximated equations,
which constitute different commonly used approximation in Geophysical Fluid
Dynamics, are considered, as well as the form taken by the conservation of potential
vorticity in each of them. Finally, the variational methods are applied to study some
selected topics of wave dynamics.

Technical derivations of equations that might interrupt the flow of the reading
are reported in a number of appendices.
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This book should be considered as an elementary introduction. Bibliographical
notes at the end of each chapter will guide the reader to more advanced treatments
of the subject.

Hamburg, Germany Gualtiero Badin
Trieste, Italy Fulvio Crisciani
April 2017
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Chapter 1
Fundamental Equations of Fluid
and Geophysical Fluid Dynamics

Abstract The motion of fluids from the smaller to the large scales, i.e. until the
oceans and atmospheric currents, is described by a complex interplay of the momen-
tum equations and the equations describing the thermodynamics of the specific sys-
tem. The resulting set of equations constitutes the branch of physics and applied
mathematics called Fluid and Geophysical Fluid Dynamics. The continuum hypoth-
esis and the governing equations of Fluid and Geophysical Fluid Dynamics in their
inviscid form are here synthetically reviewed. Emphasis is given to the conservation
of energy, enstrophy and potential vorticity, which are written in various approxi-
mations. The obtained relationships constitute the basis for the development of the
following chapters. Chapter1 aims thus to give only a résumé of the aspects of Fluid
and Geophysical Fluid Dynamics which will be considered from the Lagrangian
and Hamiltonian point of view in the other chapters. For this reason, several steps
in deriving the governing equations are omitted and only the outlines are mostly
reported.

Keywords Fluid dynamics ·Geophysical fluiddynamics · Ideal fluid ·Conservation
laws · Rotating flows · Stratified flows · Potential vorticity · Ertel’s theorem ·
Circulation · Shallow water equations · Quasi-geostrophic equations

1.1 Introduction

Fluid dynamics deals with a wide range of scales of motions, ranging from the micro
till the planetary scales, and linked by self-similar laws. Once the laws governing
the velocity u, the pressure p and the density ρ of these fluids are established, and
the main goal is to understand, in terms of mathematical models suitably idealized,
the rich physical phenomenology exhibited by the fluids. The governing equations
are based on the continuous distribution of the fields under consideration. At the
larger scales, Geophysical Fluid Dynamics deals with large-scale motions of flu-
ids in the oceans (marine currents) and in the atmosphere (winds), as viewed by
a terrestrial observer, i.e. by an observer whose frame of reference is fixed with
the Earth. On this subject, Joseph Pedlosky [12] said “One of the key features of

© Springer International Publishing AG 2018
G. Badin and F. Crisciani, Variational Formulation of Fluid and Geophysical
Fluid Dynamics, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-319-59695-2_1
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2 1 Fundamental Equations of Fluid and Geophysical Fluid Dynamics

Geophysical Fluid Dynamics is the need to combine approximate forms of the basic
fluid-dynamical equations of motion with careful and precise analysis. The approx-
imations are required to make any progress possible, while precision is demanded
to make the progress meaningful”. In this chapter, this continuum hypothesis and
the governing equations are synthetically reviewed in the standard (i.e. nonvaria-
tional) approach. While the oceans and the atmosphere are made of viscous, and
thus dissipative, fluids, we will here concentrate in the nondissipative equations, in
order to allow for a Hamiltonian formulation of the dynamics in the following chap-
ters. Notice that not all the approximations derived in this chapter will be rederived
from variational principles in the following chapters and vice versa. Some attention
will however be dedicated here to additional approximations, as the nonvariational
derivation highlights some physical processes that might be of interest especially for
the more applied readers.

1.2 The Continuum Hypothesis

Fluid matter is slippery not only from a practical point of view, but also in the attempt
to establish principles and laws of classical physics which govern its evolution.
For instance, while the dynamics of a pointlike massive body is, basically, that of
Newton’s second law, the application of the same equation to a fluid according to
the Lagrangian description looks problematic as far as an operative definition of a
“pointlike fluid body” is not established. In order to attribute the velocity and the
acceleration to individual bodies of fluid consistently with Newton’s second law, the
concept of parcel is introduced and defined as a volume of fluid whose amount is the
same at any time. Obviously, a parcel is not pointlike but, rather, it has a finite volume
which, in general, changes its shape at each time.Hence, one shouldpose thequestion:
“How large is a parcel?”. The answer goes beyond the simple definition of parcel
(in the sense that, a priori, its volume and the related mass could be arbitrary) and
relies on the possibility to performmeasurements, at themacroscopic scale and in the
framework of classical physics, on the fluid, i.e. on its parcels. In a measure process,
a probe is put into the fluid and the output of the instrument is a number (usually
referred to SI units) which comes from the interaction of the probe with the fluid;
this number quantifies a physical property of the fluid. The process can be repeated
for each point and time. The volume of fluid to which the instrument responds is
much larger than the volume in which variations due to molecular fluctuations take
place; in this way, an undesired random variability of the output is avoided. Thus,
the volume of a parcel, and of the parcels that interact with the probe, is far larger
than the typical distance among the molecules of the fluid. This is a lower bound for
the volume of a parcel. On the other hand, the uniqueness of the number provided by
the instrument in a single measurement means that, in the interaction with the parcel,
the probe feels a uniformly distributed property of the fluid. Thus, the property of the
fluid of the parcel that interacts with the probe, and hence of every parcel, is spread
uniformly over the volume of the parcel. This is the continuum hypothesis, which
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ultimately relies on the unicity of the response of a process of measurement within
the framework of classical physics. By varying the position of the probe, different
outputs are expected and usually obtained. This fact poses an upper bound to the
volume of the parcels; in fact, the possibility to detect the variations is associated
with spatial distribution of physical quantities whenever the probe interacts with
different parcels of the same fluid demands that the volume of the parcels be far
smaller of the total volume involved in the measure process.

The same measure process described above can be interpreted from a different
point of view, by associating with each position of the probe the related numeri-
cal output of the measurement and by assuming the possibility to extend ideally
this mapping to the whole volume of fluid under investigation. In this way, named
Eulerian description, the physical property of the fluid is referred, point by point,
to the volume that includes it in terms of a field. Although the Eulerian description
is not fit for Newton’s second law, it is related to the Lagrangian description by a
kinematic constraint according to which the field property at a given location and
time must equal the property possessed by the parcel occupying that position on that
instant.

In the Lagrangian description, instead, the fluid looks like a continuous variety
of parcels, so, in principle, each parcel can be identified by a fixed tern of labels
and by time. As a parcel does not change the labels in the course of motion, the
coordinates of the parcel are a function of the labels and of time; in other words,
in the Lagrangian description, labels and time are independent variables while the
coordinates are variables dependent on the labels and on time. Hence, if a quantity
is ascribed to a parcel following the motion, the rate of change of the quantity is
simply its differentiation with respect to time. Label coordinates refer to a certain
label space, while the space coordinates refer to a certain location space, and the
relationship between these two spaces is represented by a nonsingular mapping (in
each point of the location space, there is a “labelled” parcel, and in each “labelled”
point of the label space, definite space coordinates can be attributed to the parcel
occupying that point) whose time evolution describes fluid motion. No criterion to
assign the labels is established a priori, provided that each parcel keeps the same
labels for all time.

1.3 Derivation of the Equations of Motion

1.3.1 Conservation of Mass

By definition, themass of any parcel is conserved in time. Thus, if V (t) is thematerial
volume of a certain parcel, then

d

dt

∫
V (t)

ρ(r, t)dV ′ = 0 . (1.1)



4 1 Fundamental Equations of Fluid and Geophysical Fluid Dynamics

Notice that in the following, the independent variables will sometimes be omitted.
Now, for any scalar θ included in the parcel of volume V (t), the equation

d

dt

∫
V (t)

θdV ′ =
∫

V (t)

(
Dθ

Dt
+ θ div u

)
dV ′ (1.2)

allows to transfer the time derivative of a space integral inside the space integral
itself. A derivation of (1.2) is reported in Appendix A. The velocity u appearing in
the Lagrangian derivative D/Dt = ∂/∂t +u ·∇ of (1.2) is the velocity of the parcel.
By using (1.2), Eq. (1.1) becomes

∫
V (t)

(
Dρ

Dt
+ ρ div u

)
dV ′ = 0 . (1.3)

Because Eq. (1.3) holds for every parcel, the governing equation of the density
field

Dρ

Dt
+ ρ div u = 0 (1.4)

or, equivalently,
∂ρ

∂t
+ div(ρu) = 0 (1.5)

immediately follows.

1.3.2 Incompressibility and Density Conservation

A fluid is said to be incompressible when the density of parcels is not affected by
changes in the pressure. Thus, the rate of change of ρ following the motion is zero

Dρ

Dt
= 0 . (1.6)

In other words, parcels move on trajectories along which the density field takes a
constant value. If Eq. (1.6) holds true, then (1.4) implies

div u = 0 , (1.7)

which means that the current is solenoidal. In turn, Eq. (1.7) means that every stream
tubemust be either close, or end on the boundary of the fluid, or extend in a unbounded
way in some direction.
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1.3.3 Momentum Equation in an Inertial Frame of Reference

Given that the parcel is an individual portion of fluid, in analogy with the Newton’s
second law for a pointlikemassive object, the time derivative of the linear momentum
of a parcel is assumed to be equal to the sum of the forces applied to it. The linear
momentum of a parcel is defined by

∫
V (t) ρudV ′, so its acceleration is given by

d

dt

∫
V (t)

ρudV ′ . (1.8)

Unlike a pointlike mass moving without interacting with the surrounding matter,
the forces applied to a parcel are not only body forces, such as gravity, but also
surface forces due to the interaction of each parcel with those surrounding it. The
body forces can be represented by the quantity

∫
V (t)

ρFdV ′ , (1.9)

where F is a force per unit mass that includes gravity acceleration −gk̂, where we

have used the standard notation inwhich
(
î, ĵ, k̂

)
indicate the orthogonal unit vectors

for the (x, y, z) tern. In the following, we will also indicate with
(
n̂, t̂

)
the normal

and the tangent unit vectors at a certain point of a material surface, respectively. The
fundamental surface force mainly comes from the pressure reciprocally exerted at
the boundary of the parcels in contact. The parcel included into V (t) experiences the
force

−
∫

V (t)
∇ pdV ′ , (1.10)

where p = p(r, t) is the pressure field. By using (1.8)–(1.10), Newton’s second law
results in the equation

d

dt

∫
V (t)

ρudV ′ =
∫

V (t)
(ρF − ∇ p) dV ′ . (1.11)

The l.h.s of (1.11) can be rearranged using (1.2) according to the chain of equalities

d

dt

∫
V (t)

ρudV ′ =
∫

V (t)

[
D

Dt
(ρu) + ρu div u

]
dV ′

=
∫

V (t)

[
u

Dρ

Dt
+ ρ

Du
Dt

+ ρu div u
]

dV ′

=
∫

V (t)

[
ρ

Du
Dt

+ u
(

Dρ

Dt
+ ρ div u

)]
dV ′ . (1.12)
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Recalling (1.4)–(1.5), Eq. (1.12) simplifies into

d

dt

∫
V (t)

ρudV ′ =
∫

V (t)
ρ

Du
Dt

dV ′ (1.13)

so, with the aid of (1.13), Eq. (1.11) becomes

∫
V (t)

(
ρ

Du
Dt

− ρF + ∇ p

)
dV ′ = 0 . (1.14)

After a trivial rearrangement and the use of position F = −g∗k̂, Eq. (1.14) yields the
so-called Euler’s equation in the form

Du
Dt

= −∇ p

ρ
− g∗k̂ . (1.15)

Equation (1.15) looks fit for flows of a massive (−g∗k̂ �= 0) but nonrotating Earth
or, more realistically, for flows that do not feel Earth’s rotation. This point will be
clarified at the end of Sect. 1.5.

1.4 Elementary Symmetries of the Euler’s Equation

Consider the Euler’s equation (1.15) in absence of the body force F,

Du
Dt

= −∇ p

ρ
. (1.16)

Equation (1.16) is invariant under the symmetry transformation

r → r′ = gr (r) , (1.17a)

t → t ′ = gt(t) , (1.17b)

p → p′ = gp(p) , (1.17c)

if it satisfies
Du
Dt

= −∇ p

ρ
⇒ Du′

Dt ′ = −∇′ p′

ρ
, (1.18)

i.e. if the equations ofmotion donot change under the transformation (1.17a)–(1.17c).
In (1.17a)–(1.17c), gr ∈ Gr , gt ∈ Gt , gp ∈ G p are symmetry transformations that
belong to the one-parameter groups Gr , Gt , G p. Notice that the transformation of
the pressure field is
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gp(p) = p + p̄ or gp(p) = Cp , (1.19)

and it is thus determined through the identification of either p̄ or the nondimensional
constant C so that the transformed pressure field depends on the specific case under
consideration and satisfies the invariance of the original equation. In certain cases,
gp will be a function of the space and time coordinates.

For the following symmetries, the theses and proofs will proceed through the
statement of the symmetric transformation on the independent variables. The corre-
sponding transformations of the velocity field and on the time and space derivatives
are thus determined directly.

1.4.1 Continuous Symmetries

Equation (1.16) satisfies the following continuous symmetries:

1.4.1.1 Gauge Invariance for the Pressure Field

gr (r) = r , (1.20a)

gt(t) = t , (1.20b)

gp(p) = p + F(t) , (1.20c)

where F(t) is an arbitrary functionof time.Observing that the transformationdoes not
act on the independent variables t, r and on the dependent variable u, the invariance
is trivially proved upon substitution of (1.20a)–(1.20c) in (1.16).

1.4.1.2 Space Translations

gr (r) = r + c , (1.21a)

gt(t) = t , (1.21b)

gp(p) = p , (1.21c)

where c ∈ R
3 is a constant vector.

Proof Time differentiation of (1.21a) shows that the transformation does not act
on the velocity field, so that u′ = u. Consider, for simplicity and without loss of
generality, the space translation in the x direction x ′ = x +c. Because c is a constant,

∂

∂x ′ = ∂

∂x
. (1.22)


