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Preface

Variable structure systems (VSS) and its main mode of operation sliding mode
control (SMC) are recognized as one of the most efficient tools to deal with uncertain
systems due to their robustness and even insensitivity to perturbations [1-3].

The main advantages of VSS/SMC methodology are:

e theoretical insensitivity with respect to the matched perturbations;
e reduced order of sliding mode dynamics;
finite-time convergence to zero for sliding mode variables.

However, the development of the VSS/SMC theory has shown their main
drawbacks: the chattering phenomenon, namely high-frequency oscillations
appearing due to the presence of parasitic dynamics of actuators, sensors, and other
non-ideality.

During the last decade, one of the main lines in development of the SMC theory
was development of the homogeneous higher-order sliding mode controllers
(HOSMC) (see [4-6]). At the first stage, the proof of such algorithm was based on
the arguments of homogeneity and geometry.

The main driver of development in recent two years is the new Lyapunov-based
approaches for HOSMC design and gain selection [7, 8]. Moreover, the develop-
ment of Lyapunov function approaches allows to design continuous sliding mode
algorithms [9-13].

Different properties of SMC algorithms are investigated, like properties of
HOSMC for wider classes of homogeneous systems, as well as properties of SMC
for stochastic systems [14] and properties of SMC in frequency domain [15, 16].
Different adaptive algorithms were recently developed [17, 18]. These new
algorithms were actively used to both ensure the tracking in different control
problems and implement it for control in different real-life systems.

This book is an attempt to reflect the recent developments in VSS/SMC theory
and reflect the results which are presented. The book consists of three parts: in
the first part (i.e., Chaps. 1-7), new VSS/SMC algorithms are proposed and its
properties are analyzed; in the second part (i.e., Chaps. 8-13), the usage of
VSS/SMC techniques for solutions of different control problems is given; in the
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third part (i.e., Chaps. 14-16), applications of VSS/SMC to real-time systems are
exhibited.

Part I: New VSS/SMC Algorithms and Their Properties (Chaps. 1-7)

In Chap. 1 “Lyapunov-Based Design of Homogeneous High-Order Sliding Modes”
by Prof. Jaime A. Moreno, the author provides a Lyapunov-based design
of homogeneous high-order sliding mode (HOSM) control and observation
(differentiation) algorithms of arbitrary order for a class of single-input-
single-output uncertain nonlinear systems. First, the authors recall the standard
problem of HOSM control, which corresponds to the design of a state feedback
control and an observer for a particular differential inclusion (DI), which represents
a family of dynamic systems including bounded matched perturbations/
uncertainties. Next, the author provides a large family of zero-degree homoge-
neous discontinuous controllers solving the state feedback problem based on a
family of explicit and smooth homogeneous Lyapunov functions. The author shows
the formal relationship between the control laws and the Lyapunov functions. This
also gives a method for the calculation of controller gains ensuring the robust and
finite-time stability of the sliding set. The required unmeasured states can be esti-
mated robustly and in finite time by means of an observer or differentiator, origi-
nally proposed by Prof. A. Levant. The author gives explicit and smooth Lyapunov
functions for the design of gains ensuring the convergence of the estimated states to
the actual ones in finite time, despite the non-vanishing bounded perturbations or
uncertainties acting on the system. Finally, it is shown that a kind of separation
principle is valid for the interconnection of the HOSM controller and observer, and
the author illustrates the results by means of a simulation on an electromechanical
system.

In Chap. 2 “Robustness of Homogeneous and Homogeneizable Differential
Inclusions” by Dr. Emmanuel Bernuau, Prof. Denis Efimov, and Prof. Wilfrid
Perruquetti, the authors study the problem of robustness of sliding mode control and
estimation algorithms with respect to matched and unmatched disturbances. Using
the homogeneous theories and locally homogeneous differential inclusions, two sets
of conditions are developed to verify the input-to-state stability property of dis-
continuous systems. The advantage of the proposed conditions is that they are not
based on the Lyapunov function method, but more related to algebraic operations
over the right-hand side of the system.

In Chap. 3 “Stochastic Sliding Mode Control and State Estimation” by
Prof. Alex S. Poznyak, the author deals with the SMC technique applied to
stochastic systems affected by additive as well as multiplicative stochastic white
noise. The existence of a strong solution to the corresponding stochastic differential
inclusion is discussed. It is shown that this approach is workable with the gain
control parameter state-dependent on norms of system states. It is demonstrated that
under such modification of the conventional SMC, the exponential convergence
of the averaged squared norm of the sliding variable to a zone (around the sliding
surface) can be guaranteed, of which the bound is proportional to the diffusion
parameter in the model description and inversely depending on the gain parameter.
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The behavior of a standard super-twist controller under stochastic perturbations is
also studied. For system quadratically stable in the mean-squared sense, a sliding
mode observer with the gain parameter linearly depending on the norm of the
output estimation error is suggested. It has the same structure as deterministic
observer based on “the Equivalent Control Method.” The workability of the
suggested observer is guaranteed for the group of trajectories with the probabilistic
measure closed to one. All theoretical results are supported by numerical
simulations.

In Chap. 4 “Practical Stability Phase and Gain Margins Concept” by Prof. Yuri
Shtessel, Prof. Leonid Fridman, Dr. Antonio Rosales, and Dr. Chandrasekhara
Bharath Panathula, the authors present a new concept of chattering characterization
for the systems driven by finite-time convergent controllers (FTCC) in terms of
practical stability margins. Unmodeled dynamics of order two or more incite
chattering in FTCC-driven systems. In order to analyze the FTCC robustness to
unmodeled dynamics, the novel paradigm of tolerance limits (TL) is introduced to
characterize the acceptable emerging chattering. Following this paradigm, the
authors introduce a new notion of Practical Stability Phase Margin (PSPM) and
Practical Stability Gain Margin (PSGM) as a measure of robustness to cascade
unmodeled dynamics. Specifically, PSPM and PSGM are defined as the values that
have to be added to the phase and gain of dynamically perturbed system driven by
FTCC so that the characteristics of the emerging chattering reach TL. For practical
calculation of PSPM and PSGM, the harmonic balance (HB) method is employed,
and a numerical algorithm to compute describing functions (DFs) for families of
FTCC (specifically, for nested, and quasi-continuous higher-order sliding mode
(HOSM) controllers) was proposed. A database of adequate DFs was developed.
A numerical algorithm for solving HB equation using the Newton—Raphson method
is suggested to obtain predicted chattering parameters. Finally, computational
algorithms to that identify PSPM and PSGM for the systems driven by FTCC were
proposed. The algorithm of a cascade linear compensator design that corrected the
FTCC, making the values of PSPM and PSGM to fit the prescribed quantities, is
suggested. In order to design the flight-certified FTCC for attitude for the F-16 jet
fighter, the proposed technique was employed as a case study. The prescribed
robustness to cascade unmodeled actuator dynamics was achieved.

In Chap. 5 “On Inherent Gain Margins of Sliding-Mode Control Systems” by
Prof. Igor Boiko, the author defines notion of inherent gain margin of sliding mode
control systems. It is demonstrated through analysis and examples that an inherent
gain margin depends on the sliding mode control algorithm and not on the plant.
This property makes the inherent gain margin a characteristic suitable for
comparison of different control algorithms. Analysis of the first-order sliding mode,
hysteresis relay control, twisting algorithm, and suboptimal algorithm is presented.

In Chap. 6 “Adaptive Sliding Mode Control Based on the Extended Equivalent
Control Concept for Disturbances with Unknown Bounds” by Prof. Tiago Roux
Oliveira, Prof. José Paulo V.S. Cunha, and Prof. Liu Hsu, the authors propose an
adaptive sliding mode framework based on extended equivalent control to deal with
disturbances of unknown bounds. Nonlinear plants are considered with a quite
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general class of (non)smooth disturbances. The proposed adaptation method is able
to make the control gain large when the disturbance grows and decrease it if the
latter vanishes, allowing for a minimized chattering occurrence. Global stability
of the closed-loop system is demonstrated using the proposed adaptive sliding
mode control law. Simulations are presented to show the potential of the new
adaptation scheme in this adverse scenario of possibly growing or temporarily large
disturbances.

In Chap. 7 “Indirect Adaptive Sliding-Mode Control Using the Certainty-
Equivalence Principle” by Dr. Alexander Barth, Prof. Markus Reichhartinger,
Prof. Kai Wulff, Prof. Johann Reger, Prof. Stefan Koch, and Prof. Martin Horn, the
authors address the design of adaptive sliding mode controllers. The presented
controllers compensate uncertainties acting on the input channel of the considered
system and are characterized by a possible separation into a structured and an
unstructured part. The latter class of uncertainty may affect the system in terms of
an external disturbance, whereas a structured uncertainty typically occurs in the
case of uncertain plant parameters. The presented controller design methodology
enhances standard sliding mode controllers by an additional control action
generated from an adaptation mechanism. Applying the certainty equivalence
principle, it is possible to systematically handle both classes of uncertainties. The
controller design is introduced step by step and demonstrated in detail for systems
designated to be controlled by the super-twisting algorithm. The deviation of the
adaptive part of the controller is thoroughly demonstrated by deriving three
different types of adaptation laws. The requirement to enhance sliding mode
controllers by the presented adaptive scheme is underpinned by a simulation
scenario demonstrating cascaded feedback loops used for speed and current control
of a DC motor. Experimental results obtained by a laboratory test-rig consisting
of a motor with unbalanced load demonstrate the applicability of the discussed
controller design method.

Part II: The Usage of VSS/SMC Techniques for Solutions of Different Control
Problems (Chaps. 8-13)

In Chap. 8 “Variable Structure Observers For Nonlinear Interconnected Systems”
by Dr. Mokhtar Mohamed, Prof. Xing-Gang Yan, Prof. Sarah K. Spurgeon, and
Prof. Zehui Mao, the authors are concentrated on observer design for nonlinear
interconnected systems in the presence of nonlinear interconnections and uncer-
tainties. An approach to deal with nonlinear interconnections is proposed by sep-
arating the interconnections to linear and nonlinear parts based on an appropriate
transformation. Using the structure property of the interconnected systems, novel
variable structure dynamics are designed to observe the state variables of the
interconnected systems asymptotically with low conservatism. A simulation
example and a case study are presented to demonstrate the effectiveness and the
feasibility of the developed results.

In Chap. 9 “A Unified Lyapunov Function for Finite Time Stabilization of
Continuous and Variable Structure Systems with Resets” by Dr. Harshal B. Oza,
Prof. Yury V. Orlov, and Prof. Sarah K. Spurgeon, the authors present a unified
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Lyapunov function for finite-time stabilization of continuous and variable structure
systems with resets. This chapter aims to uniformly stabilize a perturbed dynamics
of the double integrator in the presence of impacts due to the constraints on the
position variable. A non-smooth transformation is proposed to first transform the
system into a variable structure system that can be studied within the framework of
a conventional discontinuous paradigm. Then, a finite-time stable continuous
controller is utilized, and stability of the closed-loop dynamics is proven by
identifying a new set of Lyapunov functions. The chapter thus contributes to the
VSS and SMC theory by the developing mathematical tools for the finite-time
stability analysis of such systems in the presence of impacts.

In Chap. 10 “Robustification of Cooperative Consensus Algorithms in Perturbed
Multi-Agents Systems” by Prof. Alessandro Pilloni, Prof. Alessandro Pisano, and
Prof. Elio Usai, the authors exploit the integral sliding mode design paradigm in
the framework of multi-agent systems. Particularly, it is shown how to redesign
standard distributed algorithms for estimating the average value and the median
value of the agent's initial conditions in spite of perturbations acting on the
agent’s dynamics. Constructive Lyapunov-based analysis is presented along with
simulation results corroborating the developed treatment.

In Chap. 11 “Finite-Time Consensus for Disturbed Multi-Agent Systems
with Unmeasured States via Nonsingular Terminal Sliding-Mode Control” by
Dr. Xiangyu Wang and Prof. Shihua Li, the authors study the finite-time output
consensus problem for leader—follower higher-order multi-agent systems with
mismatched disturbances and unmeasured states. This problem is solved by using a
feedforward—feedback composite control method which combines the integral-type
non-singular terminal sliding mode control approach and a finite-time observer
technique together. The main contributions include three aspects: Firstly, in the
presence of mismatched disturbances and unmeasured states, the finite-time output
consensus is realized by utilizing the distributed active anti-disturbance control for
the first time. Secondly, the results extend the applicable scope of the distributed
active anti-disturbance control from state feedback to output feedback. Thirdly, the
disturbances considered in this chapter are allowed to be faster time-varying or have
higher-order forms, which are not limited to slow time-varying types any more.

In Chap. 12 “Discrete Event-Triggered Sliding Mode Control” by
Prof. Abhisek K. Behera and Prof. Bijnan Bandyopadhyay, the authors present a
discrete event-triggered SMC strategy for linear systems. Generally, in the
event-triggered control, the state is continuously monitored to generate the possible
triggering instant, which may incur additional cost and complexity. To overcome
this, a discrete event-triggered SMC is proposed which evaluates event periodically
and also guarantees the robust performance of the system. The discrete-time SMC is
designed considering the triggering rule that ensures the stability with the discrete
event-triggering strategy.

In Chap. 13 “Fault Tolerant Control Using Integral Sliding Modes” by
Prof. Christopher Edwards, Dr. Halim Alwi, and Dr. Mirza Tariq Hamayun, the
authors consider so-called integral sliding modes (ISM) and demonstrate how they
can be employed in the context of fault-tolerant control. Two distinct classes
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of problems are considered: Firstly, a fault-tolerant ISM controller is designed for
an over-actuated linear system; secondly, an ISM scheme is retrofitted to an existing
feedback control scheme for an over-actuated uncertain linear system with the
objective of retaining the preexisting nominal performance in the face of faults and
failures. The chapter includes with a case study describing the implementation of an
LPV extension of one of the ISM schemes on a motion simulator configured to
represent a Boeing 747 aircraft subject to realistic fault scenarios.

Part III: Applications of VSS/SMC to Real-Time Systems (Chaps. 14—16)

In Chap. 14 “Speed Control of Induction Motor Servo Drives Using Terminal
Sliding-Mode Controller” by Prof. Yong Feng, Dr. Minghao Zhou, Prof. Fengling
Han, and Prof. Xinghuo Yu, the authors apply a non-singular terminal sliding mode
control method for the servo system of induction motors. The non-singular terminal
sliding mode controllers for speed, flux, and currents are presented, respectively.
The switching signals in the controller are softened to generate the continuous
output signals of the controllers using the equivalent low-pass filters. Therefore,
both the chattering is attenuated and the singularity is eliminated, which means that
the controllers can be used in the practical applications.

In Chap. 15 “Sliding Modes Control in Vehicle Longitudinal Dynamics Control”
by Prof. Antonella Ferrara and Dr. Gian Paolo Incremona, the authors present
recent developments produced at the University of Pavia on application of sliding
mode control to the automotive field. Specifically, the chapter focuses on the use of
advanced SMC schemes to efficiently solve traction control and vehicle platooning
control problems. A slip ratio SMC scheme is described, analyzed, and assessed in
simulation. Then, the vehicle platooning control problem is introduced as an
extended case of the previously described problem. A vehicle longitudinal
dynamics control scheme, based on a suboptimal second-order SMC, is presented
and coupled with the slip rate control scheme which allows to generate the correct
traction control. The validation in simulation on a realistic scenario of the overall
scheme is also discussed.

In Chap. 16 “Sliding Mode Control of Power Converters with Switching
Frequency Regulation” by Dr. Victor Repecho, Dr. Domingo Biel, Dr. Josep M.
Olm, and Prof. Enric Fossas, the authors introduce a hysteresis band control loop
that provides fixed switched frequency in sliding mode controlled systems while
keeping the beneficial properties of sliding motion. The proposal is exemplified in
DC-to-DC and DC-to-AC power converters carrying out regulation and tracking
tasks, respectively, in the face of load disturbances and input voltage variations.

Nanjing, China Shihua Li
Melbourne, Australia Xinghuo Yu
Mexico City, Mexico Leonid Fridman
Melbourne, Australia Zhihong Man
Nanjing, China Xiangyu Wang

March 2017
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New VSS/SMC Algorithms and Their
Properties



Chapter 1
Lyapunov-Based Design of Homogeneous
High-Order Sliding Modes

Jaime A. Moreno

1.1 Introduction

Sliding Mode (SM) Control (SMC) [65, 66] aims at designing a sliding variable
o and to force it to o = 0 in finite time and to keep it in zero for all future times
despite uncertainties and perturbations. For this it is required a discontinuous control
action. Classical (or First Order (FO)) SMC achieves this objective when the sliding
variable has relative degree p = 1 with respect to the control variable. Higher Order
Sliding Mode (HOSM) Control [24, 38, 40, 41, 43, 65] extends these results to
sliding variables o with arbitrary relative degree p > 1. Since the implementation of
a SMC requires the values of the sliding variable and all its derivatives up to order
p—1lie.o(),s(),...,a” D (), in HOSMC it has been necessary to develop
HOSM Differentiators [4, 5, 16, 20, 22, 35, 37, 39, 64] capable of estimating these
derivatives of the sliding variable also in finite time and despite of the uncertain-
ties and perturbations present in the system. These Exact Differentiators make also
use of discontinuous output injection to achieve this goal, since smooth observers
or differentiators are not able to achieve the objective in the presence of non van-
ishing uncertainties/perturbations. Since the classical FOSMC does not require any
derivative of the sliding variable to be implemented, the Exact Differentiators are a
particular development of HOSM’s.

Due to the uncertainties and perturbations present in the system, the description
of the dynamics of the p sliding variables o, ¢, ..., 0 =" is naturally described not
by a differential equation (DE) but by a Differential Inclusion (DI). One of the main
tasks of SMC consists in designing an appropriate sliding variable o. The sliding
variable o is selected in such a way that the reduced dynamics living on the sliding

J.A. Moreno ()

Instituto de Ingenierfa, Universidad Nacional Auténoma de México (UNAM),
04510 Coyoacén, Ciudad de México, Mexico
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seto (1) =0,6(t)=0,...,0° D () =0 has the desired behavior, as e.g. it has
a robust and asymptotically stable equilibrium point. And thus the main problem of
HOSMC reduces to the Finite Time (FT) stabilization of the sliding set for the DI
describing its behavior, and this task includes also the FT estimation of the sliding
variables.

One of the main ingredients of SMC, the discontinuous control action, becomes
also its main disadvantage for the applications: forcing a sliding mode induces a
high frequency switching of the control variable and this produces the infamous
“chattering” effect, which has undesirable effects as reducing the life of the actua-
tors and exciting high frequency dynamics of the system. HOSM Control helps in
mitigating the chattering effect, because introducing extra integrators in the control,
and therefore increasing artificially the relative degree of the plant, a continuous
(or even smooth) control action can be achieved, at the cost of a higher order sliding
set. A further benefit of SMC is the order reduction of the plant’s dynamics, since
the main design work has to be done on the (reduced) dynamics living on the sliding
set. Classical FOSMC allows a reduction of only one dimension (in the Single Input
case) while HOSMC permits a reduction of an arbitrary number of degrees up to the
order of the system.

(Weighted) Homogenous Differential Equations (HDE) are a very special class of
nonlinear systems having very nice and simple properties [2, 3, 10, 28]. For exam-
ple, for homogeneous systems: (i) local attractivity is equivalent to global asymptotic
stability, (ii) internal stability of a system with inputs is equivalent to external sta-
bility, (iii) asymptotic stability with negative degree of homogeneity is equivalent
to FT stability, etc. These nice properties are also valid for DI’s [6, 8, 9, 40, 44].
The FT stabilization and the FT and exact estimation of the sliding variables of the
DI describing them requires discontinuous control actions in the controller and dis-
continuous injection terms in the observer (differentiator). The design and analysis
of the robustness, accuracy and convergence properties of the discontinuous con-
troller and observer becomes much simpler if the homogeneity property is imposed
on the controlled system and on the estimation error of the observer. This explains
that homogeneity has become the main ingredient of HOSMs: essentially all HOSM
controllers and observers designed up to now are homogenous.!

In fact, the design of discontinuous (and so called quasi-continuous) HOSM con-
trollers and differentiators has been based on geometric methods (which are usually
effective for low order or low relative degree systems) [36—39] or, more recently, on
the use of Homogeneity and contraction properties of Differential Inclusions [40—43].
It is precisely the homogeneity [3, 8, 40] the property allowing to establishing basic
qualitative properties of homogeneous HOSM algorithms, as e.g. globality, finite-
time convergence, robustness and the type of accuracy.

In contrast, Modern Control Theory is based on the use of Lyapunov or Lyapunov-
like Functions (LF) for analysis and design [23, 50]. This is due to the tight con-
nections of this formalism with optimal control, robustness and the diverse internal

"For FOSM homogeneity does not play an important role.
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and external stability concepts [23, 50]. In particular, for the design of feedback
controllers the concept of (Robust) Control Lyapunov Functions (CLFs) has played
a major role in the development of control design methods in the last twenty five
years [23]. In particular, Classical SMC design is based on the use of Lyapunov func-
tions. One advantage of LF’s is that they provide quantitative measures which are
helpful in the design of controllers and observers. Many of the modern and numer-
ically effective design methods have at their core LF’s, as e.g. LMUI’s for linear and
nonlinear systems. It is therefore a natural idea to try to combine homogeneity with
a Lyapunov-based design to enhance the modern HOSM control theory, rendering it
more quantitative.

In recent years some efforts have been devoted to build explicit smooth and
non-smooth, weak and strong Lyapunov functions for some Second Order Slid-
ing Mode (SOSM) Controllers and observers, such as Twisting and Super-Twisting
Algorithms [45, 47-49, 54-57]. In [46] a Lyapunov-based design of an output feed-
back controller, comprising homogeneous SOSM controller and observer, has been
obtained. For HOSMC in [27] the authors use the basic idea of the Lyapunov redesign
[34] to render a nominal finite-time convergent controller, as e.g. those proposed in
[2, 30, 31, 61], and for which a Lyapunov function is already known, robust against
matched and bounded perturbations by means of an extra discontinuous control.
Unfortunately, the resulting closed loop system is not homogeneous, so that it does
not have the nice properties of classical HOSMC [40].

Homogeneous HOSM controllers of arbitrary order based on (explicit) Lyapunov
functions were obtained for the first time in [12] (see also [11, 13, 15]) while for
arbitrary order HOSM differentiators explicit and smooth Lyapunov Functions were
obtained in [14]. Very recently, a new family of so called relay or quasi-continuous
polynomial HOSM controllers has been introduced in [18, 19], and a Lyapunov
function is obtained for some relay polynomial cases, but no Lyapunov approach
is developed for the HOSM differentiator. In [58, 59] Finite-Time convergent con-
trollers have been designed by means of implicit Lyapunov functions (ILF), and
(quasi-continuous) HOSM controllers can be obtained if some Matrix Inequalities
are fulfilled. However, the quasi-continuous controller is also implicitly defined,
so that for its implementation the Lyapunov function has to be calculated on-line.
The ILF method provides only quasi-continuous controllers, and it has not been yet
possible to design exact HOSM differentiators using ILFs.

The main purpose of this chapter is to present some recent advances towards devel-
oping a Lyapunov-based approach to the design of homogeneous HOSM control and
observation. We develop explicit LFs for HOSM controllers and Observers (Differ-
entiators) for the DI describing the dynamics of the sliding variables in HOSM. The
use of Lyapunov functions provides a procedure for the gain tuning of the HOSM
controllers and observers, it allows the estimation of the convergence time; and it
permits the extension to variable-gain discontinuous and quasi-continuous HOSM
controllers. Our results are inspired by and constitute a generalization to the discon-
tinuous case of the results for continuous systems [2, 30, 31, 61, 62, 68-70].

The rest of the chapter is organized as follows. In the Sect. 1.2, we give some
preliminaries on homogeneous functions and systems. In Sect. 1.3 we formulate the



6 J.A. Moreno

(standard HOSM) problem to be solved. Section 1.4 presents the Lyapunov-based
HOSM controllers along with the explicit Lyapunov Functions associated to them.
Section 1.5 presents the proofs of the main results of the previous section, and it can be
skipped from the first reading without loosing the main track of the ideas. In Sect. 1.6
we show that for discontinuous, homogeneous differentiators there exist smooth LFs
for the differentiators for appropriate values of the gains. The proof of this important
fact is given in Sect. 1.7. Although this has been shown for the first time in the
discontinuous case in [ 14] we provide here a different Lyapunov function that allows
to design the gains of the differentiator independently of the order. In Sect. 1.8 it is
shown that the combination of ahomogeneous HOSM controller with ahomogeneous
HOSM observer leads to a globally FT stable output feedback controller, and that a
kind of separation principle is available in the global case. Section 1.9 presents some
numerical results and in Sect. 1.10 we draw some final comments and conclusions.
The Appendix “Some Technical Lemmas on Homogeneous Functions” contains
some technical results.

1.2 Preliminaries: Differential Inclusions and Homogeneity

We recall some important concepts about DI’s, homogeneity and homogeneous DI’s
[2, 3, 6-10, 17, 21, 29, 40, 44], which are used in the chapter.

Uncertain or discontinuous systems are more appropriately described by Differ-
ential Inclusions (DI) x € F (¢, x) than by Differential Equations (DE). A solution of
this DI is any function x (¢), defined in some interval I C [0, o00), which is absolutely
continuous on each compact subinterval of / and such thatx () € F (¢, x (¢)) almost
everywhere on /. Thus, for a discontinuous DE x = f (¢, x) the function x (¢) is said
to be a generalized solution of the DE if and only if it is a solution of the associated
DI x € F (¢, x). We will consider the DI x € F (¢, x) associated to x = f (¢, x), as
the one given by the approach of A.F. Filippov [3, 21, Sect. 1.2]. So, we refer to such
DI as Filippov DI and to its solutions as Filippov solutions.

The multivalued map F (¢, x) satisfies the standard assumptions if: (H1) F (¢, x)
is a nonempty, compact, convex subset of R”, for each ¢+ > 0 and each x € R";
(H2) F (¢, x) as a set valued map of x, is upper semi-continuous for each ¢ > 0;
(H3) F (¢, x) as a set valued map of ¢, is Lebesgue measurable for each x € R". (H4)
F (¢, x)islocally bounded. Recall thata set valued map G : R" = R" with compact
values is upper-semicontinuous if for each xy and for each ¢ > 0 there exists § > 0
such that G (x) € G (xo) + B, provided that x € Bs (xo). It is well-known that,
see [21] or [3, Theorem 1.4], if the multivalued map F (¢, x) satisfies the standard
assumptions then for each pair (¢, xo) € [0, co) x R” there is an interval / and
at least a solution x (¢) : I — R” such that 7y € I and x (fy) = xo. ADI x € F (x)
(a DE x = f (x)) is called globally uniformly finite-time stable (GUFTS) at 0, if
x (t) = 0 is a Lyapunov-stable solution and for any R > 0 there exists 7 > 0 such
that the trajectory starting within the ball ||x|| < R reaches zero in the time 7.
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Continuous and discontinuous homogeneous functions and systems have a long
history [2, 3, 6, 810, 25, 28, 40, 44, 51-54, 71]. We recall this important property.

For a given vector x = [xy, ..., x,]7 € R" and for every ¢ > 0, the dilation operator
is defined as ALx :=[¢"'xy, ..., e x,]T, where r; > O are the weights of the coor-
dinates, and letr = [ry, ..., r,]" be the vector of weights. A function V : R" — R

(respectively, a vector field f : R” — R”", or a vector-set field F (x) C R") is called
r-homogeneous of degree / € R if the identity V(ALx) = &'V (x) holds for every
e > 0 (resp., f(ALx) = slAgf(x), or F(ALx) = slAgF(x)). Along this paper we
refer to this property as r-homogeneity or simply homogeneity. A system is called
homogeneous ifits vector field (or vector-set field) is r-homogeneous of some degree.
Given a vector r and a dilation Alx, the homogeneous norm is defined by

1

xlly, p := (Z:’l=1 |x,-|£) ", Vx e R", for any p > 1, and it is an r-homogeneous
function of degree 1. The set § = {x € R" : ||x||, , = 1} s the corresponding homo-
geneous unit sphere. The following Lemma provides some important properties of
homogeneous functions and vector fields (some others are recalled in the Appendix).

Lemma 1.1 ([3, 10, 29]) For a given family of dilations A,x, and continuous real-
valued functions Vi, V, on R" (resp., a vector field f) which are r-homogeneous of
degrees my > 0 and m, > 0 (resp., | € R), we have:
(i) V1V, is homogeneous of degree m| + my.
my

(ii) For every x € R" and each positive-definite function V|, we have c; VF x) <

Va(x) < VF (x), where ¢ £ ming.v,;)=1) V2 (z) and ¢ £ maxg.v,o=1) V2 (2).
Moreover, if V, is positive definite, there exists ¢y > 0.
(iti) dVy (x) /0x; is homogeneous of degree my — r;, withr; being the weight of x;.
(iv) The Lie’s derivative of V1 (x) along f(x), Ly Vi (x) 1= % - f(x), is homo-
geneous of degree my + [.

It is worth to recall that for homogeneous systems the local stability implies global
stability and if the homogeneous degree is negative asymptotic stability implies
finite-time stability [3, 8, 40, 44]. (Asymptotic) stability of homogeneous systems
and homogeneous DI’s can be studied by means of homogeneous LFs (HLFs), see
for example [3, 6, 8-10, 25, 28, 40, 44, 51, 63, 71]: Assume that the origin of a
homogeneous Filippov DI X € F(x) is strongly globally AS. Then, there exists a
¢*° homogeneous strong LF.

The following robustness result of asymptotically stable homogeneous Filippov
Differential Inclusions is of paramount importance for the assertion of the accu-
racy properties of HOSM algorithms in presence of measurement or discretization
noise or also delay and external perturbations. They have been established by Levant
[8, 39, 40, 44].

Theorem 1.1 Lerx € F (x) be a globally uniformly finite-time stable homogeneous
Filippov inclusion with homogeneity weightsr = (ry, ..., r,) and degreel < 0, and
let T > 0. Suppose that a continuous function x (t) is defined for any t > —t' and
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satisfy some initial conditions x (t) = & (t) fort € [—tl, O]. Thenifx (t) is a solution
of the perturbed differential inclusion

)'c(t)eFt(x(t—f—[—rl, 0])),O<t<oo,

then the inequalities |x;| < y;t"" are established in finite time with some positive
constants y; independent of T and §.

Along this paper we use the following notation. For a real variable z € R and a real
number p € R the symbol [z]? = |z|Psign[z] is the sign preserving power p of z.
According to this [z]° = sign [z], % [z)? = plz|P~' and d% |zIP = p [z)”~" almost
everywhere for z. Note that [z] > = |z|?sign[z] # z2, and if p is an odd number then
[z]? = zP and |z|” = z” for any even integer p. Moreover, [z]” [z]? = |z|719,
(27 [z]° = |z|?, and [z]°|z|” = [z]?. We also use the following notation: For
a vector x € R" we denote by X; € R the vector of the first i components, i.e.
% = [x1,..., x;]". Similarly, we denote by x, € R"~=D the vector of the last com-
ponents, i.e. x; = [x;, ..., x,17. Note that x = &, = X, are equivalent.

1.3 SISO Regulation and Tracking Problem

Consider a SISO dynamical system affine in the control

z=f,20)0+gl, Du,y=h(,z), (1.1)

where z € R” defines the state vector, u € R is the control input, y € R is the output
and & (¢, z) : R x R*" — Ris a smooth output function. A standard problem of con-
trol is the output tracking problem [32], consisting in forcing the output y to track
a (time-varying) signal yg (). Usually this problem has associated a (robust) distur-
bance decoupling or attenuation property [32, 33]. For our purposes we assume that
the functions f (¢, z) and g (¢, z) are uncertain smooth vector fields on R” and the
dimension n can also be unknown. The control objective, i.e. the standard HOSM
control problem [38, 40, 65], consists in making the output 0 = y — yg vanishes in
finite time and to keep o = 0 exactly by a bounded (discontinuous) feedback control.
All differential equations are understood in the Filippov’s sense [21].

When the relative degree p with respect to o is known, well defined and constant
this is equivalent to designing a controller for the DI

N xXi=xip,i=1,...,p—1,
Zoi [fcp € [-C, C1+ Ky, Kylu, (1.2)

where x = (x1, ..., x,) = (0, 6,..., c» T and 0 = dd—;h (z,t). Note that
X' p does not depend on the particular properties of the original systems’ dynamics
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and the DI only retains the constants p, C, K,, and K. Due to the persisting uncer-
tainty/perturbation causing the constant C > 0 the stabilization of x = 0 requires a
control discontinuous at x = 0, and therefore the classical nonlinear control tech-
niques, that aim at designing a continuous controller as e.g. [32-34], cannot be
applied.

For homogenous HOSM [40] the problem is solved by designing a bounded
memoryless feedback r-homogeneous control law of degree 0 (called also p-sliding
homogeneous)

=@ (x1, x2,....x,) =@ ("x1, €"xa,...,€"x,) , Ve > 0, (1.3)

withr = (p, p — 1, ..., 1), that renders the origin x = O finite-time stable for Xp;.
The motion on the set x = 0, which consists of Filippov trajectories [21], is called an
pth-order sliding mode. The function ¢ is discontinuos at the p-sliding set (x = 0).
The closed-loop inclusion (1.2)—(1.3) is an r-homogeneous Filippov DI of degree
—1 satisfying standard assumptions. In the next Sect. 1.4 we provide some families
of homogeneous HOSM controllers that solve the problem for any set of parameters
(p, C, K, Kyr). They are similar to the ones proposed by A. Levant but are char-
acterized by the fact that they are obtained by means of explicit smooth (Control)
Lyapunov Functions.

Since the implementation of the controller (1.3) requires the values of ¢ and its
derivativesupto o=V, i.e. the state x of X', we provide in Sect. 1.6 ahomogeneous
HOSM observer, able to estimate in finite time and robustly the states of X'p; for
any set of parameters (o, C, K,,, Kj). Again this observer corresponds to Levant’s
robust and exact differentiator [39, 40], but our results are distinguished by the fact
that the design is based on explicit homogeneous smooth Lyapunov functions.

Finally we note that if the control enters the system (1.1) non affinely the problem
can be reduced to the affine form by introducing an integrator and extending the
relative degree to p + 1.

1.4 Lyapunov Based HOSM Controllers

In a series of (by now) classical works, and using basically geometric tools and
homogeneous differential equations, A. Levant has derived some families of homo-
geneous Second and Higher Order Sliding Mode Controllers [36, 38—43]. Recently,
in [18, 19] (see also [11-13, 18, 19]), he has obtained also Lyapunov functions for
some “relay polynomial” controllers.

Based on smooth (Control) Lyapunov functions we derive a full family of
homogeneous HOSM Controllers, which are different from Levant’s families (see
[11-13]). Given the relative degree p > 2 we assign the homogeneity weights
r; = p — i + 1 to the variables x;, obtaining the vectorr = (p, p — 1,..., 1), and
we define an arbitrary non-decreasing sequence of positive real numbers «;, so that
0<a; <--- <a,-1 < a,. Furthermore, we define recursively, for i =2, ..., p,
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the €' r-homogeneous functions

_ ey /H:d‘l = i
o @) =l o () =[x & -I—kp S ooy (e, (14)
with constants k; > 0. Recall that ¥; = [xy, ..., x;]".
For any constant m > max<;<, {2p + 1 + o;_; — i} we also define recursively,
fori =2,...,p, the €' r-homogeneous functions
14 m - - -
Vi(x1) = - lxile oo, Vi) =y Vi (o) + Wi () (1.5)
_ m r/ r
Wi =l = oy Gon) x4 (1= ) e Gooln L (16)
m m
. oot _ _ i
vi (x1) = —ki [or]77 = —ki [x1] 7 ,..0,v () = =k [o; (x) |77, (1.7)

with (arbitrary) constants y; > 0. 0; (;), v; (x;) and V; (X;) are r-homogeneous of
degrees p + «;, riy) and m, respectively. As it will be shown in Sect. 1.5 V, (x) =
V, ()Ep) is a smooth (Control) Lyapunov Function for the uncertain plant (1.2).

From V, (x) we can derive different controllers for (1.2). In particular, we obtain
the following family of Discontinuous and Quasi-continuous controllers

D=%wmm=%ﬁ%aw, (1.8)
A

= —k L 1.9

o0 (V) = ki (1.9)

where M (x) is any continuous r-homogeneous positive definite function of degree

p +a,, and (for simplicity) we assume that it is scaled so that L"—Ex)) < 1. The
homogeneous controllers (1.8)—(1.9) are derived from V, (x) = (xp) by imposing

the condition 2 m(p (x) > 0 at all points where "V (") # 0.

The values of pkl, fori =1,...,0—1canbe ﬁxed depending only on p and «;,
they are the same for the Discontmuous and the Quasi-continuous controllers, and
they are independent of K,,,, K, and C. k, in contrast is selected depending on the
values K, Kj; and C to induce the rth order sliding mode, and they are different for
the Discontinuous and the Quasi-continuous controllers. Discontinuous controllers
are discontinuous not only on the sliding set {x = 0} but also when o, (x) = 0, while
Quasi-Continuous controllers are discontinuous only on the sliding set. Due to this
fact they produce less chattering.

Depending on the selection of the free parameters 0 < o < --- < a, we obtain
different families of controllers. We illustrate them presenting the controllers of
orders p = 2, 3, 4:
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e Discontinuous Controllers

— Nested Sliding Controllers: when some of the «; are different

o |0
wap = ks [ T 270 4 A3 [y )5 |

34a3 10
3ta ey | 3F@
usp = ’}X J3re 4 gyt ’}Xﬂ +k ° = flefJ ZJ (1.10)

4oy

4+a3
usp = —ky ’7fx4J4+“4 + ke ’}Xﬂ? +ky? “xﬂ

4ta3 zt? 0
4oy dtay Fay 3
ky® Txi ] J
— Relay Polynomial Controllers: when oy, = ap_1 = - =a; =a >0
urr = —kosign [fszHa + ki fleHTa] .
wir = —kasign [ [ 177 4 ko o) 5+ T ) T (1.11)

war = —kasign | [xa )" + ks [xs) ¥ + & [l 5 4 Ko ) 57

where for p = 2, k; = k%“‘; forp =3,k = k;“"kﬁ, ko = k;“"; and for gen-

_ -
eral p, k; = H?;} ki~ fori =1,..., p — 1. Relay Polynomial controllers are
specially simple in its form.

e Quasi-Continuous Controllers

— Nested Sliding Controllers: when some of the «; are different. The parameters
Bi > 0 are arbitrary

PES G [ J 0

u2Q = N
X217 + By |x1| -2
3 3tay ey ?wz giii
D€3J3+""‘+k‘2er ’VDQJT k7 [xi) J
M3Q = —k3 3+ EETy 3taz (112)
[x31779 + Bo [xa| 727 + i |x1| 3
dtay
ke
4+ap o)
rm“*“wk;‘*“{(m T +k2 [rm 5 +k o [x1] % J J
u4g = —ky

dtay o e s
[xa] + B3 |x3l + B2 |X2| + B le\
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— Relay Polynomial Controllers: when o; = o > 0

N ES S anl eV

Uz0r = o
e+ By x| 5
rxJ3+“+k Mxa) 5 4k [y
Usgr = S —— L (1.13)
|x| +/32|x2|2 +,31|X1|“
rx4J“+“+k3 Ml 4k rsz 54k rm*
UqQr =

|X4|4+0‘ + B3 1l A Bl 5 4 By |
All these controllers solve the problem posed in the previous Sect. 1.3.

Theorem 1.2 For any p > 2 each controller of the families of Discontinuous
or Quasi-continuous controllers in (1.8)—(1.9), with arbitrary parameters 0 < o,
<--- =Z«,, is p-sliding homogeneous, and for k, sufficiently large the pth order
sliding mode x = 0 is established in Finite-Time for the uncertain system (1.2) for
properly chosen gains ky, ..., k,—y and By, ..., By_1.

In the case of measurement noise and/or perturbations we obtain (from the homo-
geneity [39, 40, 44]) the following accuracy properties (see Theorem 1.1).

Theorem 1.3 Consider the uncertain plant (1.2) with any of the (state) feedback
controllers (1.8) or (1.9) and suppose that conditions of Theorem 1.2 are satisfied.
Suppose that the control is realized with a sampling interval t. In this case the state
X reaches after a finite time a neighborhood of the origin characterized by

—1 —(@i—1
i (O] <8177, I O] <&t o O] < 81770 x, (0] < 8,1,

and x stays in this vicinity of zero for all future times. Here 81, ...,8, > 0 are
some (positive) constants depending only on the chosen controller, the parameters
(C, K, Ky, p) and the gains, but they are independent on t and the initial con-
ditions.

Using the CLF (1.5) we show that the convergence time is a bounded function of the
initial states [8, Theorems 5.6, 5.7].

Proposition 1.1 Controllers (1.8)—(1.9), in closed-loop with system (1.2), enforce
the state trajectories, starting at initial state xo = x(0) € R", to reach x =0 in a
finite time smaller than

1
T (xo) = mn,Vy" (xo) (1.14)

where 1, is a function of the gains (ky, ..., k,), K,, and C.

When the bound of the perturbation [—C, C] is time-varying, it is possible to
design the following variable-gain controller, with a slight variation of the proof of
Theorem 1.2.



1 Lyapunov-Based Design of Homogeneous High-Order Sliding Modes 13

Theorem 1.4 Consider that in (12) C=C + O (t, z), where the function
O (t, z) > 0 is known. Then the discontinuous and quasi-continuous controllers
(1.8)—(1.9), with k, replaced by the variable-gain (K (t, 2) + kp), stabilize the ori-
gin x = 0 in Finite-Time if the gain k, is chosen large enough and K,,K (t, z) >
O (t, 2).

By making a linear change of variables ¢ = Lx, L > 1, it is easy to show that
if the vector of gains k = (ky, ..., k,) is stabilizing, then so is the scaled vector

of gains k; = (L%kl, .. Lﬁk» ., Lk,) for any o;. For the Relay Polynomial
Controllers and the relatlve degree p, the gains k; = Hp ! k” i Jfori=1,...,p—1

—i)(pta) —
are scaled as k; — L k;. Moreover, the convergence will be accelerated for

L > 1, or the size of the allowable perturbation C will be incremented to LC. Note
that the gains obtained by means of the LF can be very large for practical applications,
so that a simulation-based gain design is eventually necessary (see [13]).

In next Sect. 1.5 it will be shown that the gains k; can be calculated recursively as

1
k1 >0,...,ki+1 >Gi+1(k1,...,k,'),...,kp>K—(Gp(kl,...,kp_1)+C) s

m

where the functions G; are obtained from the LF V. (x) and they depend on p, y;
and «;. We can parametrize the gains in terms of k; as

== 1 o
ki >0,...,k = k| , kp > K—(,upkl +C), (1.15)

for some positive constants u; depending on p, y; and «;. Some values, cal-
culated numerically for up in (1.11), for « =0, are: p =2, u, = 1.62; p =3,
(ur = 1.5, u3 =3.25); p =4, (ur =2, nu3 = 8.45, ug = 30). We note that this
parametrization can be used for all controllers, except the value of k,, which is dif-
ferent for the discontinuous and the quasi-continuous controllers. The values can
also be used with the variable gain controller.

Remark 1.1 We note that using the family of CLFs (1.5) we obtain a large fam-
ily of HOSM controllers, related to the ones proposed by A. Levant in his works.
However, not all Levant’s controllers have been provided with a Lyapunov func-
tion. For example, [19] derive Polynomial controllers for arbitrary o > —p, while
the Lyapunov functions proposed here (and also in [19]) are only valid for o > 0.
The construction of Lyapunov functions for the controllers for the values of « in the
interval —p < « < 0 is an open problem.

Remark 1.2 Tt is easy to see that controllers (1.8) and (1.9) can be modified without
changing their properties: suppose that ¢, (x) is a continuous r-homogeneous func-
tion of degree p + o, such that (i) {x eR ¢, (x)= O} = {x eR? o, (x)= O},
i.e. 0, and ¢, vanish at the same points, and (ii) ¢, (x) o, (x) > 0. In this case the
controllers
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up = —k, [gp (x)JO s
(x)
Uug = —kp—f‘;(;c) B

have the same properties as (1.8) and (1.9), respectively. For example, instead of the
controller u3p in (1.10) we can also implement the controller

0

3ta3
3t+ay

= 3+as o
usp = —k3 ”D@JSW2 +h5 [y 2 sz +h T kT DC1J333J

1.5 The Lyapunov Function for the HOSM Controllers

This section can be skipped in a fast reading. We show that the continuously differ-
entiable function V, (x) (1.5) is an r-homogeneous Lyapunov Function of degree m
for the uncertain system (1.2) for all p > 2, all y; > 0 and sufficiently large values
ofk; >0,j=1,2,...,p— L

1.5.1 Proof by the Lyapunov Approach

In this subsection we establish the relationship between the proposed family of
controllers and the Control Lyapunov functions. First we present some preliminary
results.

We define recursively the auxiliary variables

S1=X1y.ees 8 =X — Vi (Xi—1)

m—rj m—r;

i _ m=ri
spa=1lxil oo sia=10x] 7 — v Gzl 7.

Lemma 1.2 For @ > 1 and B > 0 consider the function of the two real variables
x,yeR

1 «
F i y)=—lxl"—x yv)? + -5 Iylf=r . (1.16)

Then F (x, y) > 0and F (x, y) = 0 ifand only if [x|* = [yjﬁ«mj.

Proof The conclusion follows immediately from Young’s inequality (see
Lemma 1.4), since it implies

1 1 «
x (30 <~ + (1 - 5) NEzE
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From Lemma 1.2 it follows that W; (x;) > Oand W; (x;) = 0iff x; = v;—; (X;_1),
so that V; (x;) is positive definite for any y;_; > 0. The following relations will be
used in the sequel: for 1 < j <i —1

IWi (xi —r  E moniesan 90— (Xiz
O _ T e g 2T ) g )
8Xj p—}—a,-_l ij
oW, (x) mr;
BTy =[x J — vt -] " =sia. (1.18)

Notice also that s;, = 0 < 0; = 0 < ;¢ = 0, and that they have the same sign, i.e.
sio; > 0, s;8;,4 > 0and o;5;, 4 > Owhens; #0, 0; #0, s; 4 # 0.

Fori =1,..., p — 1 we introduce also the functions
i—1
dVy (x1) Vi (X) Vi (xz)
Zl<x1>—v1<x>—Z()—2x,H + v (%) :
= 0x; X;
(1.19)
Using (1.5) in (1.19), and with (1.17), (1.18) we obtain
- (x ) Vi G
- i—1 i—1 (Xi—1
Zi (X)) =vi-1 Z-x]+1 Y B
m—r P e O doi (Bio)
-k |y i ; —————— + i qVi .
p+oig it § ,Z;xm dx; i
Using x; = v;_; + s; in the first line we can obtain the recursive expression
Zi (X)) =v¥iZi1 (xic1) + 5% 1 (%) + i, avi (1.20)
p+n{ i—1
= it i S N 801 l(xl 1)
Wit 2 Yic1Si-1d — pa=kioi lvicil ZXJ+IT
j=1

Note that if in (1.19) we set 245 = ;| ; = s; = 0 it follows from (1.20) that

i—1

v, (%)
D xja = Vi1 Zioy (%) . (1.21)
o 0x;

The Main Argument

The proof can be divided in two parts. We take the derivative of V,, (x) along the
trajectories of (1.2)
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) =V, av
V, (x) € Z (x) j " Sl ([—C, C1+[Kn, Kylu) ,

Xp

with the controller (1.8) or (1.9). Note that

aVv (x) oW, (x) e, ) -
) = T g 0= ) = o ()|
o P

and

ptap ptap t+ap

=[x,] 7 +k,2 ["pflind"*l .

Moreover, s, 4 (x) 0, (x) > 0 and it is zero only if s, 4 (x) = 0, (x) = 0.

We consider here only the Discontinuous controller (1.8), the proof for the Quasi-
Continuous one follows the same path. For (1.8) the multivalued function ¢ (1) =
[-C, Cl =k, [Ku, Kyulu, when evaluated at (1.8), i.e.

o, (x) = (x J ’ﬂ

¥ (0, () = [=C, Cl =k, [Kp, Kl [0, (0)]°
can be represented as

—[(C+k,Kp), (kyKy —C)] ifo, (x) >0
¥ (0, @) = 1[- (C+k,Kn), (C+k,Ky)] ifo,(x)=0
[(koKm —C). (C+k,Ky)] ifo,(x) <0

If we assume that KL < k, then we conclude that

¥ (0, (x)) 0, (x) <0, and ¥ (0, (x)) 55,4 (x) <0,

and they are zero only if o, (x) = 0.
Using these results we conclude that

v, C
V (x) < Z (X)xj+1 —k, (Km — k_) |sp,d (x)‘ .
0

0x;

If we assume that

p—
Vx € {x e R’[s,.q (x) =0} = {x e R”|o, (x) =0} = Z W (x)x,+1<0

(1.22)



