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Introduction

Since Apple introduced the Swift programming language in 2014, it has become one of the most 
rapidly adopted computer programming languages in history. Programmers love the modern 

syntax used by Swift and the way it’s fun to develop code, similar to how they felt about Java a gen-
eration ago. Programming skills and experience in Swift are in high demand in the industry, with 
the promise of high salaries for those who invest the time to learn and practice the language.

Apple originally introduced Swift as an alternative language to Objective-C for developing iPhone, 
iPad, and macOS applications. The company has now expanded Swift into the realm of solutions 
for the Internet of Things, with support for tvOS (Apple TV) and watchOS (Apple Watch wearable 
devices). As illustrated in Figure 1, Swift is now one of the most popular open source projects and 
Swift frameworks such as Kitura are gaining ground quickly.

Figure 1:  Popularity of the Swift programming language
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At about the same time that Swift was first introduced, Apple and IBM formed a strategic partner-
ship to produce innovative, industry-specific mobile applications for the Apple iOS ecosystem. IBM 
proceeded to embrace the Swift programming language and implemented over 100 mobile apps as 
part of this partnership. IBM engineers saw the value of Swift firsthand in these applications. The 
open source release of the Swift language in late 2014 began another chapter in the partnership, as 
IBM chose to invest in and support the cause of bringing the Swift language to the cloud as a result 
of the focus on server-side Swift environments.
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Development of these applications highlights the critical, expanding role of server-side logic in 
powering these new experiences that users now take for granted. From syncing data across devices; 
to connecting people with friends and co-workers; to monitoring news and alerting us about new 
events based on our interests and activities; to providing cognitive insights into our applications; 
server-side logic is critical to creating truly brilliant apps. Now the ability to develop, debug, and 
deploy this logic in the same language used to create mobile experiences is a game changer for the 
development community.

This book, written by members of the development team at IBM who helped bring Swift to the 
cloud, covers everything you need to know about how to develop Swift programs that run in cloud 
environments. It combines technical information with the concepts that originally led to the devel-
opment of the technology. This book provides plenty of examples of Swift language code, as well 
as a living website where a community consisting of the authors and other passionate Swift experts 
continues to discuss Swift and its future directions.

IBM, Apple, and Swift
On July 15, 2014, IBM and Apple announced what was at the time a very surprising partnership, with 
the goal of transforming business applications by building mobile enterprise and industry-specific 
solutions for the Apple platform. This partnership was unexpected by most industry watchers and 
radically altered the enterprise mobile computing landscape.

The IBM offering that resulted from the Apple partnership is called MobileFirst for iOS. It focuses 
on enterprise and industry transformation by providing users with the latest features of the Apple 
platform and user design, coupled with the back-end data center integration required to reinvent the 
next generation of enterprise applications. 

Key features of the IBM offering include large-enterprise–class robustness and scalability; back-end 
enterprise data center integration; big data and analytics integration; and a highly polished mobile 
front-end user interface experience.

The user interface experience was codesigned by Apple and IBM to significantly upgrade the stan-
dards for usability, elegance, and user satisfaction beyond typical enterprise software. Since 2012, 
IBM has been making massive investments in IBM Design Thinking philosophy and techniques, 
building up several large design studios in an effort to apply good design to business software. This 
software design emphasis by IBM was one of the natural collaboration areas of the partnership, with 
the strong Apple design culture being applied to all of their own products.

As IBM MobileFirst for iOS was being developed, a choice was made to use the latest iOS plat-
form APIs for iPhone and iPad business applications. The scope was later extended to include Apple 
Watch. IBM leveraged many of the extended development kits provided by Apple, such as HomeKit, 
CloudKit, and the connected car capabilities in various new and innovative business solutions. As 
of December 2015, IBM had created over 100 industry-specific mobile apps for the IBM MobileFirst 
for iOS collection.
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While Apple has pioneered the transformation of the consumer mobile app experience, IBM and 
Apple consider business mobile app transformation to be an underserved market and a really great 
design opportunity that they can uniquely address together.

Introduction of Swift
Apple introduced the Swift language at the Apple World Wide Developers Conference (WWDC) 
in 2014, and IBM decided to begin using the language to build the first wave of IBM MobileFirst 
for iOS mobile applications. IBM assembled a team of developers with expertise in building mobile 
solutions. Their previous programming language skills included Java, JavaScript, and Objective-C. 
This team of IBM programmers quickly learned Swift and began using it to implement the mobile 
apps in the IBM MobileFirst for iOS collection.

Working with Apple, we at IBM learned a lot about what it takes to build amazing mobile 
business applications. IBM also discovered the value of Swift.

Swift was designed by Apple to be a safe, interactive, and high-performance systems language. It 
also blends the ease of scripting language syntax with the performance of a systems language. The 
IBM team found that in comparison to mobile apps developed in Java for the Android mobile platform 
and Objective-C for iOS, Swift apps required less code. 

The IBM team appreciated everything about Swift, from its type safety—which empowered them 
to be agile and evolve the applications quickly while knowing that the compiler would catch any 
errors—to its performance and memory advantages, which are critical for application responsiveness. 
The concise syntax of the language also led to great developer productivity.

The IBM teams also learned to understand what is necessary to develop application-specific web 
services to power these business mobile applications. It significantly enhanced the overall produc-
tivity of the team to not have to switch languages away from what was used for the mobile front end 
(Swift) to work on the back-end services.

The developers found the Swift code easier to read, share, and evolve. What the Swift language 
did for legibility of the application code represented a large increase in productivity for the develop-
ment team. Other languages used for mobile apps were generally more verbose. It also significantly 
increased code quality with Swift-based type checking. The importance of a strongly typed language 
in the productivity of the development team can hardly be overstated. Most of the more than 100 
applications developed by IBM for various business solutions could be produced by a handful of 
programmers working in small teams.

Figure 2 shows a comparison of Swift with other programming languages and illustrates how Swift 
enables inherent application performance and developer productivity benefits through its attributes 
such as:

■■ Modern programming language constructs
■■ Error detection at compile time, not runtime
■■ Code reengineering


