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Preface

We proudly present the Proceedings of the 20th Polish Conference on
Biocybernetics and Biomedical Engineering, which will be held in Krakow from
September 20 to 22, 2017. The conference was organized by the Committee of
Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences and
the Polish Society of Biomedical Engineering and hosted by the AGH University of
Science and Technology. The biannual meetings of the Polish Conference on
Biocybernetics and Biomedical Engineering have been held for nearly four decades
and attract scientists and professionals from the fields of engineering, medicine,
physics, and computer science. After 30 years, this prestigious event returned to
AGH University of Science and Technology and, thanks to English as the working
language and an International Program Committee, opened to the scientists from the
entire world. The 20th PCBBE was a great opportunity for an exchange of ideas
and presentation of the latest developments in all areas within the field of
biomedical engineering including biomedical signal processing, imaging and image
processing, biosensors and bioinstrumentation, biomicro-/nanotechnologies, bio-
materials, biomechanics, robotics and minimally invasive surgery, cybernetics,
biomimetic and modeling of biological systems, neural and rehabilitation engi-
neering, artificial organs, molecular, cellular and tissue engineering, bioinformatics
and computational biology, clinical engineering and health technology assessment,
health informatics, e-health and telemedicine and biomedical engineering
education.

The conference attracted a total of 104 submissions, and after the refereeing
process, only 27 were accepted for publication in this volume. Here, we would like
to thank our participants, invited speakers, and reviewers for their scientific and
personal contributions to the conference. In this Proceedings volume, the accepted
papers are organized in five chapters concerning:

– signal processing,
– medical image analysis methods and applications,
– cell and tissue engineering,
– modeling in medicine and many others.
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Aiming at high scientific merit of the meeting and international recognition
of the Proceedings, all submissions are subjected to a thorough peer review process
(three to four independent reviews per paper) and only those with a consistent and
strong recommendation from reviewers have been accepted. We believe that this
book will become a great reference tool for scientists working in the area of bio-
cybernetics and biomedical engineering. The readers are kindly encouraged to
contact the corresponding authors for further details of their research.

Many thanks and much appreciation are due to the peer reviewers from Belgium,
Czech Republic, France, Germany, Hungary, Italy, Latvia, Poland, Portugal, and
Slovakia, who have greatly contributed to a critical selection of the best papers and
whose remarks and suggestions have helped the authors considerably improve the
quality of the papers.

The 20th Polish Conference on Biocybernetics and Biomedical Engineering was
an outstanding event thanks to the remarkable keynote speeches given by distin-
guished guest lecturers:

Prof. Metin Akay (USA),
Prof. n. med. Leszek Królicki (Poland),
Prof. Adam Liebert (Poland).

The scientific program of the conference was organized in plenary lectures,
regular domain-oriented oral sessions, and poster sessions. Besides the topics tra-
ditionally covered by the conference (e.g., biomaterials, biosignal processing,
modeling, cybernetics, artificial organs, imaging, sensors, e-health, telemedicine,
rehabilitation engineering), we enjoyed five special sessions:

– Award nomination and presentation session for laureates of the Polish Society of
Biomedical Engineering competition for the best BME Master’s Thesis,

– Education and certification system for clinical engineers,
– Celebration of 70th birthday of Professor Ryszard Tadeusiewicz—one of the

founding fathers of biocybernetics and biomedical engineering in Poland—with
personal recollections from his colleagues,

– Work in progress—review of the best ongoing research projects, and
– Turning the idea into a commercial product—session on innovation, start-up

initiatives, and support.

The conference was technically sponsored by Polish Chapter IEEE Signal
Processing Society and was granted by the honorary patronage of His Magnificence
Rector of AGH University of Science and Technology.

Finally, we would like to thank members of Local Organizing Committee in
Krakow: Piotr Augustyniak (Chairman), Andrzej Izworski, Anna Broniec,
Mirosława Długosz, Joanna Grabska-Chrząstowska, Daria Hemmerling, Katarzyna
Heryan, Joanna Jaworek-Korjakowska, Aleksandra Jung, Eliasz Kańtoch,

vi Preface



Paweł Kłeczek, Tomasz Orzechowski, Tomasz Pięciak, Elżbieta Pociask, Andrzej
Skalski, and Magdalena Smoleń for their commitment and efforts to make the
conference a very successful event.

Piotr Augustyniak
Roman Maniewski

Ryszard Tadeusiewicz
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Processing and Analysis of EEG Signal
for SSVEP Detection

Marcin Ko�lodziej, Andrzej Majkowski(B), �Lukasz Oskwarek,
Remigiusz J. Rak, and Pawe�l Tarnowski

Warsaw University of Technology, Warsaw, Poland
{marcin.kolodziej,andrzej.majkowski,remigiusz.rak}@ee.pw.edu.pl

Abstract. The aim of the article is to provide a systematic presenta-
tion of basic tools that are most commonly used to analyze electroen-
cephalography signals (EEG) in brain–computer interfaces for detection
of steady-state visually evoked potentials (SSVEP). We use a database
of EEG signals containing SSVEP and demonstrate the desirability of
the use of selected methods, showing their benefits. Methods such as
independent components analysis (ICA), frequency analysis (DFT), and
time-frequency analysis (STFT) are presented. For SSVEP, the features
of EEG signal should be stable with time. Short-Time Fourier Transform
(STFT) allows to confirm this stability. Independent Component Analy-
sis is used to extract pure SSVEP components. The advantages of each
method are described and the obtained results are discussed. Further,
source location by the use of low-resolution electromagnetic tomography
algorithm is demonstrated.

Keywords: Electroencephalography ·Brain–Computer Interface (BCI) ·
Independent Components Analysis (ICA) · Frequency analysis · Time-
frequency analysis · EEG inverse problem · LORETA

1 Introduction

A very popular and also quite effective brain–computer interfaces (BCI)
[1–6] standard is based on the so-called Steady-State Visually Evoked Poten-
tials (SSVEP) [7–12]. It uses the response of the brain to flickering light stimuli
with a constant frequency. In EEG signal, during the stimulation, an increase of
energy is observed in the frequencies equal to the flickering light frequency and
its harmonics. SSVEP are best noticeable in the visual cortex.

In BCI based on SSVEP implementation, there is a problem of extracting,
from noisy EEG signal, the useful information in the form of periodic wave-
forms of specific frequencies. As a solution for the problem, a whole range of
methods for EEG signal processing, analysis, and classification were developed
[13–15]. The basic methods include frequency and time-frequency analysis com-
bined with filtration. Complementary methods include spatial filters (common

c© Springer International Publishing AG 2018
P. Augustyniak et al. (eds.), Recent Developments and Achievements in Biocybernetics
and Biomedical Engineering, Advances in Intelligent Systems and Computing 647,
DOI 10.1007/978-3-319-66905-2 1



4 M. Ko�lodziej et al.

average reference – CAR, local average technique - LAT or Laplace filter).
Advanced methods include independent components analysis (ICA) [16–21]. Fur-
thermore, it is reasonable to determine the spatial location of sources of elec-
trical activity within the brain, throughout solving the EEG inverse problem
[22–26]. Described below, EEG signal analysis algorithms for SSVEP recognition,
were carried out in MATLAB using EEGLAB [27] and ICALAB toolboxes [28].
To determine the spatial localization of sources, low-resolution electromagnetic
tomography algorithm (LORETA) was used [29].

2 Materials

EEG signals were recorded using 16-electrode g.tec EEG amplifier. Electrodes
were attached to a cap and arranged according to the international 10–20 system
(O2, AF3, AF4, P4, P3, Fz, F3, FCz, Pz, C4, C3, CPz, Cz, Oz, O1). Data were
collected from five users aged from 23 to 46 years. In the carried out experiments,
users were stimulated with LED light flickering with four different frequencies,
that is, 5, 6, 7, and 8 Hz. The LED, about 1 cm in diameter, was placed at a
distance of approximately 1 m from the user’s eyes.

Each session lasted 30 s. EEG signals were recorded at a rate of 256 kHz. In
order to avoid aliasing and eliminate interference from the power network, the
signals were filtered by a bandpass filter (0.1–100 Hz) and Butterworth band-stop
filter (48–52 Hz), respectively. Additionally, a spatial filter Common Average
Reference type (CAR) was used for the reduction of biological artifacts. Basic
parameters related to data acquisition, processing, and analysis are summarized
in Table 1.

Table 1. Basic parameters of data acquisition and analysis

Parameters Value

The number of classes (SSVEP channels) 4 (5, 6, 7, 8) Hz

Number of electrodes 16

Number of users 5

Sampling rate 256 Hz

Duration of experiment task 30 s

Number of samples per task 7680

Number of time windows per task 14

Number of samples per window 1024

Frequency range of analysis 0.1–100 Hz

Resolution of spectral analysis 0.25 Hz

Image resolution (LORETA) 5 mm
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3 Methods

There are many methods of EEG signal processing. Below we presented a com-
pact, supported by examples, overview of the most popular methods of EEG
signal analysis, especially useful in the SSVEP detection. Use of these methods
allows to determine:

– frequency range of electrical brain activity (frequency analysis)
– variability in the frequency of EEG signals (time-frequency analysis)
– independent components of EEG signal (Independent Component Analysis)
– the location of sources of brain activity (LORETA)
– EEG components associated with particular brain activity (classification).

3.1 Frequency Analysis

The basic features of EEG signal, used in the SSVEP classification process, are
oscillations associated with light stimulus and their harmonics. Thus, frequency
analysis is the most commonly used in EEG signal processing for SSVEP recog-
nition. In a case of Discrete Fourier Transform (DFT), for N size time series xn,
the spectral coefficients Xk, are determined from the relationship (1).

Xk =
1
N

N−1∑

n=0

xne−j( 2π
N k)n (1)

Fig. 1. Analysis in frequency domain for 2nd channel
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The idea of such an analysis for the second channel of EEG recording is shown
in Fig. 1. By combining the FFT results for data coming from different channels,
it is possible to obtain distribution of potentials on the scalp for the selected
frequency (i.e. EEG mapping).

3.2 Time-Frequency Analysis

The extension of analyses on time-frequency space is particularly useful in the
study of brain functioning. For SSVEP, the features of EEG signal should be
stable with time. Short-Time Fourier Transform (STFT) allows to confirm this
stability.

The EEG signal is divided into narrow time windows, on which frequency
analysis is performed. A spectrogram is the result of this analysis, for which
the values of each t/f coefficient Xn,k (for sliding time window ϕn−m of M
width, located at n time point and k frequency point) are determined from the
relationship (2).

Xn,k =
1
M

M−1∑

m=0

xmϕn−me−j( 2π
M k)m (2)

By STFT analysis (spectrogram), we were able to determine which of the
EEG signal fragments showed the frequencies interested to us. The idea of such
an analysis for the second channel of EEG recordings is illustrated in Fig. 2.

Fig. 2. Analysis in time-frequency domain for 2nd channel



SSVEP Detection 7

3.3 Independent Component Analysis (ICA)

EEG signals recorded from the surface of the skull include not only components
of the cerebral origin, but also noise and a lot of different independent arti-
facts. One of the most effective methods is Independent Components Analysis
(ICA), which separates unknown desired signals from different sources. It not
only enables the extraction of SSVEP components, but at the same time, helps
in the reduction of noise and artifacts.

In ICA methods, it is assumed that the EEG signal is a linear combination
of signals coming from different sources (3):

x = As + v (3)

where x is the vector of observed EEG signals, s is the vector of independent,
source signals, A is the mixing matrix, and v is the additive noise vector (for
simplicity, this parameter is usually omitted). Source separation task is to reverse
the relation (3), which in turn leads to Eq. (4).

y = Wx ∼= s (4)

where y is the vector of output signals (estimated source signals) and W is the
separating matrix.

If matrix A is known, the task of sources separation is reduced to matrix
inversion. Otherwise, the matrix is estimated from the recorded EEG signals
(x vector). The solution in which the output signal vector y contains source
components as independent as possible is sought. This is the aim of ICA, the
concept of which is illustrated in Fig. 3. In the upper part of the figure, exemplary
waveforms of EEG signals for the four electrodes are shown, and the lower part

Fig. 3. A method of independent component analysis (ICA)
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presents four independent components calculated for each of them. On the right
side, the distribution of weights associated with a given component is shown.

Among the various known algorithms of ICA, we used fourth-order blind
signal separation (BSS) algorithm in our experiments [19–21].

3.4 Spatial Distribution of Electrical Brain Activity

In order to determine electrical activity of brain (described by current densities J),
it is necessary to solve the so-called inverse problem. The current densities J calcu-
lated from the potentials x recorded at the head surface are described by Eq. (5).

Ĵ = K−1x (5)

where K is the transformation matrix binding EEG potentials with currents
describing the activity of individual brain areas.

The calculation of brain activity is normally done by assuming a priori distri-
bution of J and repeatedly solving the so-called forward problem (x = KJ + v),
while minimizing the noise v. The transformation matrix K is determined by
solving Maxwell’s equations assuming a spherical head model, or a more realis-
tic model obtained from individual testing of a person (e.g. functional magnetic
resonance imaging) or taken directly from the atlas of the human brain [30]. Due
to the ambiguity of the solution (5), EEG inverse problem is one of the most

Fig. 4. Ideas of forward and inverse problems in EEG
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difficult tasks in electroencephalography research. The ideas of a forward and
inverse problems in EEG are illustrated in Fig. 4.

The methods of locating sources using EEG signals differ primarily by brain
activity modeling, formulation of boundary conditions, and applied optimization
methods [22,23]. They include parametric methods, in which the brain activity
is modeled by a sufficiently small number of single current dipoles, and non-
parametric methods, in which distributed sources are considered. sLORETA
(standardized low-resolution electromagnetic tomography algorithm) is a soft-
ware tool used to solve the inverse problem [24–26], and presents a very small
location error even for deeply located sources.

3.5 Task Classification

The effectiveness of BCIs based on SSVEP detection, depends on the abil-
ity of proper classification of extracted EEG components - correct assignment
of each SSVEP class to a particular task. The following are the commonly
used tools in classification of EEG components: minimum distance estimation
(k-nearest neighbors [k-NN]), feature space division (neural networks [MPL]
or support vector machine [SVM]), probabilistic methods (naive Bayesian
classifier), and discriminant analysis (linear/quadratic discriminant analysis
[LDA/QDA]) [31–34]. For research related to SSVEP, relatively high efficiency
has a fairly conceptually simple k-NN algorithm [34]. In the presented calcula-
tions, 3-NN version of the algorithm was used, while for learning and testing the
classifier, 10-fold cross-validation test (10-CV) was implemented.

4 Results and Discussion

The results of EEG signal analysis, in the context of SSVEP detection, shows
high efficiency of the considered methods. The results were presented in the
form of charts, obtained using standard software packages such as: MATLAB,
EEGLAB [27], ICALAB [28] and sLORETA [29].

4.1 Analysis in Frequency Domain

In a properly conducted experiment, the SSVEPs are most noticeable at occip-
ital electrodes O1/O2/Oz, which are located above the visual cortex. A sample
spectrum of an exemplary signal collected from Oz electrode for user #1, elicited
with 7 Hz stimulus is illustrated in Fig. 5. The component corresponding to the
frequency of the stimulus and its second and fourth harmonics (14 Hz, and 28 Hz)
can be clearly seen.

EEG signal analysis in the frequency domain is particularly useful to verify
on which electrodes the components, which are the response to a stimulus, are
most visible. Mapping of EEG potentials for the considered case (7 Hz) showed
greatest energy at the back of the head (Fig. 6).
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Fig. 5. Spectrum of signal from Oz electrode (user #1, 7Hz session)

Fig. 6. Potential distribution on the surface of the head (user #1, 7Hz session)

4.2 Analysis in Time-Frequency Domain

Short-Time Fourier Transform (STFT) was used to examine the temporal sta-
bility of the components of EEG signal related to SSVEP. For this purpose,
spectrograms were calculated, particularly for signals from O1/O2/Oz elec-
trodes. Spectrogram paced in Fig. 7, shows that during two consecutive sessions
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Fig. 7. Spectrogram of the signal from Oz electrode (user #1, 7Hz and 8 Hz sessions)

(7 Hz and 8 Hz), the power of components associated with the stimulus frequency
and their harmonics noticeably increases, which is visible from the very begin-
ning to the end of the sessions.

4.3 Spatial Location of Brain Sources Based on Raw EEG

In the first step of experiments, spatial location of SSVEP sources was deter-
mined for raw EEG data (without ICA implementation) using sLORETA algo-
rithm. The calculations were made separately for each channel of EEG signal
(electrode) and the obtained results, for a specific user and SSVEP session, were
averaged. An exemplary distribution of brain electrical activity for user #1,
elicited with 7 Hz stimulus is shown in Fig. 8. Picture header contains informa-
tion about the position of the voxel and maximum current density related to it
and the frequency for which maximum current density was obtained.

Figure 9 shows the dependence of electrical brain activity (maximum current
density) on the frequency, for 7 Hz stimulus. On stimulation with a 7 Hz stimu-
lus, an increase of activity (in the visual cortex: O1, O2, Oz electrodes) in the
frequency band of 7 Hz and its second harmonics is clearly observed.

Assessment of the differences between the two compared classes (7 Hz and
8 Hz) was also performed. Their measure F7−8 was calculated separately for each
pixel, defined as the logarithm of the ratio of current densities J7 and J8 (6).

F7−8 = log (
1

N7

N7∑

i

J7,i /
1

N8

N8∑

i

J8,i ) (6)
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Fig. 8. Electrical activity of the brain (current density distribution) (user #1, 7Hz
session)

Fig. 9. Maximum current density as a function of frequency (user #1, 7 Hz session)

(a)

(b)

Fig. 10. Distributions of F7−8 coefficient for (a) 7Hz and (b) 8 Hz for user #1
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Fig. 11. Dependence of the maximum value of the F7−8 coefficient on the frequency

Fig. 12. Spectrum density (top) and the distribution of weights on the scalp (bottom)
(user #1, 7 Hz session, IC10 component)

Distributions of F7−8 coefficient are shown in Fig. 10a for 7 Hz and in Fig. 10b
for 8 Hz. In Fig. 11, the dependence of the maximum value of the F7−8 coefficient
on the frequency is illustrated. Although low-frequency components of EEG sig-
nals that occur without stimulation had the largest energy, the obtained results
confirm that the greatest differences between the classes were observed for fre-
quencies associated with stimuli (7 Hz and 8 Hz) and their harmonics (in partic-
ular 2 and 4).

4.4 Analysis of Independent Components

As part of our research, we also calculated independent source components
related to SSVEP. In the applied algorithm (Force Average Reference - FAR),
the number of calculated independent components was equal to the number of
channels (electrodes) decreased by 1 (that is 15) [35–37]. As a result of the
analysis we obtained:
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– 15 components (IC1–IC15) with the same number of samples as in EEG
signals, and

– weight matrix binding a component with 16 recorded EEG signals (for each
component).

For each component we performed spectral analysis, indicated the source of
the component (sLORETA) and determined the accuracy of SSVEP classifica-
tion.

4.5 Spectral Analysis of ICA Components

In another approach, the independent components were subjected to Fourier
transform. The results achieved for IC10 component are presented in Fig. 12.
Top figure shows the spectrum density and bottom the distribution of weight
coefficients on the scalp (user #1, 7 Hz session). Presented spectrum, as well as
weight distribution, indicates a potentially high correlation of IC10 component
with SSVEP. However, for some people and SSVEP sessions, the results were less
conclusive. For example, for user #5 and 7 Hz session, SSVEP was better repre-
sented in the spectrum for IC6 component (Fig. 13), although higher transition
weights for O1/O2/Oz electrodes were observed for IC7 component (Fig. 14).

Fig. 13. Spectrum density and the distribution of weights on the scalp (user #5, 7Hz
session, IC6 component)
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Fig. 14. Spectrum density and the distribution of weights on the scalp (user #5, 7 Hz
session, IC7 component)

4.6 Spatial Location of Brain Sources Based on Independent
Components

Location of sources performed using LORETA algorithm gives a very clear view
of the structure of SSVEP. For example, for user #1 the greatest activity was
observed in the rear part of the head for IC10 component (Fig. 15), which coin-
cides with conclusions obtained from previous experiments. For comparison, IC9
and IC7 components, showed maximum activity in central parts of the head
(Figs. 16 and 17), which clearly excludes their derivation from SSVEP.

Fig. 15. Distribution of current density in the brain for IC10 (user #1)
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Fig. 16. Distribution of current density in the brain for IC9 (user #1)

Fig. 17. Distribution of current density in the brain for IC6 (user #5)

Fig. 18. Distribution of current density in the brain for IC7 (user #5)

Location of SSVEP sources proved to be useful also in less obvious cases,
for example, in the aforementioned comparative analysis of components IC6 and
IC7 for user #5. The results of inverse problem solution support the hypothesis
of a greater connection of IC6 component with the SSVEP (maximum activity
in the visual cortex Fig. 17) than IC7 component (the largest activity in the
anterior cortex Fig. 18).

4.7 Results of Independent Components Classification

Finally, based on independent components, the classification of individual
SSVEP was made. The results for users #1, #3, and #5 are illustrated in
Figs. 19, 20 and 21, respectively.
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Fig. 19. Classification effectiveness for user #1

Fig. 20. Classification effectiveness for user #3
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Classification results confirm the hypothesis presented earlier and observa-
tions from the harmonic analysis of independent components and location of
sources in brain. For user #1, fairly good classification results were obtained for
several components (IC10, IC5, IC2, and IC11). The best classification results
were obtained for only one component in users #5 (IC6) and #3 (IC10). For
users #2 and #4, ICA did not significantly improve classification accuracy. This
may be due to artifacts and possibly weak concentration of the user on flashing
LED.

Fig. 21. Classification effectiveness for user #5

5 Conclusions

For a well-recorded EEG signal (including the lack of artifacts or their elimi-
nation), sufficiently good and unambiguous SSVEP detection can be obtained
without the extraction of independent components (ICA). This was confirmed by
the results of frequency and time-frequency analysis and the results of the loca-
tion of sources of SSVEP. In more ambiguous cases, ICA proved to be an effec-
tive method of searching the most appropriate components related to SSVEP.
However, the high correlation of independent component with SSVEP does not
always mean higher energy of signals related to stimulus frequency, recorded on
the electrodes located on the visual cortex (O1/O2/Oz).
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Very reliable information was provided by SSVEP about source location
and spectral analysis of independent components, which are consistent with the
results of classification. Hence, the highest classification efficiency is observed
for those components for which the largest current density appear in the visual
cortex of the brain (the back of the head). In general, described EEG analysis
tools (algorithms) developed for the detection of SSVEP are characterized by
relatively high efficiency.
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computer interfaces: OpenBCI.pl and BCI Appliance. Bull. Pol. Acad. Sci. Techn.
Sci. 60(3), 427–431 (2012)

4. Rak, R.J., Ko�lodziej, M., Majkowski, A.: Brain-computer interface as measurement
and control system the review paper. Metrol. Meas. Syst. 19(3), 427–444 (2012)

5. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.:
Brain-computer interfaces for communication and control. Clin. Neurophysiol.
113(6), 767–791 (2002)

6. Wolpaw, J., Wolpaw, E.W.: Brain-Computer Interfaces Principles and Practice.
Oxford University Press, New York (2012)

7. Byczuk, M., Poryza�la, P., Materka, A.: On diversity within operators’ EEG
responses to LED-produced alternate stimulus in SSVEP BCI. Bull. Pol. Acad.
Sci. Techn. Sci. 60(3) (2012)

8. Liu, Q., Chen, K., Ai, Q., Xie, S.Q.: Review: recent development of signal process-
ing algorithms for SSVEP-based brain computer interfaces. J. Med. Biolog. Eng.
34(4), 299 (2013)

9. Materka, A., Poryzala, P.: High-speed noninvasive brain-computer interfaces. In:
2013 6th International Conference on Human System Interactions (HSI), Sopot,
pp. 7–12 (2013)

10. Materka, A., Poryza�la, P.: A robust asynchronous SSVEP brain-computer interface
based on cluster analysis of canonical correlation coefficients. In: Human-Computer
Systems Interaction: Backgrounds and Applications 3, pp. 3–14. Springer Interna-
tional Publishing (2014)

11. Mouli, S., Palaniappan, R., Sillitoe, I.P., Gan, J.Q.: Performance analysis of multi-
frequency SSVEP-BCI using clear and frosted color LED stimuli. In: 2013 IEEE
13th International Conference on Bioinformatics and Bioengineering (BIBE), pp.
1–4 (2013)

12. Zhu, D., Bieger, J., Garcia Molina, G., Aarts, R.M.: A survey of stimulation meth-
ods used in SSVEP-based BCIs. In: Computational Intelligence and Neuroscience
(2010)

13. McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection
for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103(3),
386–394 (1997)



20 M. Ko�lodziej et al.

14. Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., Sejnowski,
T.J.: Removal of eye activity artifacts from visual event-related potentials in nor-
mal and clinical subjects. Clin. Neurophysiol. 111(10), 1745–1758 (2000)

15. Joyce, C.A., Gorodnitsky, I.F., Kutas, M.: Automatic removal of eye movement and
blink artifacts from EEG data using blind component separation. Psychophysiology
41(2), 313–325 (2004)

16. Vigário, R., Sarela, J., Jousmiki, V., Hamalainen, M., Oja, E.: Independent compo-
nent approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed.
Eng. 47(5), 589–593 (2000)
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