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Preface

Metabotropic glutamate (mGlu) receptors have been discovered in the mid-1980s 
by a French group of scientists (Sladeczek et al., Nature, 1985), who include some 
of the current leaders in the field. Since then, the field has grown exponentially, and 
now subtype-selective ligands of mGlu receptors [orthosteric agonists and antago-
nists, positive and negative allosteric modulators (PAMs and NAMs), and agonists/
PAMs] are under development for the treatment of neurological and psychiatric 
disorders. The present book is the follow-up of the 8th International Meeting on 
Metabotropic Glutamate Receptors (Taormina, Italy, 2014) and incorporates chap-
ters from some of the authorities in the mGlu receptor field.

The chapter by Philippe Rondard, Xavier Rovira, Cyril Goudet, and Jean-
Philippe Pin is the state of the art of mechanisms regulating the structural and 
functional dynamics of mGlu receptors and their relevance to mGlu receptor phar-
macology. This group of scientists has highly contributed to our current knowledge 
of physical interactions (homo- and heterodimerization) and allosteric modulation 
of mGlu receptors. Recent findings obtained by the authors and their collabora-
tors lay the groundwork for the development of light-regulated ligands of mGlu 
receptors (i.e., drugs that can be either activated or inactivated by light). These 
molecules represent new valuable tools for the study of the role played by individual 
mGlu receptor subtypes in physiology and pathology with a high spatial and tempo-
ral resolution. Some of these drugs have recently appeared in the literature and hold 
promise for the treatment of pain and anxiety.

The chapter by Hardy Hagena and Denise Manahan-Vaughan is an excellent 
synopsis of the role played by mGlu receptors in mechanisms of hippocampal syn-
aptic plasticity underlying information processing and long-term memory. This is a 
theme of great relevance from a therapeutic standpoint considering that some mGlu 
receptor ligands (e.g., mGlu5 receptor PAMs and mGlu2 receptor NAMs) are under 
development as cognition enhancers. In vivo studies on synaptic plasticity per-
formed in Denise’s lab are milestones in the mGlu receptor field.

The chapter by Zhengping Jia and Graham Collingridge focuses on mechanisms 
underlying mGlu receptor-dependent long-term depression (LTD) of excitatory 
synaptic transmission, a particular form of activity-dependent synaptic plasticity 
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that has attracted the interest of scientists working on fragile X and other forms of 
monogenic autism. Graham is an absolute authority in the field of synaptic plastic-
ity. The authors discuss the role played by the GluA2 subunit of AMPA receptors in 
mGlu receptor-dependent LTD proposing a molecular model that links functional 
and structural plasticity through molecular events mediating actin remodeling.

Three chapters by (i) Paolo Gubellini, Yoland Smith, and Marianne Amalric; (ii) 
Gunasingh Masilamoni and Yoland Smith; and (iii) Nicolas Morin and Therese di 
Paolo focus on the role played by mGlu5 receptors in the pathophysiology of 
Parkinson’s disease (PD) and L-DOPA-induced dyskinesias (LIDs). These chapters 
highlight the importance of translation research in the mGlu field describing how 
data obtained in preclinical models (e.g., 6-hydroxydopamine-treated rats and 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice and monkeys) laid the 
groundwork for clinical studies with mGlu5 receptor NAMs in patients with PD and 
LIDs. Of note, mGlu5 receptor NAMs not only produce symptomatic benefit in PD 
and LIDs but also exert neuroprotective effects in “parkinsonian” mice and mon-
keys, suggesting that these drugs cater the potential to behave as disease modifiers.

The chapter by Javier Gonzalez-Maeso is a nice synopsis of the epigenetic and 
functional mechanisms regulating the cross talk between mGlu2 and 5-HT2A recep-
tors. This mechanism, which has been described in detail in some seminal papers by 
Javier and his collaborators, is of great relevance to the pathophysiology and treat-
ment of schizophrenia.

The chapter by Francesco Ferraguti focuses on mGlu receptors in the amygdala, 
a complex brain structure that plays a key role in fear memory and anxiety. Francesco 
is one of the best neuroanatomists and pharmacologists in Europe, and he is highly 
contributing to our current knowledge of the complex neuronal circuits linking the 
input and output nuclei of the amygdaloid complex.

The chapter by Tom Salt and Carolina Copeland examines the role played by 
mGlu receptors in the regulation of synaptic transmission in the thalamus. Tom 
Salt’s lab is pioneer in the study of thalamic function in response to sensory inputs.

The chapter by Gilles van Luijtelaar, Valerio D’Amore, Ines Santolini, and 
Richard Ngomba focuses on mGlu5 receptors as a new candidate drug target for the 
treatment of absence epilepsy. Absence seizures are characterized by spike-and-
wave discharges at the EEG, which are generated by an abnormal oscillatory activ-
ity within a cortico-thalamic-cortical circuit. A significant percentage of patients 
with absence epilepsy is refractory to current medication. mGlu5 receptor PAMs 
hold promise as new drugs for the treatment of absence epilepsy and may act in the 
thalamus by restraining GABAergic transmission.

The chapter by Francesca Guida, Enza Palazzo, L. Longo, Ida Marabese, Vito de 
Novellis, and Sabatino Maione examines the role played by mGlu receptors in the 
pain pathways focusing on supraspinal mechanisms. Supraspinal mechanisms are 
involved in the top-down regulation of pain transmission and mediate the affective 
and cognitive aspects of pain, being a linking bridge between chronic pain and 
affective disorders. Dino Maione’s group is leader in the study of mGlu receptors 
and pain regulation.

Preface
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The chapter by Andrew Lawrence and Christina Perry focuses on mGlu 
receptors as candidate drug targets for the treatment of drug addiction. Several lines 
of evidence indicate that mGlu5 receptor NAMs inhibit both drug taking and drug 
seeking. Here, the authors comment on mGlu5 receptors and drug addiction from a 
different angle. Moving from the evidence that mGlu5 receptors contribute to mech-
anisms of activity-dependent synaptic plasticity, Andrew and Christina suggest that 
mGlu5 receptor PAMs may serve as useful add-on treatment to behavioral therapy 
in addiction.

Finally, the chapter by Suzy Chen is a nice synopsis of what we currently know 
about mGlu receptors and cancer and focuses on the link between mGlu1 receptors 
and the pathophysiology of malignant melanomas. Melanoma is one of the most 
aggressive tumors originating from melanocytes, which are cells present in the skin, 
uvea, and leptomeninges and originate from the neural crest. Although the current 
use of BRAF and MEK inhibitors and immunotherapies has extended the 
progression-free survival and overall survival of patients, the treatment of meta-
static melanomas is still suboptimal. Suzy Chen and her collaborators have demon-
strated that ectopic expression of mGlu1 receptors in melanocytes is sufficient to 
generate melanomas in mice and that human melanoma samples and melanoma cell 
lines express mGlu1 receptors. Riluzole, a drug that lowers the concentrations of 
ambient glutamate, limits the growth of melanomas and shows radio-sensitizing 
activity in the treatment of brain metastasis of melanoma. This paves the way to the 
clinical use of drugs that restrain the activation of mGlu1 receptors as adjunctive 
treatment in patients with melanoma.

In conclusion, this is an excellent book that is easy to read and critically reviews 
some of the most relevant aspects related to the physiology and pharmacology of 
mGlu receptors.

Isernia, Italy	 Richard Teke Ngomba, Pharm.D., Ph.D. 
Msida, Malta	 Giuseppe Di Giovanni, Ph.D.  
Isernia, Italy	 Giuseppe Battaglia, M.D., Ph.D. 
Roma, Italy	 Ferdinando Nicoletti, M.D., Ph.D.
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Chapter 1
mGlu5 Signaling: A Target for Addiction 
Therapeutics?

Christina J. Perry, M. Foster Olive, and Andrew J. Lawrence

Abstract  The role of metabotropic glutamate 5 (mGlu5) receptors in substance 
abuse disorders has been a focus of research for over a decade. In animal models, 
mGlu5 antagonists not only decrease drug taking but also drug seeking. It follows 
that mGlu5 antagonists are promising potential pharmacotherapeutic agents for the 
treatment of substance abuse. More recently, however, evidence has emerged that 
such compounds may in fact interfere with cognitive behavioral strategies for treat-
ment of such disorders. mGlu5 receptors are linked to N-methyl-D-aspartate 
(NMDA) receptors via scaffold proteins and consequently are critical for NMDA 
receptor-dependent neural plasticity, giving them a prominent role in learning and 
memory. This is important because these processes are critical for rehabilitation 
treatment during recovery from substance abuse disorders. Therefore, although an 
antagonist or negative allosteric modulator (NAM) for mGlu5 may serve to decrease 
the reinforcing value of drugs such as cocaine or methamphetamine, it may also 
interfere with the process of behavioral change during treatment. Conversely, mGlu5 
stimulation may actually serve to enhance this process. This chapter will follow the 
line of evidence supporting the idea that compounds that enhance mGlu5 receptor 
function may serve as useful adjuncts to behavioral therapy for substance abuse. We 
will also discuss the effects of chronic drug use on mGlu5 expression and function. 
We propose that mGlu5 PAMs in fact show promise as short-term adjuncts to 
behavioral therapy and could improve the long-term prognosis of such strategies.

Keywords  Metabotropic glutamate 5 • Addiction • Cognition • Learning • Memory 
• Reinforcement • Treatment • Negative allosteric modulator • Positive allosteric 
modulator
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Abbreviations

CDPPB	 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide
CET	 cue exposure therapy
LTD	 long-term depression
LTP	 long-term potentiation
mGlu5	 metabotropic glutamate 5
MPEP	 2-Methyl-6-(phenylethynyl)pyridine
MSN	 medium spiny neuron
MTEP	 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine
NAM	 negative allosteric modulator
NMDA	 N-Methyl-D-aspartate
PAM	 positive allosteric modulator

1.1  �Introduction: Pharmacotherapy and Allosteric 
Modulators

In recent years there has been increasing interest in the potential for allosteric mod-
ulators of the metabotropic glutamate 5 (mGlu5) receptor to be used in the treatment 
of a number of different disorders. Targeting metabotropic rather than ionotropic 
receptors is regarded as a safer strategy because it avoids unwanted side effects that 
arise from suppression of fast glutamatergic excitatory transmission (Carroll 2008). 
Likewise, allosteric modulators have increased receptor selectivity and fewer con-
traindications than agonists or antagonists that bind to the orthosteric binding site 
(Carroll 2008; Nickols and Conn 2014). Such favorable characteristics result from 
these compounds having no intrinsic agonist or antagonist ability but rather an influ-
ence over receptor activity only when the endogenous agonist itself is present 
(Gregory et al. 2011). This, however, is not to say that they are free of side effects. 
mGlu5 negative allosteric modulators (NAM) at high doses can induce psychotomi-
metic effects and cognitive impairments in animal models (Campbell et al. 2004) 
and in clinical trials (Pecknold et al. 1982; Friedmann et al. 1980), while positive 
allosteric modulators (PAMs) at high doses can induce seizures (Nickols and Conn 
2014). Nevertheless, such improvements in drug development have allowed for 
mGlu5 NAMs to be tested at the clinical trial phase and beyond for a number of 
different disorders, including anxiety, depression, Parkinson’s disease, and Fragile 
X syndrome (Gregory et al. 2011), while PAMs might be useful for treating schizo-
phrenia (Nickols and Conn 2014; Gregory et al. 2011).

Substance abuse is an area of mental health where there is a pressing need for 
novel and effective medication (Kim and Lawrence 2014; Douaihy et al. 2013), and 
increasingly it seems that mGlu5 allosteric modulators are promising candidates 
(Gregory et  al. 2011; Olive 2010; Bird and Lawrence 2009). However, there is 
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conflicting evidence as to how best to apply these treatments to achieve long-term 
resistance to relapse. On the one hand, mGlu5 NAMs may reduce the reinforcing 
properties of drugs of abuse (Watterson et al. 2013; Keck et al. 2013; Kumaresan 
et al. 2009) and, as a consequence, the severity of an acute relapse episode. On the 
other, an mGlu5 PAM has the potential to act as a cognitive aid (Olive 2010; 
Homayoun and Moghaddam 2010), facilitating behavioral therapy and creating 
longer-term cognitive resistance to relapse. The purpose of this chapter is to review 
the evidence for both of these possibilities and evaluate the most effective strategy 
(in theory) for treating substance abuse using mGlu5 allosteric modulators.

1.2  �Negative Allosteric Modulators Reduce Drug Reward

It has been reported that mice lacking the mGlu5 receptor show decreased sensitivity 
to the rewarding and locomotor-stimulating properties of cocaine and morphine 
(Chiamulera et al. 2001; Veeneman et al. 2011), although these findings have not 
been replicated with regard to cocaine (Bird et  al. 2014). Nevertheless, NAMs 
reduce behavioral sensitization to cocaine (McGeehan and Olive 2003; Scheggi 
et al. 2007; Brown et al. 2012; Martinez-Rivera et al. 2013), alcohol (Kotlinska et al. 
2006), and amphetamine (McGeehan et  al. 2004). mGlu5 NAMs increase the 
threshold for intracranial self-stimulation (ICSS), which indicates a decrease in 
brain reward function (Kenny et  al. 2005; Cleva et  al. 2012). Likewise, mGlu5 
NAMs reduce perseveration for drug reinforcement in a progressive ratio test 
(Paterson and Markou 2005). Together, these findings suggest a role for mGlu5 
receptors in the reinforcing and motivational properties of addictive drugs.

A medication that can reduce the motivation to seek drugs is certainly a desirable 
candidate for substance abuse treatment for drug addiction. Indeed, in preclinical 
models of relapse, mGlu5 NAMs reduce drug-primed reinstatement of drug seeking 
for cocaine (Kumaresan et al. 2009; Wang et al. 2013; Schmidt et al. 2014), ethanol 
(Backstrom et al. 2004), or methamphetamine (Watterson et al. 2013). In addition, 
reinstatement triggered by drug-associated cues (Wang et al. 2013; Backstrom and 
Hyytia 2006; Martin-Fardon et al. 2009) or contexts (Knackstedt et al. 2014) is also 
reduced following administration of an mGlu5 NAM. These findings are promising, 
because they indicate that NAMs might reduce the severity of an acute relapse epi-
sode, and also decrease craving and motivation to seek drug in recovering addicts.

There are, however, some important impediments to application of mGlu5 NAMs 
for treating substance abuse. First, there is evidence that tolerance to these com-
pounds can develop quite quickly (Cleva et al. 2012). This is critical, because effec-
tive medication with a NAM would involve a long-term prescription to avoid 
potential negative ramifications of exposure to drugs or drug-associated cues and 
future time points undefined. Therefore, it is quite possible that the protection 
afforded by the medication would lessen over time. Second, mGlu5 receptor expres-
sion changes following increased drug exposure. Given that much of the data dis-
cussed above derives from preclinical models where there is only limited exposure 
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to drug, it may be that they are not directly applicable to the case of substance abuse 
clients, who by definition have had extended exposure to the drug in question. 
Indeed, we will describe how changes to mGlu5 receptor availability have been doc-
umented in cocaine and nicotine addicts undergoing withdrawal (Martinez et  al. 
2014; Milella et al. 2014; Hulka et al. 2014). Finally, mGlu5 NAMs have negative 
impact on cognitive function (Campbell et al. 2004), in particular to memory forma-
tion (Naie and Manahan-Vaughan 2004; Rodrigues et al. 2002; Simonyi et al. 2010; 
Homayoun et al. 2004), spatial learning (Manahan-Vaughan and Braunewell 2005; 
Christoffersen et al. 2008; Petersen et al. 2002), and inhibitory learning (Kim et al. 
2014; Xu et  al. 2009). This last point is a critical consideration because there is 
ample evidence that cognitive capacity is positively correlated with treatment out-
come for substance abuse disorders (e.g. Aharonovich et al. 2006). Decreased mGlu5 
function is associated with extinction deficits (Bird et  al. 2014; Kim et  al. 2014; 
Chesworth et al. 2013), and extinction forms an integral part of many behavioral 
strategies targeting addiction (Conklin and Tiffany 2002). Therefore there is a very 
good chance that, although mGlu5 NAMs may offer acute benefits in the form of 
reducing the reinforcing properties of addictive drugs, they may simultaneously cre-
ate long-term cognitive impairments that interfere with behavioral therapy, hence 
ultimately increasing the likelihood of future relapse. These issues will be addressed 
in the following sections.

1.3  �mGlu5 Receptors and Synaptic Plasticity

mGlu5 receptors are widely distributed throughout the mammalian brain (Shigemoto 
and Mizuno 2000), with highest levels of expression in forebrain regions such as the 
cerebral cortex, dorsal and ventral striatum, olfactory bulb and tubercle, lateral sep-
tum, and hippocampus (Shigemoto et al. 1993; Romano et al. 1995). Within these 
regions, mGlu5 receptors are predominantly expressed on postsynaptic elements, 
particularly the perisynaptic annulus of dendritic spines (Shigemoto and Mizuno 
2000), although some investigators have reported localization of mGlu5 receptors to 
presynaptic terminals and glia (Mitrano and Smith 2007; Anwyl 1999).

mGlu5 receptors are integral to both the initiation and maintenance of synaptic 
plasticity in the form of long-term potentiation (LTP) or depression (LTD) of synap-
tic efficacy. This is achieved via a variety of subcellular signaling mechanisms 
including facilitation of N-methyl-D-aspartate (NMDA)  receptor function, interac-
tions with postsynaptic scaffolding proteins, release of calcium into the cytosol from 
the endoplasmic reticulum, and resulting activation of downstream effector proteins 
such as MAP and ERK kinases which in turn activate transcription factors to modu-
late gene expression and initiation of phospholipid signaling (Anwyl 2009; Bellone 
et al. 2008; Gladding et al. 2009). Perhaps the most widely studied and understood 
mechanism for mGlu5-mediated enhancement of LTP is via positive coupling of 
these receptors to postsynaptic NMDA receptor function (Alagarsamy et al. 2001; 
Attucci et  al. 2001; Awad et  al. 2000; Benquet et  al. 2002; Doherty et  al. 1997; 
Kotecha and MacDonald 2003; Pisani et  al. 2001; Ugolini et  al. 1999), which is 
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largely mediated by mGlu5-induced activation of PKC and phosphorylation of 
(among other substrates) specific subunits of the NMDA (Lu et al. 1999). In addition 
to these biochemical interactions, there is also evidence for interactions between 
mGlu5 and NMDA receptors that are either direct or indirect via various scaffolding 
proteins including PSD-95, Shank, and the Homer family of proteins (Perroy et al. 
2008; Hermans and Challiss 2001). mGlu5 receptors also regulate the synthesis of 
retrograde signaling molecules such as endocannabinoids, which stimulate presyn-
aptic CB1 receptors to initiate LTD (Bellone et al. 2008).

1.4  �mGlu5 Receptor Expression Changes 
Across Development of Addiction

Many of the animal models used to investigate the role of mGlu5 in drug seeking 
and drug taking involve animals with only limited drug exposure. Models such as 
the extinction-reinstatement paradigm are useful for studying relapse because they 
encompass well the types of situations that trigger relapse in human addiction 
(Bossert et al. 2013). They do not, however, reflect the types of compulsive behav-
iors that are characteristic of long-term substance abuse. In fact, it is frequently not 
viable to study true addiction using animal models, because only a small percentage 
of those animals that are exposed to drugs will go onto develop addiction as judged 
by diagnostic criteria (Piazza and Deroche-Gamonet 2013), meaning that the num-
ber of experimental animals to model such behaviors would be greatly inflated.

Studying the behavior of nondependent animals provides important insights into 
mechanisms that lead to the development of addiction and addictive-like behavior 
(Bossert et al. 2013). However, it is important to remember that neural chemistry 
changes with increasing drug exposure, and this should be factored in when evaluat-
ing potential medications for use with substance abuse. We described previously 
how preclinical models have shown that mGlu5 NAMs reduce the reinforcing prop-
erties of drugs and drug-associated cues. It is also clear that chronic drug exposure 
causes glutamate receptor redistribution and that this affects the responsiveness of 
drug-seeking behavior to compounds that modulate mGlu5 receptor activity 
(McCutcheon et al. 2011).

These differences are apparent in models of escalated drug use, such as the long-
access paradigm where laboratory animals are provided with extended opportunity to 
self-administer drug each day (Ahmed 2012). For example, the mGlu5 NAM MTEP 
decreased motivation to seek cocaine only after short but not after escalated self-
administration (Hao et al. 2010). Furthermore, it was shown that an mGlu2/3 recep-
tor agonist was more effective than MTEP in reducing ethanol seeking in dependent 
rats when compared with nondependent rats (Sidhpura et al. 2010). This suggests that 
while mGlu5 receptors mediate the incentive properties of addictive drugs during 
early use, following extended and escalated drug use, drug seeking may become less 
dependent on this receptor. In other words, treatment with an mGlu5 NAM may be 
ineffective against the type of behavior that will likely be in play in addicts.

1  mGlu5 Signaling: A Target for Addiction Therapeutics?
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Withdrawal from substance abuse also influences mGlu5 expression. In the 
prefrontal cortex (PFC), mGlu5 expression was reduced in rats following escalated 
cocaine self-administration followed by withdrawal from the drug. This difference 
appeared after rats were exposed to cocaine-associated cues and was correlated with 
the intensification of cue-induced drug seeking that occurs in cocaine-experienced 
animals following a period of abstinence (Ben-Shahar et al. 2013). After extended 
withdrawal from escalated cocaine self-administration, there is also a switch from 
mGlu5- to mGlu1-regulated synaptic rectification in accumbal medium spiny neu-
rons (MSNs) (McCutcheon et al. 2011).

Changes in mGlu5 sensitivity after withdrawal are also apparent in human drug 
users. For example, fMRI revealed a decrease in mGlu5 availability in key cortical 
and limbic regions in abstinent cocaine users (Martinez et al. 2014; Milella et al. 
2014), and in abstinent smokers (Hulka et al. 2014), which magnified with increas-
ing length of abstinence (Milella et al. 2014). Thus, it seems that, although mGlu5 
NAMs reduce drug seeking and relapse in animal models where there is only lim-
ited drug exposure, it is likely that they may be less efficient following escalated 
drug taking and withdrawal, a pattern that is typical in addicts seeking treatment. 
This would greatly decrease their value as medications.

1.5  �Cognitive Capacity Is Positively Correlated 
with Treatment Outcome for Substance Abuse Disorders

Current behavioral treatments for addiction show poor prognosis, with roughly 60% 
relapsing in the first year after treatment (Conklin and Tiffany 2002; McLellan et al. 
2000), and there is a strong correlation between cognitive function and treatment 
outcome (Aharonovich et al. 2006; Fox et al. 2009; Turner et al. 2009). This rela-
tionship most likely derives from the fact that there is an important cognitive com-
ponent to treatment. Standard behavioral treatment for drug addiction consists of 
single or group psychotherapy (Douaihy et al. 2013). This involves assimilation of 
new information; hence, cognitive capacity is an important determinant of treatment 
outcome. In addition, many behavioral treatments involve learning new responses to 
drug-associated cues. This may take the form of extinction learning, such as in cue 
exposure therapy, where repeated presentation of previously drug-associated 
stimuli in the absence of further drug reward leads to a decrease in cue reactivity  
(i.e.  craving), in abstinent substance abuse clients (Conklin and Tiffany 2002). 
Another, more novel approach is to provide reinforcement for abstinence behavior 
(Higgins et al. 2012; Silverman et al. 2012). Although these approaches are quite 
distinct in the way they seek to change behavior, all share the common feature of 
integrating new learning to implement more adaptive behavioral patterns.

Given that decline in cognitive function is in fact a well-documented conse-
quence of long-term exposure to drugs of abuse (Fox et  al. 2009; Crews and 
Boettiger 2009), overcoming the cognitive dysfunction that arises as a direct conse-
quence of addiction should be a priority in therapeutic strategies to help prevent 
relapse. In the next section, we will describe how mGlu5 NAMs are problematic in 
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this regard, because they actually have the tendency to produce cognitive deficits 
(Campbell et al. 2004). On the other hand, mGlu5 PAMs such as CDPPB have been 
shown to reverse cognitive deficits produced by phencyclidine (PCP) (Horio et al. 
2013) and after adolescent alcohol exposure (Gass et al. 2014).

1.6  �Amnestic Effects of mGlu5 Inactivation

Given the established role of mGlu5 in synaptic plasticity under normal physiologi-
cal conditions, it is not surprising that genetic or systemic pharmacological blockade 
of mGlu5 receptors attenuates the expression of LTP and LTD in regions such as the 
hippocampus (dentate gyrus and CA1 region), amygdala, and dorsal and ventral stri-
atum, with concomitant deficits in various forms of learning and memory (Homayoun 
and Moghaddam 2010; Naie and Manahan-Vaughan 2004; Rodrigues et al. 2002; 
Homayoun et  al. 2004; Manahan-Vaughan and Braunewell 2005; Christoffersen 
et al. 2008; Xu et al. 2009; Alagarsamy et al. 2001; Attucci et al. 2001; Awad et al. 
2000; Benquet et al. 2002; Doherty et al. 1997; Kotecha and MacDonald 2003; Pisani 
et al. 2001; Ugolini et al. 1999; Bikbaev et al. 2008; Lu et al. 1997). Studies utilizing 
site-specific microinjections of mGlu5 NAMs including 2-methyl-6-(phenylethynyl)-
pyridine (MPEP) and 3-[2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) have 
confirmed a critical role for these receptors in spatial navigation, inhibitory avoid-
ance, and instrumental and/or habit learning (Rodrigues et al. 2002; Simonyi et al. 
2010; Packard et al. 2001; Jacob et al. 2009). Deficits in acquisition, but not expres-
sion of a spatial learning task, were also observed following targeted knockdown of 
mGlu5 receptors in the mouse dorsal hippocampus (Tan et al. 2015). However, it 
should be noted that other laboratories have not found spatial learning memory 
impairments following administration of mGlu5 antagonists (Petersen et al. 2002; 
Semenova and Markou 2007), and some studies have indicated that mGlu5 antago-
nists selectively impair reference but not working memory (Naie and Manahan-
Vaughan 2004; Gravius et al. 2008).

1.7  �Facilitatory Effects of mGlu5 Activation on Learning, 
Memory, and Extinction Processes

In the context of behavior modification, extinction can be defined as the targeted 
reduction of specific maladaptive responses or behaviors, including pathological 
fear, anxiety, or avoidance, as well as excessive seeking of rewarding or reinforcing 
stimuli such as drugs of abuse. Extinction is a form of new and active inhibitory 
learning (Bouton 2000) and thus engages the neural mechanisms responsible for 
synaptic plasticity and learning and memory, including mGlu5 receptors. This is 
supported by findings that genetic deletion or pharmacological inhibition of mGlu5 
receptors results in decrements in the extinction of conditioned fear (Handford 
et al. 2014) as well as cocaine and methamphetamine seeking (Kim et al. 2014; 
Chesworth et al. 2013).
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In agreement with this, it has recently been established that PAMs selective for 
mGlu5, such as 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), 
4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU-29), and (S)-(4-fluoro-
phenyl)-(3-[3-(4-fluorophenyl)-[1,2,4]-oxadiazol-5-yl]piperidin-1-yl)methanone 
(ADX47273) facilitate the induction of various markers of synaptic plasticity 
including long-term synaptic potentiation (Kroker et al. 2011; Ayala et al. 2009) and 
increased phosphorylation of the NR1 and NR2B subunits of the NMDA receptor, 
the GluR1 subunit of the AMPA receptor, and activate α-calmodulin-dependent 
kinase II, CREB, and ERK (Uslaner et al. 2009; Liu et al. 2008). Many of these 
effects can be blocked by NMDA antagonists, confirming that increased NMDA 
receptor functioning is necessary for mGlu5 PAM-induced synaptic  potentiation 
(Ayala et al. 2009). However, interestingly, it has recently been reported that newer 
mGlu5 PAMs with biased agonist properties can produce pro-cognitive effects that 
are independent of indirect NMDA receptor activation (Rook et al. 2015).

Consistent with the notion of mGlu5 PAMs as enhancers of synaptic plasticity, 
these ligands have been shown to improve spatial memory in normal animals (Ayala 
et al. 2009; Balschun et al. 2006; Fowler et al. 2013) and reverse pharmacologically 
induced impairments in object recognition (Uslaner et al. 2009; Reichel et al. 2011), 
conditioned avoidance (Schlumberger et al. 2010; Spear et al. 2011), reversal learn-
ing (Xu et al. 2013; LaCrosse et al. 2015; Darrah et al. 2008), and five-choice serial 
reaction time tests (Liu et al. 2008). Many of these pro-cognitive effects of mGlu5 
PAMs appear to be mediated by increased prefrontal cortical functioning (Homayoun 
and Moghaddam 2006, 2010; Gass et al. 2014; Stefani and Moghaddam 2010).

In the context of drug addiction, mGlu5 PAMs facilitate the extinction of a 
cocaine-induced conditioned place preference (Gass and Olive 2009) and reduce 
extinction responding following intravenous cocaine and methamphetamine and 
oral alcohol self-administration (Gass et al. 2014; Cleva et al. 2011; Kufahl et al. 
2012). However, CDPPB failed to facilitate extinction of methamphetamine seeking 
when extinction sessions were conducted in a context different to the methamphet-
amine self-administration context (Widholm et  al. 2011). Importantly, while one 
study reported that mGlu5 PAMs produce excitotoxicity at high doses 
(Parmentier-Batteur et  al. 2014), others have shown that repeated mGlu5 PAM 
administration at more moderate doses does not produce evidence of neurotoxicity 
(Gass and Olive 2009) and is devoid of effects on brain reward function (Cleva et al. 
2012). Thus, mGlu5 receptor PAMs may be a novel class of compounds by which 
to facilitate the extinction of drug stimuli or drug-context associations.

1.8  �Conclusion

A drug that reduces the severity of a relapse episode presents an enticing therapeutic 
potential for addiction treatment. This is made all the more so in the case of an 
mGlu5 NAM because these drugs are already in clinical trials or approved for use 
with other disorders. However, mGlu5 receptors are integral to both the initiation 
and maintenance of synaptic plasticity (Alagarsamy et al. 2001; Attucci et al. 2001; 
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Awad et al. 2000; Benquet et al. 2002; Doherty et al. 1997; Kotecha and MacDonald 
2003; Pisani et al. 2001; Ugolini et al. 1999), and this relationship affords these 
receptors an important role in cognitive capacity, learning, and memory. They con-
sequently play a critical role in assimilating information and updating memories 
following new experiences and changes to the environment (Qi et  al. 2013). 
Behavioral therapy for substance abuse is focused around learning new and more 
adaptive responses to replace drug-seeking behaviors. Whether this involves behav-
ioral extinction or some other type of training, the need to assimilate new informa-
tion is a central tenet to this process. In this regard, mGlu5 NAMs represent a 
“double-edged sword” – simultaneously reducing drug-seeking responses acutely 
while interfering with cognitive load involved in behavioral therapy. On the other 
hand, the pro-cognitive properties of PAMs facilitate change in animal models of 
behavioral therapy. Given that tolerance to the reward-reducing properties of a 
NAM can develop following repeat administration, and further that they are less 
effective in animals with more extensive drug experience, we propose that short-
term application of a PAM in conjunction with behavioral therapy should in theory 
at least be a more effective way of treating substance abuse in the long term than a 
medication that has acute effects on the reinforcing effects of drug (i.e., NAM).
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Chapter 2
Supraspinal Metabotropic Glutamate 
Receptors: An Endogenous Substrate 
for Alleviating Chronic Pain and Related 
Affective Disorders

Francesca Guida, Enza Palazzo, Livio Luongo, Ida Marabese,  
Vito de Novellis, Sabatino Maione, and Francesco Rossi

Abstract  Metabotropic glutamate receptors (mGluRs) are key players in modulat-
ing excitatory transmission and important regulators of synaptic plasticity. mGluRs 
are G-protein-coupled receptors (GPCRs) that have been subdivided into three 
groups (mGluR1–mGluR8) based on sequence homology, intracellular pathways, 
and pharmacological profile. mGluRs are widely localized all along the nociceptive 
neuroaxis, including brain circuits controlling pain often overlapping those control-
ling affective/cognitive behaviors which prove deeply altered in several neurologi-
cal disorders including chronic pain.

This chapter summarizes current outcomes related to the supraspinal mGluRs in 
chronic pain states. Due to their wide expression within the pain descending system, 
a particular highlighting will be given to the pharmacological manipulation of 
mGluRs in PAG-RVM pathway, a key circuitry of the pain descending system. The 
current development of novel subtype-selective mGluR positive and negative allo-
steric modulators will allow a more stringent assessment of each mGluR subtype 
role in controlling chronic pain and pain-related affective cognitive behavior.
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Abbreviations

BLA	 basolateral amygdala
CeA	 central nucleus of the amygdala
CNS	 central nervous system
CPCCOEt	 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester
(S)-3,4-DCPG	 (S)-3,4-dicarboxyphenylglycine
GPCRs	 G-protein coupled receptors
iGluR	 ionotropic glutamate receptor
IL	 infra-limbic
mGluR	 metabotropic glutamate receptor
MPEP	 2-methyl-6-(phenylethynyl)pyridine
mPFC	 medial prefrontal cortex
NAAG	 N-acetylaspartylglutamate
NMDA	 N-methyl-D-aspartate
NTS	 nucleus tractus solitarius
PAG	 periaqueductal gray
PL	 pre-limbic
PLC	 phospholipase C
RVM	 rostral ventromedial medulla
TRPV1	 transient receptor potential vanilloid 1

2.1  �Introduction

As the most abundant excitatory neurotransmitter in the central nervous system 
(CNS), glutamate plays a pivotal role in main physiological brain functions. 
Glutamate exerts its effects through the activation of ligand-gated ionotropic gluta-
mate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). iGluRs 
are ion channel receptors, divided into N-methyl-D-aspartate (NMDA), α-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and kainate (KA) receptors, 
which mediate fast responses, associated with long-lasting modifications in synap-
tic transmission (Bleakman and Lodge 1998; Yamakura and Shimoji 1999), while 
mGluRs are G-protein-coupled receptors (GPCRs) subdivided into three groups 
(mGluR1–mGluR8) based on sequence homology, intracellular pathways, and 
pharmacological profile. Group I mGluRs, consisting of mGluR1 and mGluR5, are 
postsynaptically located and positively coupled to phospholipase C, and their acti-
vation leads to the intracellular calcium mobilization. Group II mGluRs, consisting 
of mGluR2 and mGluR3, and group III mGluRs, consisting of mGluR4, mGluR6, 
mGluR7, and mGluR8, are mainly presynaptic and coupled to the inhibition of 
adenylyl cyclase activity and to other signaling pathway, including the activation of 
mitogen-activated protein kinase cascade (Tian et al. 2010). mGluRs, by modulat-
ing ion channel activity and neurotransmitter release, play a modulatory role on 
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CNS synaptic excitability (Maione et al. 1998a; Cartmell and Schoepp 2000). Thus, 
signaling via these receptors is slower and longer-lasting driving to a fine-tuning of 
glutamate transmission.

Hyperexcitability of glutamatergic system is the main event occurring in central 
sensitization associated to chronic pain. Apart from classical symptoms, such as 
allodynia (pain experience following a not-painful stimulus) and hyperalgesia 
(increased pain perception from a painful stimulus), chronic pain presents comor-
bidity with affective and cognitive impairments. mGluRs are suitable pharmaco-
logical substrate for producing a fine modulation of glutamate transmission, whose 
hyperactivity or altered functioning is often associated with neurodegenerative, 
neurological, and psychiatric diseases. The effects of mGluRs stimulation in supra-
spinal areas of the pain pathway are summarized in Fig. 2.1. By this subject, mGluRs 

BLA

mGluR1

+

mGluR1,5,7 mGluR3,8

CeA

+ -

mGluR7 mGluR1,5,2/3,8

PAG

+ -

RVM

mGluR1,5 Group II mGluR4,7

Dorsal horn

+ -

mGluR1,5 Group II and III

VBT

+ -

Fig. 2.1  Scheme indicating the effect of mGluRs in supraspinal areas of the pain pathway. + indi-
cates a facilitatory effect on pain transmission, while − indicates an inhibitory effect on pain 
transmission. VBT ventrobasal thalamus
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pharmacological manipulation may represent an optimal strategy to treat chronic 
pain, including untreatable forms such as neuropathic pain, and associated affective 
and cognitive impairments.

2.2  �mGluRs and Pain Processing

Increasing evidence supports a crucial role of mGluRs in nociceptive transmission, 
given their extensive expression all along the nociceptive neuroaxis, such as the 
peripheral sensory terminals, dorsal root ganglia, spinal cord dorsal horn, rostral 
ventromedial medulla (RVM), periaqueductal gray (PAG), thalamus, amygdala, and 
cortex. The large variety and different synaptic distribution of mGluR subtypes 
determine their diverse role in pain transmission. Group I mGluRs are mainly 
expressed in the postsynaptic membrane, whereas group II and III mGluRs are 
localized presynaptically where they serve as auto- or hetero-receptors (Ohishi et al. 
1995). Generally, stimulation of group I mGlu receptors facilitates pain (Hama 
2003; Chiechio and Nicoletti 2012; Palazzo et al. 2014a, b). Conversely, activation 
of presynaptic mGluRs on glutamatergic terminals leads to a decrease in glutamate 
release (Attwell et al. 1995; Battaglia et al. 1997) correcting hyperactivity of gluta-
matergic system associated with chronic pain (Gerber et al. 2000). Within the pain 
descending pathway, high glutamate levels are associated with antinociception 
throughout a facilitation of the descending pain system functioning (Behbehani and 
Field 1979). In fact, the activation of group I or groups II and III mGluRs exerts 
antinociceptive or pronociceptive opposite effects (Marabese et al. 2005, 2007a, b) 
depending on the mGluR subtype signaling and its location on glutamatergic or 
GABAergic terminals.

Over the last decade, accumulating evidence has strengthened the evidence 
that dysfunction of the glutamate system is linked with the pathophysiological 
mechanisms responsible for chronic pain development (Neugebauer 2001). 
Neuropathic or inflammatory injury triggers structural and functional changes in 
the peripheral or central sensory circuits, resulting in altered nociceptive signal 
processes, such as spontaneous pain, allodynia, and hyperalgesia (Neugebauer 
et al. 2009; Goudet et al. 2008; Byrnes et al. 2009). Under neuropathic pain condi-
tions, enhanced glutamate release and overactivation of glutamate receptors have 
been observed in cortical areas involved in pain-related responses, including the 
anterior cingulate (ACC), insular, and prelimbic-infralimbic (PL-IL) cortex 
(Giordano et  al. 2012; Hung et  al. 2014). Furthermore, chronic pain interferes 
with specific limbic brain areas affecting neuropsychological processes which are 
glutamate-dependent, such as cognition, memory, and decision-making. mGluRs 
are supraspinally expressed within limbic system thus controlling negative affec-
tive disorders associated with chronic pain (Ferraguti and Shigemoto 2006; 
Latremoliere and Woolf 2009).
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2.3  �Group I mGluRs

The difficulty to develop selective agonists or antagonists for specific mGluR sub-
type arises from the sequence homology of mGluRs within the ligand binding site, 
which presents a hydrophilic moiety which makes the compound too hydrophilic to 
penetrate the blood-brain barrier for brain exposure. The identification, in the last 
years, of novel compounds acting as PAMs or NAMs, has guaranteed selectivity and 
lipophilicity since allosteric binding sites proved less conserved among the other 
mGluRs and do not require hydrophilic molecules. Activation of group I mGluRs 
generally facilitates nociception (Bhave et al. 2001) and mediates the development 
of inflammatory hyperalgesia (Walker et al. 2000; Palazzo et al. 2004). The role of 
supraspinal group I mGluRs in controlling pain responses has been investigated in 
the ventrobasal thalamus, periaqueductal gray, rostral ventromedial medulla, and 
amygdala.

Thalamus  Ventrobasal thalamus is a crucial relay point processing the somatosen-
sory information which from the spinal cord reach the cerebral cortex. At this level, 
mGluR1, mGluR5, and NMDA receptor stimulation enhances neuronal responses 
to nociceptive stimuli. Conversely, NMDA receptor, mGluR1, or mGluR5 blockade 
reduced the neuronal responses (Salt and Binns 2000).

Amygdala and Cortex  Basolateral (BLA) and central nucleus (CeA) of the amyg-
dala are deeply involved in the emotional consequences of pain, such as pain-related 
anxiety and depression-like behaviors. While the electrical manipulation of CeA 
activity does not modify the spontaneous nociceptive behaviors (Carrasquillo and 
Gereau 2008; Veinate et al. 2013), chronic pain leads to increased synaptic trans-
mission in the CeA, associated with the induction or maintenance of hypersensitiv-
ity observed in different pain models.

The activation of group I mGluRs in the amygdala is generally associated with 
pronociceptive effects (Neugebauer et al. 2003a, b; Kolber et al. 2010). Conversely, 
the blockade of mGluR1 inhibits pain stimuli-induced audible and ultrasonic vocal-
izations (Han and Neugebauer 2005) and decreases excitatory postsynaptic currents 
in neurons within the CeA in arthritic rats (Neugebauer et  al. 2003a; Ren and 
Neugebauer 2010). It has been recently shown that group I mGluRs are involved in 
the plastic changes that develop in the BLA and medial prefrontal cortex (mPFC) 
circuitry in chronic pain states (Ji and Neugebauer 2011; Guida et al. 2015). Later 
on, Luongo et  al. (2013) have showed that intra-BLA microinjection of (S)-3,5-
dihydroxyphenylglycine (DHPG), a group I mGluR agonist, reverted neuronal phe-
notypical changes occurring in the mPFC, under chronic pain condition. The 
7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester, CPCOOEt, a 
selective mGluR1 antagonist, but not 2-methyl-6-(phenylethynyl)-pyridine, MPEP, 
a selective mGluR5 antagonist, prevented alteration in mPFC under chronic pain 
condition, suggesting that mGluR1, but not mGluR5, plays a role in the modulation 
of BLA-mPFC circuitry, which is thought to be a key substrate for affective/cogni-
tive impairments associated with chronic pain.
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