Jan Ježek Jan Hlaváček Jarosl<u>av Šebestík</u>

Biomedical Applications of Acridines

Derivatives, Syntheses, Properties and Biological Activities with a Focus on Neurodegenerative Diseases

Progress in Drug Research

Volume 72

Series editor

K.D. Rainsford, Sheffield Hallam University, Biomedical Research Centre, Sheffield, UK

More information about this series at http://www.springer.com/series/4857

Jan Ježek · Jan Hlaváček Jaroslav Šebestík

Biomedical Applications of Acridines

Derivatives, Syntheses, Properties and Biological Activities with a Focus on Neurodegenerative Diseases

Jan Ježek Academy of Sciences Institute of Organic Chemistry and Biochemistry Prague Czech Republic

Jan Hlaváček Academy of Sciences Institute of Organic Chemistry and Biochemistry Prague Czech Republic Jaroslav Šebestík Academy of Sciences Institute of Organic Chemistry and Biochemistry Prague Czech Republic

ISSN 0071-786X Progress in Drug Research ISBN 978-3-319-63952-9 DOI 10.1007/978-3-319-63953-6

ISSN 2297-4555 (electronic)

ISBN 978-3-319-63953-6 (eBook)

Library of Congress Control Number: 2017947442

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To memory of the late Dr. Dušan Drahoňovský, who contributed to the concept of human friendly science. He served as a very kind and good teacher of organic chemistry at Charles University, Prague. When we had started to study organic synthesis at University of Pardubice, Dušan's nickname was Acridine, because he had been devoted to carry out acridine synthesis since high school age.

Acknowledgements

This work was supported by the Czech Science Foundation (14-00431S, 17-00121S), Research Project RVO 61388963. Molecular graphics and analyses were performed with the UCSF Chimera package. Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311).

Contents

1		duction	1 3
2		enclatureences	5
3	3.1 3.2 3.3	Acridines as Catalysts.	9 9 26 31 33
4	Inte	actions of Acridines with Nucleic Acids	47
	4.1	DNA	47
	4.2	DNA Quadruplexes	51
	4.3	RNA	54
	4.4	PNA	56
	4.5	Acridine Metal Complexes	57
	4.6	Structural Aspects of Nucleic Acid Binding	59
	Refe	ences	64
5	Inte	actions with Proteins	73
	5.1	Interactions with Nucleic Acids Processing Proteins	73
		5.1.1 Topoisomerases	74
		5.1.2 Transcription Factors	76
		5.1.3 RecA Protein	76
		5.1.4 Telomerase	76
	5.2	Interactions with Other Proteins	77
	5.3	Structural Aspects of Acridine Interactions with Proteins	83
	Refe	ences	90

x Contents

6	Applications for Treatment of Neurodegenerative Diseases	99
	6.1 Alzheimer's Disease	104
	6.1.1 Multitargeted Strategy in AD	108
	6.2 Parkinson's Disease	112
	6.3 Prion Diseases	114
	6.4 Other Neurodegenerative Diseases	118
	References	121
7	Some Application of Selective Toxicities of Acridines	135
	7.1 Antiparasitic Drug	135
	7.2 Cancer Treatment	146
	7.3 Antibacterial Drugs	153
	7.4 Antiviral Drugs	154
	References	155
8	Pharmacokinetics and Metabolism of Acridine Drugs	165
	References	181
9	Acridine on Dendrimeric Carriers	187
	9.1 Application for Drug and Gene Delivery	188
	References	190
10	Acridines Used for Staining	193
	References	201
11	Miscellaneous	207
	References	209
12	Conclusions and Outlook	211
Inc	lex	213
	#\$\frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Acronyms

The three-letter code used for amino acids follows the rules of the IUPAC-IUB Commission on Biochemical Nomenclature. [1] The one-letter code used for amino acids follows the rules of the IUPAC-IUB Joint Commission on Biochemical Nomenclature. [2] These articles show also how to read formulas of peptides used in this work. [3] Selected abbreviations are commonly used especially for description of acridines in peptide conjugates and neurodegenerative disorders:

AAAcr 9-(p-aminomethylphenylamino)acridine-4-carboxylic acid

 $A\beta$ amyloid β

AC04 5-(acridin-9-yl-methylidene)-3-(4-methyl-benzyl)-

thiazolidine-2,4-dione

Acd β -(9,10H-acridon-2-yl)alanine

AChE Acetylcholinesterase

ACMA 9-amino-6-chloro-2-methoxyacridine

Acr Acridin-9-yl

ACRAMTU 1-[2-(acridin-9-yl-amino)ethyl]-1,3-dimethylthiourea Acr4CA 4-(2-methylaminoethylaminocarbonyl)-acridin-9-yl

AD Alzheimer's disease

ADE Amyloid degrading enzymes

AHMA 3-(9-acridinylamino)-5-hydroxy-methylaniline

ALS Amyotrophic lateral sclerosis

AO Acridine orange

Aol 3,6-bis-(dimethylamino)acridin-9-yl

APP Amyloid precursor protein

BACE β -secretase

BBB Blood-brain barrier BChE Butyrylcholinesterase

BRACO19 N,N'-(9-(4-(dimethylamino)phenylamino)acridine-3,6-diyl) bis

(3-(pyrrolidin-1-yl)propan-amide) trihydrochloride

BSE Bovine spongiform encephalopathy

xii Acronyms

C-1305 5-dimethylaminopropylamino-8-hydroxytriazolo-acridinone

C-1748 9-(2'-hydroxyethylamino)-4-methyl-1-nitroacridine

CJD Creutzfeldt–Jacob disease

Cl-DACA N-(2-(dimethylamino)ethyl)-7-chloro-acridine-4-carboxamide

CMA 10-carboxymethyl-9-acridone CTAC cetyltrimethylammonium chloride

CWD Chronic wasting disease CYP3A4 Cytochrome P450 3A4

DABPA 9-(4-(1,2-diamine)benzene-*N*-1-phenyl)acridine DACA *N*-(2-(dimethylamino)ethyl)-acridine-4-carboxamide

DAPA 9-[3-(dimethylamino)propylamino]acridine

DFT Density functional theory
DLB Dementia with Lewy bodies

DPEPhos bis[(2-diphenylphosphino)phenyl] ether dppf 1,1'-ferrocenediyl-bis(diphenylphosphine) FITU Fluorescein 5-((amino)thiocarbonyl)

FFI Familial fatal insomnia FRDA Friedreich's ataxia

FTLD Fronto-temporal lobar degeneration

GPI Glycophosphatidylinositol

GSS Gerstmann–Sträussler–Scheinker syndrome

HD Huntington's disease

hAChE Human acetylcholinesterase hBChE Human butyrylcholinesterase hMAO-B Human monoamine oxidase B Hp β CD hydroxypropyl- β -cyclodextrin HuPrP106-126 Human prion peptide 106-126

hSIRT Human sirtuin

Hsp90 Heat shock protein 90

IP Intraperitoneal IV Intravenous

mAChE Mouse acetylcholinesterase

MBAA 6-chloro-2-methoxy-*N*-(2-methoxybenzyl)acridin-9-amine

MCI Mild cognitive impairment

MDR Multidrug resistance

7-MEOTA 7-methoxy-9-amino-1,2,3,4-tetrahydroacridine

MSA Multiple system atrophy

NEP Neprilysin

NIID Neuronal intranuclear inclusion disease OHA 1,2,3,4,5,6,7,8-octahydroacridin-9-amine

PCB Polychlorinated biphenyls

PCET Proton-coupled electron transfer

PD Parkinson's disease P-gp P-glycoproteine

Phthac 4,5-bis-(phenylthiomethyl)acridine

Acronyms xiii

PPA Polyphosphoric acid

PPAB Poly(propargyl acridiniumbromide)
PPQB Poly(propargyl quinoliniumbromide)

PrP Prion protein
PrP^C Cellular PrP

PrP^{res} Proteainase K resistant PrP

PrP^{Sc} Scrapie PrP

PrP^{sen} Proteainase K sensitive PrP

PZA Pyrazoloacridine

QSAR Quantitative structure-activity relationships

Qui 6-chloro-2-methoxyacridin-9-yl

RAFT Regioselectively addressable functional template

RCSB PDB Research Collaboratory for Structural Bioinformatics Protein

Databank

RNS Reactive nitrogen species
ROS Reactive oxygen species
rPrPSc Proteainase K resistant PrPSc

RT-QuIC Real time-quaking-induced conversion SBMA Spinal and bulbar muscular atrophy

SCA Spinocerebellar ataxias

sPrP^{Sc} Proteainase K sensitive PrP^{Sc} Tac 1,2,3,4-tetrahydroacridin-9-yl

TEOF Triethyl orthoformate

TSE Transmissible spongiform encephalopathy

vCJD Variant Creutzfeldt-Jakob disease

References

- IUPAC-IUB: Symbols for amino-acid derivatives and peptides. Recommendations (1971).
 J. Biol. Chem. 247, 977–983 (1972)
- IUPAC-IUB: IUPAC-IUB joint commission on biochemical nomenclature (JCBN).
 Nomenclature and symbolism for amino acids and peptides. Recommendations 1983.
 Biochem. J. 219(2), 345–373 (1984)
- 3. Jones, J.H.: Abbreviations and symbols in peptide science: a revised guide and commentary. J. Pept. Sci. 12(1), 1–12 (2006)

Chapter 1 Introduction

Abstract Acridines interact with both nucleic acids and proteins. The targeting of these biopolymers is broadly applied in cancer therapy and gene delivery. Interestingly, due to direct interactions of acridines with various enzymes, acridines can be suitable drugs for treatment of neurodegenerative diseases, inflammation, immunological disorders, protozoal diseases, etc. General introduction to the field of acridines is provided including scope and limitations of the field. Some important structures, which are used as drugs, are highlighted.

Acridines are heteroaromatic compounds (Figs. 1.1 and 2.1) that were applied for treatment of many diseases since the beginning of 20th century [1]. Namely, aminoacridines possessing higher solubility in physiological liquids were used as antiprotozoal and antibacterial drugs. The growth of transplanted tumor was suppressed by acriflavine (mixture of 3,6-diamino-10-methylacridinium chloride and 3,6-diaminoacridine) in the thirties [2]. In the past, anti-tumor activity of acridines was attributed to their interactions with nucleic acids; however, the more recent studies favor an explanation based on direct interaction of acridines with biologically important proteins [3–10]. According to search in RCSB PDB database conduced in August 2015, there were 48 structures containing acridine skeleton and 30 structures containing 1,2,3,4-tetrahydroacridine, respectively. From these 78 structures only 32 correspond to acridine binding to nucleic acids including one complex between amsacrine-nucleic acids and enzyme topoisomerase II. Thus, more than half of the structures represents direct binding of acridines to proteins.

The development of human society has incorporated acridine drugs to daily life of millions of individuals worldwide [6, 10–28]. For selected acridine drugs see Fig. 1.1. Due to high toxicity, compounds 1–4 are applied only as local antiseptic agents. *m*-Amsacrine (6) is very active against malignant lymphomas and acute leukemia. Asulacrine (7), which combines the substructures of *m*-amsacrine (6) and DACA (5), has improved pharmacokinetic profile and broader scope of applications against leukemia, Lewis lung tumors, and many solid tumors. Nitracrine (8) serves for treatment of mammary and ovarian tumors. BRACO19 (9) is powerful binder of quadruplexes. Pt-ACRAMTU (10) is mimicking anticancer cisplatin; however, it has different mode of action. Quinacrine (11) can be viewed as a universal medicine for

1

2 1 Introduction

Fig. 1.1 Selected acridines used as antiseptic (1–4), anticancer (5–10), trypanocidal (11), neuroprotective (11–13), and transport-enhancing (14) drugs, respectively [4, 6, 11]. Acriflavine is a mixture of 1 and proflavine (2). Ethacrine (3). Aminacrine (4). DACA (5). *m*-Amsacrine (6). Asulacrine (7). Nitracrine (8). BRACO19 (9). Pt-ACRAMTU (10). Quinacrine (11). Tacrine (12). Velnacrine (13). Elacridar (14)

1 Introduction 3

many diseases such as rheumatic arthritis, lupus erythrematosus, malaria resistant to chloroquine, the tapeworm infections (*Taenia saginata*), Chagas disease, epilepsy (refractory petit mal), and prion infections. Another acridine useful for treatment of neurodegenerative diseases, which has partially hydrogenated ring, is tacrine (12). It penetrates blood—brain barrier (BBB) and serves for treatment of Alzheimer's disease (AD). Velnacrine (13) served as less toxic analogue of tacrine with almost the same activity. Elacridar (14) is a strong inhibitor of the ABC transporters MDR-1 (P-gp) and BCRP. The bioavailability of cytotoxic antitumor drugs is enhanced by elacridar. Moreover, the levels of anti-HIV drugs in the brain and CNS are much higher after administration of elacridar. Rational drug design based on the concept of privileged structures was applied on acridine and quinoline scaffolds including dendrimers in study of neurodegenerative and protozoan diseases [8].

The aim of this book is an update and extension of the previous review [4] with focus to acridine–protein interactions and use of acridines for treatment of neurodegenerative diseases. However, since acridines are potent binders of nucleic acids including quadruplexes, chapter describing this topic cannot be omitted.

Owing to immense amount of published references, we are apologizing to all authors, whose papers are not included.

References

- 1. Albert, A.: The acridines: Their Preparation, Physical, Chemical, and Biological Properties and Uses. Richard Clay and Company Ltd, Bungay, Suffolk, GB (1951)
- Mellanby, E.: Report on work carried out in the pharmacological laboratory. Sheff. Univ. Brit. Emp. Cancer C 10, 102 (1933)
- 3. Demeunynck, M., Charmantray, F., Martelli, A.: Interest of acridine derivatives in the anticancer chemotherapy. Curr. Pharm. Des. 7, 1703–1724 (2001)
- 4. Šebestík, J., Hlaváček, J., Stibor, I.: A role of the 9-aminoacridines and their conjugates in a life science. Curr. Protein Pept. Sci. 8(5), 471–483 (2007)
- Kusuzaki, K., Murata, H., Matsubara, T., Satonaka, H., Wakabayashi, T., Matsumine, A., Uchida, A.: Acridine orange could be an innovative anticancer agent under photon energy. Vivo 21(2), 205–214 (2007)
- Ehsanian, R., Van Waes, C., Feller, S.M.: Beyond DNA binding a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell. Commun. Signal. 9, art. no. 13 (2011)
- Folini, M., Venturini, L., Cimino-Reale, G., Zaffaroni, N.: Telomeres as targets for anticancer therapies. Expert Opin. Ther. Targets 15(5), 579–593 (2011)
- 8. Bongarzone, S., Bolognesi, M.L.: The concept of privileged structures in rational drug design: focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. Expert Opin. Drug Discov. 6(3), 251–268 (2011)
- Galdino-Pitta, M.R., Pitta, M.G.R., Lima, M.C.A., Galdino, L.S., Pitta, R.I.: Niche for acridine derivatives in anticancer therapy. Mini Rev. Med. Chem. 13(9), 1256–1271 (2013)
- Kumar, R., Kaur, M., Silakari, O.: Chemistry and biological activities of thioacridines/thioacridones. Mini Rev. Med. Chem. 13, 1220–1230 (2013)
- 11. Afzal, A., Sarfraz, M., Wu, Z., Wang, G., Sun, J.: Integrated scientific data bases review on asulacrine and associated toxicity. Crit. Rev. Oncol. Hematol. **104**, 78–86 (2016)

4 1 Introduction

12. Atwell, G.J., Rewcastle, G.W., Baguley, B.C., Denny, W.A.: Potential antitumor agents. 50. In vivo solid-tumor activity of derivatives of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. J. Med. Chem. **30**(4), 664–669 (1987)

- 13. Wallace, D.J.: The use of quinacrine (Atabrine) in rheumatic diseases: A reexamination. Semin. Arthritis Rheum. **18**(4), 282–296 (1989)
- Braga, M.F., Harvey, A.L., Rowan, E.G.: Effects of tacrine, velnacrine (HP029), suronacrine (HP128), and 3,4-diaminopyridine on skeletal neuromuscular transmission in vitro. Br. J. Pharmacol. 102, 909–915 (1991)
- Krauth-Siegel, R.L., Bauer, H., Schirmer, R.H.: Dithiol proteins as guardians of the intracellular redox milieu in parasites: Old and new drug targets in Trypanosomes and malaria-causing Plasmodia. Angew. Chem. Int. Ed. 44, 690–715 (2005)
- Burnett, J.C., Schmidt, J.J., Stafford, R.G., Panchal, R.G., Nguyen, T.L., Hermone, A.R., Vennerstrom, J.L., McGrath, C.F., Lane, D.J., Sausville, E.A., Zaharevitz, D.W., Gussio, R., Bavari, S.: Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochem. Biophys. Res. Commun. 310(1), 84–93 (2003)
- Harrison, R.J., Cuesta, J., Chessari, G., Read, M.A., Basra, S.K., Reszka, A.P., Morrell, J., Gowan, S.M., Incles, C.M., Tanious, F.A., Wilson, W.D., Kelland, L.R., Neidle, S.: Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. J. Med. Chem. 46(21), 4463–4476 (2003)
- Saravanamuthu, A., Vickers, T.J., Bond, C.S., Peterson, M.R., Hunter, W.N., Fairlamb, A.H.: Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase: a template for drug design. J. Biol. Chem. 279(28), 29493–29500 (2004)
- Korth, C., May, B., Cohen, F., Prusiner, S.: Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA 98(17), 9836–9841 (2001)
- Guddneppanavar, R., Saluta, G., Kucera, G.L., Bierbach, U.: Synthesis, biological activity, and DNA-damage profile of platinum-threading intercalator conjugates designed to target adenine. J. Med. Chem. 49(11), 3204–3214 (2006)
- Ankers, E.A., Evison, B.J., Phillips, D.R., Brownlee, R.T.C., Cutts, S.M.: Design, synthesis, and DNA sequence selectivity of formaldehyde-mediated DNA-adducts of the novel N-(4aminobutyl) acridine-4-carboxamide. Bioorg. Med. Chem. Lett. 24(24), 5710–5715 (2014)
- Collinge, J., Gorham, M., Hudson, F., Kennedy, A., Keogh, G., Pal, S., Rossor, M., Rudge, P., Siddique, D., Spyer, M., Thomas, D., Walker, S., Webb, T., Wroe, S., Darbyshire, J.: Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet Neurol. 8(4), 334–344 (2009)
- 23. Marquis, J.K.: Pharmacological significance of acetylcholinesterase inhibition by tetrahydroaminoacridine. Biochem. Pharmacol. **40**(5), 1071–1076 (1990)
- Read, M., Harrison, R.J., Romagnoli, B., Tanious, F.A., Gowan, S.H., Reszka, A.P., Wilson, W.D., Kelland, L.R., Neidle, S.: Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl. Acad. Sci. USA 98(9), 4844

 –4849 (2001)
- Freeman, S.E., Dawson, R.M.: Tacrine: A pharmacological review. Prog. Neurobiol. 36(4), 257–277 (1991)
- 26. Le, T., Han, S., Chae, J., Park, H.J.: G-quadruplex binding ligands: From naturally occurring to rationally designed molecules. Curr. Pharmaceut. Des. **18**(14), 1948–1972 (2012)
- Zhang, B., Li, X., Li, B., Gao, C.M., Jiang, Y.Y.: Acridine and its derivatives: A patent review (2009–2013). Expert Opin. Ther. Patents 24(6), 647–664 (2014)
- Sane, R., Agarwal, S., Elmquist, W.F.: Brain distribution and bioavailability of elacridar after different routes of administration in the mouse. Drug Metabol. Dispos. 40, 1612–1619 (2012)

Chapter 2 Nomenclature

Abstract Acridines have been known since 1870. Thus, their nomenclature has developed for long time. There are many numbering systems from which we have selected two most important ones. Moreover, plenty of trivial names exist and one has to be very careful when searching in the information databases.

This chapter provides a brief introduction for diving into the deep sea of acridine compounds without drowning, but will not show all possible names of acridines, which is far beyond the scope of the book.

Acridine was discovered and named by Graebe and Caro in 1870, when they investigated aromatic fractions of coal tar and found some basic impurity accompanying anthracene [1]: They named the new substance as "Acridin because of the sharp and biting effect that it exerts on the skin" [1] (from Latin acer = sharp, pungent, or acrid). This strong physiological effect is observable almost immediately after a drop of chloroform solutions of acridine touches a skin and persists for several minutes. The name "Acridin" (German) was imported to many languages with variations of c-k (Czech) and in some with suffixes -e (English, French) or -a (Spanish, Portuguese, Italian).

In past, the acridine ring was numbered differently than it is nowadays (Fig. 2.1) (cf. one of formers [2–5] and current [5–8] numbering). The current numbering reflects the locant order the same as was coined by Graebe [9], who applied it during understanding of 9-acridone structure. However, the numbers for carbon shared by more cycles were introduced later [5]. Thus, careful inspection of formerly published chemical structures is necessary in order to avoid confusion. For example, the most important 9-aminoacridines were called 5-aminoacridines in former works.

Concerning the numbering of acridine substituents, sometimes wrong labels are also used in literature. *m*-Amsacrine (**6**) can be named 4'-(9-acridinylamino) methanesulfon-*m*-anisidide [10], but when 1'-methanesulfonamide group is removed the priority of substituents is altered and 1' locant becomes 4' [11]. Sometimes priority of substituents is not followed and e.g. 5-hydroxymethyl is wrongly named 4-hydroxymethyl despite higher priority of carboxamide group [12].

Since the acridines are in use for more than a century, many of them have more than one trivial name [4, 6, 7, 13]: e.g. quinacrine (11) can be also named mepacrine,

6 2 Nomenclature

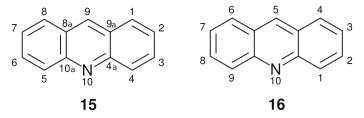


Fig. 2.1 Current (15) and former (16) numbering of acridine ring

and atabrine or atebrine. Other names for tacrine (12) are THA, cognex, tenakrin, or romotal [14–16]. Velnacrine (13) can be named 1-acridinol, 1-hydroxytacrine, and HP029 [17, 18]. Ledakrin can serve as a name for nitracrine (8) [19]. Thus, one has to be very careful conducing database-based search of acridines.

Some biologically active acridines are usually available not only under their trivial names but also under code numbers. Many examples can be given: GF120918 or GG918 can be named elacridar (14) [20] (PubChem CID: 119373); CI-921 stands for asulacrine (7) [12, 21, 22] (PubChem CID: 107924); NSC 601316 or XR 5000 is DACA (5) [23, 24] (PubChem CID: 107805); aminacrine (4) (PubChem CID: 7019); amsacrine (6) (PubMed CID: 2179); velnacrine (13) has number HP029 (PubChem CID: 3655); etc. Moreover different pharmaceutical forms have different numbers such as free proflavine (2) (PubChem CID: 7099); its salts: proflavine sulfate – isoflav (PubChem CID: 11111); proflavine hydrochloride (PubChem CID: 197873); proflavine hemisulfate (PubChem CID: 15741); etc.

Sometimes trivial name contained "acridine" despite the structure lacks the acridine ring i.e. acridine red is derivative of xanthene.

References

- 1. Graebe, C., Caro, H.: Ueber Acridin. Ber. Dtsch. Chem. Ges. 3(2), 746–747 (1870)
- Duegan, B.S., Narang, K.S., Ray, J.N.: Acridine derivatives. Part II. J. Chem. Soc. pp. 476–478 (1939)
- 3. Dupre, D.J., Robinson, F.A.: N-Substitued 5-aminoacridines. J. Chem. Soc. 549–551 (1945)
- 4. Albert, A.: The Acridines: Their Preparation, Physical, Chemical, and Biological Properties and Uses. Richard Clay and Company Ltd, Bungay, Suffolk, GB (1951)
- Acheson, R.M.: Nomenclature and Numbering System, 2 edn., chap. 1, pp. 1–8. John Wiley & Sons, Inc., New York, London, Sydney, Toronto (1973)
- Demeunynck, M., Charmantray, F., Martelli, A.: Interest of acridine derivatives in the anticancer chemotherapy. Curr. Pharm. Des. 7, 1703–1724 (2001)
- Šebestík, J., Hlaváček, J., Stibor, I.: A role of the 9-aminoacridines and their conjugates in a life science. Curr. Protein Pept. Sci. 8(5), 471–483 (2007)
- Salem, O., Vilkova, M., Plsikova, J., Grolmusova, A., Burikova, M., Prokaiova, M., Paulikova, H., Imrich, J., Kozurkova, M.: DNA binding, anti-tumour activity and reactivity toward cell thiols of acridin-9-ylalkenoic derivatives. J. Chem. Sci. 127(5), 931–940 (2015)
- 9. Graebe, C., Lagodzinski, K.: Ueber Acridon. Justus Liebigs Ann. Chem. 276(1), 35–53 (1893)

References 7

Wadkins, R.M., Graves, D.E.: Thermodynamics of the interactions of *m*-AMSA and *o*-AMSA with nucleic acids: influence of ionic strength and DNA base composition. Nucl. Acids Res. 17(23), 9933–9946 (1989)

- Gamage, S., Figgitt, D., Wojcik, S., Ralph, R., Ransijn, A., Mauel, J., Yardley, V., Snowdon, D., Croft, S., Denny, W.: Structure-activity relationships for the antileishmanial and antitrypanosomal activities of 1'-substituted 9-anilinoacridines. J. Med. Chem. 40(16), 2634–2642 (1997)
- Robertson, I.G., Palmer, B.D., Paxton, J.W., Shaw, G.J.: Differences in the metabolism of the antitumour agents amsacrine and its derivative CI-921 in rat and mouse. Xenobiotica 22, 657–669 (1992)
- 13. Ehsanian, R., Van Waes, C., Feller, S.M.: Beyond DNA binding a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell. Commun. Signal. **9.** art. no. 13 (2011)
- Gracon, S.I., Knapp, M.J., Berghoff, W.G., Pierce, M., DeJong, R., Lobbestael, S.J., Symons, J., Dombey, S.L., Luscombe, F.A., Kraemer, D.: Safety of tacrine: clinical trials, treatment IND, and postmarketing experience. Alzheimer Dis. Assoc. Disord. 12, 93–101 (1998)
- Farlow, M., Gracon, S.I., Hershey, L.A., Lewis, K.W., Sadowsky, C.H., Dolan-Ureno, J.: A controlled trial of tacrine in Alzheimer's disease. J. Am. Med. Assoc. 268(18), 2523–2529 (1992)
- 16. Knapp, M.J., Knopman, D., Solomon, P.R., Pendlebury, W.W., Davis, C.S., Gracon, S.I., Apter, J.T., Lazarus, C.N., Baker, K.E., Barnett, M., Baumel, B., Eisner, L.S., Bennett, D., Forchetti, C., Levin, A., Blass, J.P., Nolan, K.A., Gaines, E.R., Relkin, N., Borison, R.L., Diamond, B., Celesia, G.G., Ross, A.P., Dexter, J., Doody, R., Lipscomb, L., Kreiter, K., DuBoff, E.A., Block, P., Marshall, D., Westergaard, N., Earl, N.L., Wyne, S.V., Hinman-Smith, E., Farlow, M., Hendrie, H.C., Caress, J.A., Farmer, M., Harper, J.E., Ferguson, J., Foster, N.L., Barbas, N.R., Bluemlein, L.A., Gelb, D.J., Berent, S., Giordani, B., Greenwald, M., Bergman, S., Roger, L.F., Groenendyk, A., Wood, M., Jurkowski, C., Katz, I., Doyle, S., Smith, B.D., Kellner, C., Bernstein, H.J., Bachman, D.L., Deinard, S., Langley, L., Bridges, S., Margolin, R.A., Burger, M.C., Wiser, S.L., Crenshaw, C., Morris, J.C., Rubin, E.H., Coats, M.A., Reyes, P.F., Bentz, C., Doyle, L.L., Rymer, M.M., Bettinger, I.E., Laubinger, M.P., Sadowsky, M.C.H., Martinez, W., Zuniga, J., Stone, R., Winner, P., Maté, L., Lessard, C., Schneider, L., Pawluczyk, S., Smith, W.T., Losk, S.N., Marambe, L., Groccia-Ellison, M.E., Edwards, K.R., Taylor, J., Calabrese, V.P., Harkins, S.W., Thein, Stephen G., J., Dewar, J.A., Williams, G., Drennan, C., Tuttle, P., Principi, N., Ford, E.M., Tyndall, R.J., Kelley, C.K.: A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer's disease. J. Am. Med. Assoc. 271(13), 985–991
- Butterfield, D., Hensley, K., Hall, N., Umhauer, S., Carney, J.: Interaction of tacrine and velnacrine with neocortical synaptosomal membranes: Relevance to Alzheimer's-disease. Neurochem. Res. 18(9), 989–994 (1993)
- Braga, M.F., Harvey, A.L., Rowan, E.G.: Effects of tacrine, velnacrine (HP029), suronacrine (HP128), and 3,4-diaminopyridine on skeletal neuromuscular transmission in vitro. Br. J. Pharmacol. 102, 909–915 (1991)
- Gniazdowski, M., Szmigiero, L.: Nitracrine and its congeners an overview. Gen. Pharmacol. 26(3), 473–481 (1995)
- Chufan, E.E., Kapoor, K., Ambudkar, S.V.: Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein. Biochem. Pharmacol. 101, 40–53 (2016)
- Kettle, A.J., Robertson, I.G., Palmer, B.D., Anderson, R.F., Patel, K.B., Winterbourn, C.C.: Oxidative metabolism of amsacrine by the neutrophil enzyme myeloperoxidase. Biochem. Pharmacol. 44, 1731–1738 (1992)
- 22. Afzal, A., Sarfraz, M., Wu, Z., Wang, G., Sun, J.: Integrated scientific data bases review on asulacrine and associated toxicity. Crit. Rev. Oncol. Hematol. **104**, 78–86 (2016)
- Caponigro, F., Dittrich, C., Sorensen, J.B., Schellens, J.H.M., Duffaud, F., Paz Ares, L., Lacombe, D., de Balincourt, C., Fumoleau, P.: Phase II study of XR 5000, an inhibitor of topoisomerases I and II, in advanced colorectal cancer. Eur. J. Cancer 38, 70–74 (2002)

8 2 Nomenclature

24. Dittrich, C., Coudert, B., Paz-Ares, L., Caponigro, F., Salzberg, M., Gamucci, T., Paoletti, X., Hermans, C., Lacombe, D., Fumoleau, P.: European organization for research and treatment of cancer-early clinical studies group/new drug development programme (EORTC-ECSG/NDDP): phase II study of XR 5000 (DACA), an inhibitor of topoisomerase I and II, administered as a 120-h infusion in patients with non-small cell lung cancer. Eur. J. Cancer 39, 330–334 (2003)

Chapter 3 Syntheses

Abstract Modern syntheses of acridine scaffolds together with the conventional ones are described, thus the reader can easily select the appropriate one for a desired compound. For preparation of acridines, precursors with more aromatic/alicyclic rings are usually assembled using various catalysis. Then, electrophilic condensation led to formation of acridine ring. Modern syntheses are based on Buchwald–Hartwig amination, hypervalent iodine chemistry, iodocyclization, Rh(III)-catalyzed tandem reactions, and recyclable polymeric acido-basic catalysis. Usually, substituents are introduced by selection of appropriate precursors during the ring formation. Because the acridines readily undergo aromatic nucleophilic substitution at *C9* position, various derivatives are prepared by reaction with nucleophiles from *C9*-activated acridines. At positions 3 and 6, the aromatic electrophilic substitutions occurred; however, overreactions are possible. Many building blocks for peptide synthesis bearing acridine unit are available. The synthesized peptide conjugates can serve as drugs, gene delivery systems, imaging agents, etc. Furthermore, acridines with chelating groups can be used as rigid ligands for organometallic catalysis.

3.1 Syntheses of Acridine Ring and Its Precursors

Retrosynthetic scheme describes ways towards basic precursors of substituted acridines derivatized at position 9 (Fig. 3.1). Acridines substituted at position 9 are readily available by aromatic nucleophilic substitutions (Fig. 3.1, transformation i. and vi.). The acridine derivative (17) is obtained by direct reaction of nucleophile with activated acridine (18) [1] or reaction of strong nucleophile with *C9* unsubstituted acridine (21) in the presence or absence of hydride ion scavenger – Chichibabin like reaction [1–5]. However, the use of very strong bases makes the Chichibabin reaction harsh for a wide spectrum of functional groups. When X is chlorine, the 9-chloroacridines (18) are the most common precursors of 9-alkoxy-, 9-alkylthio-, 9-amino-, and 9-cyanoacridines [6–14]. Recently, the reaction of chloroacridines with sulfur nucleophiles was investigated by combination of computational and kinetic approaches [15]. Other important precursors of 9-substituted acridines are 9-alkoxyacridines, where the leaving group is very mild acid compatible with many

10 3 Syntheses

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array}\end{array}\end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\$$

Fig. 3.1 Retrosynthetic scheme providing basic precursors of 9-substituted acridines. X stands for F, Cl, Br, I, NO₂, N_2^+ , OR, SR, and NHR, respectively. Y represents O and S. Hal is F, Cl, Br, I. R₁ and R₂ are desired substituents sometimes with appropriate protection. Descriptions of individual transformations are only illustrative for more details see also text: *i*. HNu. *ii*., *iii*. POX₃, reflux. X = Cl, Br. *iv*. H₂SO₄ or PPA 100 °C, or P₄S₁₀ dehydration. *v*. S₈, 220 – 230 °C. *vi*. NaNu, K₃[Fe(CN)₆]. *vii*, *viii*. 1. Ullmann–Jourdan reaction (Cu powder, K₂CO₃, pyridine, amyl alcohol, reflux) or Buchwald–Hartwig amination (Pd(OAc)₂, DPEPhos), 2. NaOH (optional). *ix* DCE, 80 °C

acid sensitive linkers [16]. 9-Heterocyclic substituted acridines can serve as activated acridines, as well [17–19]. Nucleophilic substitution at *C9* position is sometimes reversible, thus groups such as alkoxy, alkylthio, alkylamino are more or less interchangeable [20–27].

Alternative way to syntheses of N9-alkyl derivatives of acridines is a reductive amination of commercially available 9-aminoacridine [28, 29] using NaBH₃CN with 1% AcOH/MeOH. Another approach is based on reaction of 9-aminoacridine with arenes activated for S_NAr such as o and p-nitrofluorobenzenes [28], o and p-halopyridines, and o-halopyrimidines [29] using Cs₂CO₃ as a base and DMF as a solvent at 90 °C. In some cases, the 9-aminoacridine can react with haloquinone electrophiles under the same conditions. However, when the reaction with quinones is carried out in refluxing EtOH in the absence of base, it provides more general route towards acridino-quinone hybrids [29].

N9-acylacridines can be prepared by reaction of acyl chlorides with 9-aminoacridine [30]. The prepared acridin-9-yl acrylate was used for syntheses of fluorescent polymers. Other acylations of 9-aminoacridine were described with DIC/HOBt/NMM [31, 32] and DCC/HOBt [33]. Aminoacridines can be also derivatized with isothiocyanates to corresponding thioureas [34].

Treatment of *N*-phenylanthranilic acids (**20**) or (thio)acridones (**19**) with POCl₃ led to activated 9-chloroacridines (**18**) [6–11]. During the reaction of the acid, firstly, the corresponding acridone is formed which is subsequently chlorinated. Activated 9-methylthioaciridines (**18**) can be prepared from corresponding thioacridones (**19**) with methyliodide [**35**]. Other activated compounds (**18**) are prepared by nucleophilic substitution. In some cases, the activation with POCl₃ can be carried out "one pot" with subsequent nucleophilic substitution, e.g. with 1,2,4-triazole [**18**]. The synthesis of chloroacridines as well as their conjugation with amines can be accelerated by microwave irradiation [**36**].

9-Acridones (19) are prepared by dehydration of N-phenylanthranilic acids (20) with H_2SO_4 or polyphosphoric acid [7, 37]. If in-situ prepared 9-chloroacridines are hydrolyzed during workup, dehydration can be carried out with POCl₃, as well [38]. Thioacridones are available by dehydration with P_4S_{10} via route iv (Fig. 3.1). However, when some acridine precursor is available, e.g. acridine orange (AO) (see also Fig. 3.21, compound 101), it can be oxidized by elemental sulfur to thioacridone (19) via route v [35]. Similarly to pyridine chemistry, acridine-N-oxides underwent rearrangement to 9-acridinyl (thio)acetate upon treatment with acetyl anhydride or acetyl thioanhydride [39, 40]. These esters decomposed to corresponding acridones or thioacridones. Other syntheses of acridones and thioacridones have been recently reviewed [41, 42].

Acridones may be reduced with Al amalgam and subsequent reoxidation with FeCl₃ [43–45] provides acridines unsubstituted at *C9* position. This reaction tolerates various groups such as carboxylic acid.

The Lehmstedt–Tanasescu reaction enables the synthesis of acridone **30** and its derivatives from 2-nitrobenzaldehyde (**28**) and aromatic components **29** [46–48] (Fig. 3.2) or from benzo[c]isoxazoles (anthranil derivatives) [49].

Acridines and phenanthrolines have been synthesized from β -chlorovinyl aldehydes and various aniline derivatives. Many valuable substituents including ketone, nitro or amino groups at the heterocyclic core were incorporated into the acridine ring [50].

Acridine reacts with aliphatic carboxylic acids to 9-alkylacridans under photochemical decarboxylative conditions [51]. Illumination of δ -(9-acridyl)valeric acid or ε -(9-acridyl)caproic acid by UV light affords spiro compounds, 9,9-tetramethyleneand 9,9-pentamethyleneacridan, respectively. Broadening of the reaction to quinoline as a substrate yields 2- and 4-alkylquinolines and 4-alkyl-1,2,3,4-tetrahydroquinolines. Analogous reaction of isoquinoline gives 1-alkylisoquinolines.

12 3 Syntheses

Fig. 3.3 Regiospecific [4 + 2] cycloaddition as an alternative route towards polysubstituted *N*-phenylanthranilic acids and acridines [64]. *i*. LDA/THF 80–140 °C. *ii*. NaBH₄/MeOH. *iii*. BF₃.Et₂O. *iv*. In(OTf)₃/DCE reflux

N-Phenylanthranilic acids (**20**) are available via three main routes by Ullmann–Jourdan reaction (routes vii and viii) [37, 38, 52–56], by Buchwald–Hartwig amination (routes vii and viii) [57, 58], and by reaction with thermochemically generated benzyne (route ix (Fig. 3.1)) [59]. The Ullmann–Jourdan reaction is limited to electron rich anilines and electron poor benzoic acids, otherwise Buchwald–Hartwig amination is recommended [60]. The Ullmann–Goldberg reaction can be accelerated by ultrasonication of the reaction mixture [61]. Recently, direct transformation of aromatic amines to anthranilic acids was described using Pd-catalysis [62]. Another example of Pd-catalysis is direct amination of benzoic acids [63].

A benzannulation approach for synthesis of N-phenylanthranilic acids proceeding via a regiospecific [4 + 2] cycloaddition of easily accessible cyclobutenones and active methylene ketones was developed [64] (Fig. 3.3). Applying this strategy, persubstituted anilines and phenols having up to six different functional groups on the benzene ring were obtained. This base-accelerated benzannulation reaction is completely regiocontrolled. In one step, many functional groups are introduced into the benzene ring. These polysubstituted N-phenylanthranilic acids (33) served as building blocks for syntheses of highly substituted acridine derivatives (34 and 35).

Formal [3+3] annulations of aromatic azides and aromatic imines or azobenzenes provided acridines and phenazines, respectively [65]. This is a cascade process, which is Rh(III)-catalyzed, consisting of amination, intramolecular electrophilic aromatic substitution and aromatization. Acridines are directly synthesized from aromatic aldehydes using in situ generated imines with benzylamine as catalyst.

Fig. 3.4 Tandem Buchwald–Hartwig coupling and cyclization reaction [66]. *i*. Pd₂(dba)₃ (2.5 mol %), dppf (5 mol %), NaOtBu (2 eq), toluene, reflux, 12 h

$$O_2N$$
 CHO
 F
 H_2N
 O_2N
 O_2N

Fig. 3.5 Synthesis of 2-aminoacridines [67]. i. Et₃N, DMSO, 120 °C. ii. TFA, 80 °C, 24h (83% over two steps). iii. Pd/C, H₂, MeOH, DCM, 0 °C \rightarrow 20 °C

Synthesis of series of acridines via a facile and efficient approach by the tandem coupling/cyclization of substituted 2-bromobenzaldehydes (36) and anilines (37) was described [66] (Fig. 3.4). The reaction can be easily completed by a catalytic amount of $Pd_2(dba)_3$ and diphosphine ligand dppf, giving a broad variety of substituted symmetrical and unsymmetrical acridines carrying multifunctional substituents as well as the unusual 1,2,3,4-tetrahydroacridine in good to excellent yields (up to 99%). The cyclization of less electron-rich anilines requires the promotion by Lewis acid like $AlCl_3$. Antileukemic agent DACA can be easily obtained in just two simple steps using this method.

Anilines react with 2-fluoro-4-nitrobenzaldehyde (**39**) affording suitable precursors **41** for acridine formation (Fig. 3.5). The acridine ring **42** is closed with TFA at elevated temperature. Careful hydrogenolysis of nitro group provides 2-aminoacridines **43** [67].

Derivatives of anthranilic acid can be constructed from arynes, where three component reactions among aryne, amine, and CO₂ occur [68]. Very reactive arynes, generated by elimination of TMS-OTf, can convert hydrazones to acridones or acridinium salts [69]. Generated arynes reacted with electron-deficient acridines in presence of dimethyl phosphite via 9,10-addition to heterocyclic system (Fig. 3.6) [70].