




Swift™  
in the Cloud





Swift™  
in the Cloud

Leigh Williamson

John Ponzo

Patrick Bohrer

Ricardo Olivieri

Karl Weinmeister

Samuel Kallner



Swift™ in the Cloud

Published by 
John Wiley & Sons, Inc. 
10475 Crosspoint Boulevard 
Indianapolis, IN 46256 
www.wiley.com

Copyright © 2017 by IBM Corporation. All rights reserved.
The following terms are trademarks or registered trademarks of IBM Corporation in the United States, other countries, or 
both: IBM, the IBM Press logo, DB2, AIX, WebSphere, Rational, IBM MobileFirst, Bluemix, z/OS, z Systems, IBM LinuxONE, 
CICS, and IMS. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates. Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, 
product, or service names may be trademarks or service marks of others. A current list of IBM trademarks is available on the 
web at “copyright and trademark information” as www.ibm.com/legal/copytrade.shtml.

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-31937-5
ISBN: 978-1-119-36853-3 (ebk)
ISBN: 978-1-119-36847-2 (ebk)

Manufactured in the United States of America 
10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, 
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of 
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through 
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, 
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions 
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ  07030, (201) 748-6011, fax (201) 748-6008, or online 
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect 
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without 
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional 
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with 
the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If 
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher 
nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this 
work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses 
the information the organization or website may provide or recommendations it may make. Further, readers should be 
aware that Internet websites listed in this work may have changed or disappeared between when this work was written and 
when it is read.

For general information on our other products and services please contact our Customer Care Department within the United 
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard 
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a  
CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport 
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017946220

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, 
in the United States and other countries, and may not be used without written permission. Swift is a trademark of Apple, Inc. 
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or 
vendor mentioned in this book.

http://www.wiley.com
http://www.ibm.com/legal/copytrade.shtml
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://booksupport.wiley.com


Karl would like to dedicate this book to his supportive wife, Samantha,  

and their crazy kiddos, who still gave him enough time to write.

Leigh dedicates this book to his wife, Cheryl, always his compass  

through life, and his daughter, Claire, the light of his life.





About the Authors

Leigh Williamson is an IBM Distinguished Engineer who has been working in the company’s Austin, 
Texas lab since 1989, contributing to major software projects for IBM, including OS/2, DB2, AIX, Java, 
WebSphere, Rational, and MobileFirst products. He is currently leading a cross-disciplinary team 
of IBM Cloud Consultants who assist clients with cloud computing strategy and execution. Leigh is 
an active mentor and leader in the IBM technical community, working with international mentees; 
working in the Advanced Technical Eminence program; leading multiple patent brainstorming teams; 
publishing technical blogs and articles; conducting external broadcast webinars; and speaking at 
IBM and non-IBM conferences.

This is the fourth IBM Press book on which Leigh has collaborated over the past 15 years, with 
works covering Java standards, WebSphere Application Server, and enterprise-class mobile application 
development. He holds a B.S. in Computer Science from Nova University and an M.S. in Computer 
Engineering from The University of Texas at Austin.

You can follow Leigh on Twitter at @leighawillia. His LinkedIn address is https://www.linkedin 
.com/in/leigh-williamson-9048654.

John Ponzo is an IBM Fellow and Chief Technology Officer for Mobile who has shaped the future of 
IBM business in mobile computing and delivered innovative products and services to web browser 
and server-based standards. He is a pioneer in technology that promotes end-user interaction through 
mobility, web programming, web application middleware, and software tools. John led the develop-
ment of key software technologies including HTML/JavaScript runtime libraries, XML middleware, 
web services runtime libraries, Eclipse Web Integration, and Web 2.0 enterprise collaboration ser-
vices. He also authored the “Enterprise Mobile” and the “Mobile First” theses that are the cornerstone 
of mobile strategy and execution at IBM. John also serves as the IBM technology ambassador to Kenya.

John is the primary technical collaborator between Apple and IBM in the effort to define and 
enhance the Swift programming language for both mobile client development and cloud services 
development.

https://www.linkedin.com/in/leigh-williamson-9048654


Patrick Bohrer is a Distinguished Engineer in the IBM Cloud division. His responsibilities include 
serving as the technical lead for the company’s global efforts around Swift@IBM (developer.ibm 
.com/swift). He formerly served as the technical lead of the Mobile Innovation Lab in Austin, Texas. 
Patrick also helped lead IBM Research’s Mobile Research agenda after co-leading the 2012 Global 
Technology Outlook topic entitled “Mobile First,” which helped set the technical direction for current 
mobile and cloud efforts at IBM. Patrick received a B.A in Computer Science from The University of 
Texas at Austin.

Karl Weinmeister is the Program Director for Swift@IBM Engineering, based in Austin, Texas. He 
is passionate about improving people’s lives and experiences with technology. In his role, he has 
helped to enable Swift to extend from its mobile roots to become a full-stack language ecosystem.

Previously, Karl led engineering for the IBM Mobile Innovation Lab. He is a diehard Duke basket-
ball fan and enjoys spending time with his family.

Ricardo Olivieri is a Senior Software Engineer at Swift@IBM Engineering. His areas of expertise 
include gathering and analyzing business requirements, architecting, designing, and developing 
software applications. Ricardo has extensive experience in the complete software development cycle 
and related processes, especially in Agile methodologies.

Ricardo has several years of experience in Java development as well as in Groovy, Perl, and Python 
development, with a strong background in back-end (server-side, business logic, SQL, and NoSQL 
databases) and front-end development. Several years ago, Ricardo added Business Process Manager 
(BPM) design and development to his skill set, which allowed him to assume the role of BPM con-
sultant and developer using IBM Business Process Manager. While working at the Mobile Innovation 
Lab, Ricardo gained valuable skills and knowledge in the iOS and Android ecosystems.

Ricardo is now mainly focused on the adoption of the Swift language on the server and the IBM 
cloud, Bluemix. He has a B.S. in Computer Engineering from the University of Puerto Rico, Mayagüez 
Campus.

Samuel (Shmuel) Kallner is a Senior Technical Staff Member in the Smart Client Platforms group 
at the IBM Research Lab in Haifa, Israel. He is currently the Technical Lead of the Kitura project. 
Shmuel has over thirty years of experience at IBM working on a wide variety of projects including 
mobile apps, web-based end-user application development environments, mobile app developer tools, 
both sides of client-server–based applications, and more.

About the Authorsviii



Matthew Perrins is a Senior Technical Staff Member working on IBM Cloud Developer Services in 
Austin, Texas. Matt is one of the architects for the company’s production-ready public Cloud Developer 
Experience on Bluemix—the IBM cloud platform. He is focused on making it very easy to develop 
and deploy mobile, web, and digital channel applications with the IBM cloud, and to integrate them 
with world-class leading runtimes for Swift, Node.js, and Java. Matt has been leading the IBM cloud 
teams in the evolution to true DevOps continuous delivery with cloud-native architectures, and 
driving that integration into the IBM Bluemix user experience.

Matt has spent a significant part of his career building systems-of-record and systems-of-engagement 
solutions using IBM technologies with IBM clients. He understands developers, user experiences, 
transactions, and cognitive solutions and how to deliver them at scale on the IBM cloud.

About the Technical Editor





Credits

Executive Editor
Jim Minatel

Project Editor
Adaobi Obi Tulton

Technical Editor
Matthew Perrins

Production Editor
Dassi Zeidel

Copy Editor
Marylouise Wiack

Production Manager
Katie Wisor

Manager of Content Development and 
Assembly
Mary Beth Wakefield

Marketing Manager
Christie Hilbrich

Professional Technology & Strategy Director
Barry Pruett

Business Manager
Amy Knies

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Carrasco

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley

Cover Image
© fishbones/Getty Images





Many thanks to everyone at Wiley Publishing for their outstanding work on this project: to Jim 
Minatel for encouraging us to take this book concept forward and for yet again supporting 

the realization of a book that engages in deeper learning; to Adaobi Obi Tulton, the project editor, for 
driving this project to completion in the most efficient way possible—it was a real pleasure to work 
with such an accomplished and adept editor; to Marylouise Wiack, the copy editor, for translating 
this book into readable prose; and to Dassi Zeidel, the production editor, for bringing everything 
together to create a final, polished product.

Sincere thanks go to Matthew Perrins, the technical editor, for the incredible amount of work and 
personal time he selflessly put into ensuring that the content in this book can be utilized seamlessly 
by readers. Also, thanks to Steven Stansel, who was instrumental in formulating the original concept 
and proposal for the book. Brian White Eagle provided invaluable assistance with peering over the 
horizon in Chapter 9. And Shereen Ghobrial contributed the bulk of the mainframe-related content.

The biggest thank-you must, of course, go to our own families. This book was written over six 
months, predominantly at night and over weekends and holidays. In addition to sharing us with 
extremely demanding full-time jobs, our families made further sacrifices to enable us to spend time 
on this project.

Acknowledgments





Contents at a Glance

Introduction ������������������������������������������������������������������������������������������������������ xxiii

	1	 Swift.org, the Open Source Project�������������������������������������������������������������������������1

	2	 A Swift Sandbox in the Cloud������������������������������������������������������������������������������� 19

	3	 A Basic Introduction to Swift���������������������������������������������������������������������������������35

	4	 The IBM Bluemix Buildpack for Swift��������������������������������������������������������������������� 53

	5	 Using Containers on Bluemix to Run Swift Code��������������������������������������������������� 91

	6	 Swift Package Management ��������������������������������������������������������������������������������119

	7	 Swift and Kitura for Web Applications ����������������������������������������������������������������� 131

	8	 Serverless Programming with Swift ��������������������������������������������������������������������� 175

	9	 Over the Horizon: Where Do We Go from Here? ������������������������������������������������� 203

		  Index ����������������������������������������������������������������������������������������������������������������� 221





Contents

Introduction ������������������������������������������������������������������������������������������������������ xxiii

	1	 Swift.org, the Open Source Project�������������������������������������������������������������������������1
What’s Included�������������������������������������������������������������������������������������������������������������������������1

Source Code Repositories�����������������������������������������������������������������������������������������������������2

How to Get Involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Mailing Lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Bug Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Swift Evolution and Roadmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Priorities for the Swift 4.0 Major Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Binary Downloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

MacOS Binaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Linux Binaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Swiftenv, Swift Version Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

	2	 A Swift Sandbox in the Cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
The IBM Cloud Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Sign Me Up!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Saving and Sharing Code Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Selecting Swift Versions and More. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Have You Run on a Mainframe Lately?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

IBM Swift Package Catalog and Sandbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



Contentsxviii

	3	 A Basic Introduction to Swift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Let’s Get Coding!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Swift Standard Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Swift Foundation Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

C Library Interoperability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Concurrency Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Memory Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

The Language Landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Language Groupings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Language Timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

	4	 The IBM Bluemix Buildpack for Swift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Cloud Foundry Buildpacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Buildpack Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

Working with the IBM Bluemix Buildpack for Swift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Where Is the Source Code Hosted? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

What Version of the Buildpack Is Currently Installed?. . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

File Artifacts Required for Provisioning Your Application  
on Bluemix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Installing Additional System-Level Dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Downloading Closed Source Dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

Examples of Using the IBM Bluemix Buildpack for Swift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Swift HelloWorld. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Kitura Starter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

BluePic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Using the Latest Code of the IBM Bluemix Buildpack for Swift. . . . . . . . . . . . . . . . . . . . . . . . . 87

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88



Contents xix

	5	 Using Containers on Bluemix to Run Swift Code. . . . . . . . . . . . . . . . . . . . . . . . . . 91
What Are Docker Containers?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Docker Images for Swift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Installing Docker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

Using Docker as a Development Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

Exposing Your Swift Application’s Port to the Host System. . . . . . . . . . . . . . . . . . . . . . . . . 96

Using docker-compose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Why Use Containers on Bluemix?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Containers for Packaging and Deployment of Swift Applications. . . . . . . . . . . . . . . . . . . .99

The Kubernetes Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Running Your Docker Image in the Bluemix Cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Install the Kubernetes Command Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Install the Bluemix Command Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

Install the IBM Container Registry Plug-In. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Install the IBM Container Service Plug-In. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Create a Runtime Image for Swift Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Tag a Docker Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Push a Docker Image to Bluemix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Create a Kubernetes Cluster on Bluemix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

High Availability in Kubernetes Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Binding Bluemix Services to IBM Containers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

	6	 Swift Package Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Swift Package Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Using Swift Package Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Package.Swift Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



Contentsxx

Swift Package Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Browsing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Searching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Package Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Dependency Visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Trying Out a Package in the Sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

	7	 Swift and Kitura for Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Kitura. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Sending Simple Responses to Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Real-World Library Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Accessing Information Sent in Requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Starting the Library Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Working with Various HTTP Features Using Kitura. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Other Ways of Serving Content Using Kitura. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Other Useful Kitura Middleware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Authentication Using the Kitura-Credentials Framework . . . . . . . . . . . . . . . . . . . . . . . . . 159

The Library Sample with Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Kitura and Data Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Swift-Kuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Kitura-redis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

	8	 Serverless Programming with Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Microservices and Serverless Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Serverless Computing Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

OpenWhisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Swift and OpenWhisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Using the Web-Based OpenWhisk Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Command Line OpenWhisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A More Involved Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201



Contents xxi

	9	 Over the Horizon: Where Do We Go from Here? . . . . . . . . . . . . . . . . . . . . . . . . . 203
Bringing Swift to the Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

IBM Cloud Tools for Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

Server-Side Frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Expanding the Range of Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Swift Support for Linux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

The Internet of Swift Things. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Big Iron Swift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Swift DevOps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

		  Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221





Introduction

Since Apple introduced the Swift programming language in 2014, it has become one of the most 
rapidly adopted computer programming languages in history. Programmers love the modern 

syntax used by Swift and the way it’s fun to develop code, similar to how they felt about Java a gen-
eration ago. Programming skills and experience in Swift are in high demand in the industry, with 
the promise of high salaries for those who invest the time to learn and practice the language.

Apple originally introduced Swift as an alternative language to Objective-C for developing iPhone, 
iPad, and macOS applications. The company has now expanded Swift into the realm of solutions 
for the Internet of Things, with support for tvOS (Apple TV) and watchOS (Apple Watch wearable 
devices). As illustrated in Figure 1, Swift is now one of the most popular open source projects and 
Swift frameworks such as Kitura are gaining ground quickly.

Figure 1:  Popularity of the Swift programming language

Now
Released June 2014
Open sourced Dec 2015

30K+

Pre-2009 2010 2011 2012

Popularity of Open Projects
(Total Current Stars vs First Release)

2013 2014 2015 2016

20K

10K

7.5K
5K
2.5K
0

At about the same time that Swift was first introduced, Apple and IBM formed a strategic partner-
ship to produce innovative, industry-specific mobile applications for the Apple iOS ecosystem. IBM 
proceeded to embrace the Swift programming language and implemented over 100 mobile apps as 
part of this partnership. IBM engineers saw the value of Swift firsthand in these applications. The 
open source release of the Swift language in late 2014 began another chapter in the partnership, as 
IBM chose to invest in and support the cause of bringing the Swift language to the cloud as a result 
of the focus on server-side Swift environments.



Introductionxxiv

Development of these applications highlights the critical, expanding role of server-side logic in 
powering these new experiences that users now take for granted. From syncing data across devices; 
to connecting people with friends and co-workers; to monitoring news and alerting us about new 
events based on our interests and activities; to providing cognitive insights into our applications; 
server-side logic is critical to creating truly brilliant apps. Now the ability to develop, debug, and 
deploy this logic in the same language used to create mobile experiences is a game changer for the 
development community.

This book, written by members of the development team at IBM who helped bring Swift to the 
cloud, covers everything you need to know about how to develop Swift programs that run in cloud 
environments. It combines technical information with the concepts that originally led to the devel-
opment of the technology. This book provides plenty of examples of Swift language code, as well 
as a living website where a community consisting of the authors and other passionate Swift experts 
continues to discuss Swift and its future directions.

IBM, Apple, and Swift
On July 15, 2014, IBM and Apple announced what was at the time a very surprising partnership, with 
the goal of transforming business applications by building mobile enterprise and industry-specific 
solutions for the Apple platform. This partnership was unexpected by most industry watchers and 
radically altered the enterprise mobile computing landscape.

The IBM offering that resulted from the Apple partnership is called MobileFirst for iOS. It focuses 
on enterprise and industry transformation by providing users with the latest features of the Apple 
platform and user design, coupled with the back-end data center integration required to reinvent the 
next generation of enterprise applications. 

Key features of the IBM offering include large-enterprise–class robustness and scalability; back-end 
enterprise data center integration; big data and analytics integration; and a highly polished mobile 
front-end user interface experience.

The user interface experience was codesigned by Apple and IBM to significantly upgrade the stan-
dards for usability, elegance, and user satisfaction beyond typical enterprise software. Since 2012, 
IBM has been making massive investments in IBM Design Thinking philosophy and techniques, 
building up several large design studios in an effort to apply good design to business software. This 
software design emphasis by IBM was one of the natural collaboration areas of the partnership, with 
the strong Apple design culture being applied to all of their own products.

As IBM MobileFirst for iOS was being developed, a choice was made to use the latest iOS plat-
form APIs for iPhone and iPad business applications. The scope was later extended to include Apple 
Watch. IBM leveraged many of the extended development kits provided by Apple, such as HomeKit, 
CloudKit, and the connected car capabilities in various new and innovative business solutions. As 
of December 2015, IBM had created over 100 industry-specific mobile apps for the IBM MobileFirst 
for iOS collection.



Introduction xxv

While Apple has pioneered the transformation of the consumer mobile app experience, IBM and 
Apple consider business mobile app transformation to be an underserved market and a really great 
design opportunity that they can uniquely address together.

Introduction of Swift
Apple introduced the Swift language at the Apple World Wide Developers Conference (WWDC) 
in 2014, and IBM decided to begin using the language to build the first wave of IBM MobileFirst 
for iOS mobile applications. IBM assembled a team of developers with expertise in building mobile 
solutions. Their previous programming language skills included Java, JavaScript, and Objective-C. 
This team of IBM programmers quickly learned Swift and began using it to implement the mobile 
apps in the IBM MobileFirst for iOS collection.

Working with Apple, we at IBM learned a lot about what it takes to build amazing mobile 
business applications. IBM also discovered the value of Swift.

Swift was designed by Apple to be a safe, interactive, and high-performance systems language. It 
also blends the ease of scripting language syntax with the performance of a systems language. The 
IBM team found that in comparison to mobile apps developed in Java for the Android mobile platform 
and Objective-C for iOS, Swift apps required less code. 

The IBM team appreciated everything about Swift, from its type safety—which empowered them 
to be agile and evolve the applications quickly while knowing that the compiler would catch any 
errors—to its performance and memory advantages, which are critical for application responsiveness. 
The concise syntax of the language also led to great developer productivity.

The IBM teams also learned to understand what is necessary to develop application-specific web 
services to power these business mobile applications. It significantly enhanced the overall produc-
tivity of the team to not have to switch languages away from what was used for the mobile front end 
(Swift) to work on the back-end services.

The developers found the Swift code easier to read, share, and evolve. What the Swift language 
did for legibility of the application code represented a large increase in productivity for the develop-
ment team. Other languages used for mobile apps were generally more verbose. It also significantly 
increased code quality with Swift-based type checking. The importance of a strongly typed language 
in the productivity of the development team can hardly be overstated. Most of the more than 100 
applications developed by IBM for various business solutions could be produced by a handful of 
programmers working in small teams.

Figure 2 shows a comparison of Swift with other programming languages and illustrates how Swift 
enables inherent application performance and developer productivity benefits through its attributes 
such as:

■■ Modern programming language constructs
■■ Error detection at compile time, not runtime
■■ Code reengineering


