Neuroanatomy and Neuroscience at a Glance Fifth Edition

Roger A. Barker Francesca Cicchetti Emma S. J. Robinson

WILEY Blackwell

Neuroanatomy and Neuroscience at a Glance

This title is also available as an e-book. For more details, please see www.wiley.com/buy/9781119168416

Neuroanatomy and Neuroscience at a Glance Fifth Edition

Roger A. Barker

BA, MBBS, MRCP, PhD, FMedSci John van Geest Centre for Brain Repair and Department of Neurology Department of Clinical Neuroscience University of Cambridge Cambridge, UK

Francesca Cicchetti

PhD Centre de Recherche du CHU de Québec (CHUQ) Université Laval Québec, Canada

and Neuropharmacology by

Emma S. J. Robinson

PhD, BSc(Hons), FBPhS Reader in Psychopharmacology School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol, UK

WILEY Blackwell

This edition first published 2018 © 2018 John Wiley & Sons Ltd.

Edition History

Fourth edition published 2012 © 2012 by John Wiley & Sons, Ltd. Third edition © 2008 Roger Barker and Stephen Barasi. Second edition © 2003 Roger Barker and Stephen Barasi. First edition © 1999 Roger Barker and Stephen Barasi.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Roger A. Barker, Francesca Cicchetti and Emma S.J. Robinson to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons, Ltd. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office 9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/ or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Barker, Roger A., 1961- author. | Cicchetti, Francesca, author. |

```
Robinson, Emma S. J., 1974- author.
Title: Neuroanatomy and neuroscience at a glance / Roger A. Barker, Francesca
```

- Cicchetti, and Emma S.J. Robinson. Description: Fifth edition. | Hoboken, NJ : Wiley, 2017. | Series: At a
- glance | Includes bibliographical references and index. |
- Identifiers: LCCN 2017012665 (print) | LCCN 2017014341 (ebook) | ISBN
- 9781119168430 (pdf) | ISBN 9781119168423 (epub) | ISBN 9781119168416 (pbk.) Subjects: | MESH: Nervous System Physiological Phenomena | Nervous
- System-anatomy & histology | Nervous System Diseases
- Classification: LCC RC341 (ebook) | LCC RC341 (print) | NLM WL 102 | DDC 616.8—dc23
- LC record available at https://lccn.loc.gov/2017012665

John Wiley & Sons Limited is a private limited company registered in England with registered number 641132. Registered office address: The Atrium, Southern Gate, Chichester, West Sussex, United Kingdom. PO19 8SQ.

Cover image: ©SEBASTIAN KAULITZKI/SCIENCE PHOTO LIBRARY/Gettyimages

Set in Minion Pro 9.5/11.5 by Aptara

This book is dedicated to Imogen Rose Barker, who died tragically in February 2007: a wonderful daughter and an inspiration to many.

Introduction ix Acknowledgements x List of abbreviations xi Companion website xv

Anatomical and functional organization 1

- 1 Development of the nervous system 2
- 2 Organization of the nervous system 4
- 3 Autonomic nervous system 6
- 4 Enteric nervous system 8
- 5 Meninges and cerebrospinal fluid 10
- 6 Blood supply to the central nervous system 12
- 7 Cranial nerves 14
- 8 Anatomy of the brainstem 16
- 9 Organization of the spinal cord 18
- 10 Organization of the cerebral cortex and thalamus 20
- 11 Hypothalamus 22

Part 3

Cells and neurophysiology 25

- 12 Cells of the nervous system I: neurones 26
- 13 Cells of the nervous system II: neuroglial cells 28
- 14 Ion channels 30
- **15** Resting membrane and action potential 32
- 16 Neuromuscular junction and synapses 34
- 17 Nerve conduction and synaptic integration 36
- 18 Neurotransmitters, receptors and their pathways 38
- **19** Main CNS neurotransmitters and their function 40
- 20 Skeletal muscle structure 42
- 21 Skeletal muscle contraction 44

Sensory systems

- 22 Sensory systems: an overview 48
- 23 Sensory transduction 50
- 24 Visual system I: the eye and retina 52
- 25 Visual system II: the visual pathways and subcortical visual areas 54

47

- 26 Visual system III: visual cortical areas 56
- 27 Auditory system I: the ear and cochlea 58
- 28 Auditory system II: auditory pathways and language 60
- 29 Vestibular system 62
- 30 Olfaction and taste 64
- 31 Somatosensory system 66

- 32 Pain systems I: nociceptors and nociceptive pathways 68
- 33 Pain systems II: pharmacology and management 70
- 34 Association cortices: the posterior parietal and prefrontal cortex 72

Part 4 M

- Motor systems 75
- **35** Organization of the motor system 76
- 36 Muscle spindle and lower motor neurone 78
- 37 Spinal cord motor organization and locomotion 80
- **38** Cortical motor areas 82
- 39 Primary motor cortex 84
- **40** Basal ganglia: anatomy and physiology 86
- 41 Basal ganglia: diseases and their treatments 88
- 42 Cerebellum 91

Cognition and neural plasticity

- 43 Reticular formation and sleep 96
- 44 Limbic system and long-term potentiation 98
- 45 Memory 100
- 46 Emotion, motivation and drug addiction 102
- **47** Neural plasticity and neurotrophic factors I: the peripheral nervous system 104

95

- 48 Neural plasticity and neurotrophic factors II: the central nervous system 106
- 49 Techniques for studying the nervous system 108

Part 5

Applied neurobiology: the principles of neurology and psychiatry 111

- 50 Approach to the patient with neurological problems 112
- 51 Examination of the nervous system 114
- 52 Investigation of the nervous system 116
- 53 Imaging of the central nervous system 118
- 54 Clinical disorders of the sensory systems 120
- 55 Clinical disorders of the motor systems 122
- 56 Eye movements 124
- 57 Neurochemical disorders I: affective disorders 126
- 58 Neurochemical disorders II: schizophrenia 128
- 59 Neurochemical disorders III: anxiety 130
- 60 Neurodegenerative disorders 132
- 61 Neurophysiological disorders: epilepsy 134
- 62 Neuroimmunological disorders 136
- 63 Neurogenetic disorders 138
- 64 Cerebrovascular disease 140
- 65 Neuroradiological anatomy 142

History of neuroscientific discoveries 145

66 Historical neuroscience discoveries 146

Self-assessment case studies 149

Case studies and questions 150 Answers 156

Index 161

Introduction

Neuroscience at a Glance is designed primarily for medical students as a revision text or review of basic neuroscience mechanisms, rather than a comprehensive account of the field of medical neuroscience. The book does not attempt to provide a systematic review of clinical neurology, although one of the new features of the fourth edition was the introduction of more clinical cases to illustrate how neurology builds on a good knowledge of basic neuroscience. In addition, the changing nature of medical training has meant that rather than teaching being discipline-based (anatomy, physiology, pharmacology, etc.), the current approach is much more integrated with the focus on the entire system. Students pursuing a problem-based learning course will also benefit from the concise presentation of integrated material.

This book summarizes the rapidly expanding field of neuroscience with reference to clinical disorders, such that the material is set in a clinical context with the later chapters being more clinically oriented. However, learning about the organization of the nervous system purely from clinical disorders is short-sighted as the changing nature of medical neuroscience means that areas with little clinical relevance today may become more of an issue in the future. An example of this is ion channels and the recent burgeoning of a host of neurological disorders secondary to a channelopathy. For this reason, some chapters focus more on scientific mechanisms with less clinical emphasis.

Each chapter presents the bulk of its information in the form of an annotated figure, which is expanded in the accompanying text. It is recommended that the figure is worked through with the text rather than just viewed in isolation. The condensed nature of each chapter means that much of the information has to be given in a didactic fashion. Although the text focuses on core material, some additional important details are also included.

The book is structured such that it begins with the anatomical and functional organization of the nervous system

(Chapters 1–11); the cells of the nervous system and how they work (Chapters 12–21); the sensory components of the nervous system (Chapters 22–34); the motor components of the nervous system (Chapters 35–42); the autonomic, limbic and brainstem systems underlying wakefulness and sleep along with neural plasticity and a new chapter on techniques to study the nervous system in the lab (Chapters 43–49); and, finally, a section on the approach, investigation and range of clinical disorders of the nervous system (Chapters 50–65).

Each section builds on the previous ones to some extent, and so reading the introductory chapter may give a greater understanding to later chapters in that section; for example, the somatosensory system chapter (Chapter 31) may be better read after the chapter on the general organization of sensory systems (Chapter 22).

In this latest edition of the book we have attempted to further integrate the clinical relevance of neurobiology into the text and website and brought in a new author to help with the neuropharmacological developments in central nervous system disease, Dr Emma Robinson. We have continued and updated our 'Did you know?' section at the end of each chapter while Part 7 consists of relevant clinical scenarios for each chapter along with questions and answers. The companion website has key revision points and multiple-choice questions relating to the content of each chapter.

We hope that you find this new edition of the book a useful accompaniment to your studies from undergraduate to postgraduate to clinical level.

> Roger A. Barker Cambridge

Francesca Cicchetti Quebec

Emma S. J. Robinson Bristol

Acknowledgements

e would like to thank all the students that we have taught over the years who have helped us refine this book as well as the team at Wiley-Blackwell for all their help and innovative ideas in this new, more colourful edition of the book.

List of abbreviations

		D 40	
ACA	anterior cerebral artery	DAG	diacylglycerol
ACE-r	Addenbrooke's Cognitive Examination,	DAT	dementia of the Alzheimer type
	revized	DAT	dopamine transporter (scan)
ACh	acetylcholine	dB	decibel
AChE	acetylcholinesterase	DC	dorsal column
AChR	acetylcholine receptor	DCN	dorsal cochlear nucleus
ACTH	adenocorticotrophic hormone	DoCN	dorsal column nuclei
ADH	antidiuretic hormone (vasopressin)	DCNN	deep cerebellar nuclei neurone
ADHD	attention deficit hyperactivity disorder	DMD	Duchenne's muscular dystrophy
ALS	amyotrophic lateral sclerosis	DNA	deoxyribonucleic acid
ANS	autonomic nervous system	DREADD	Designer Receptors Exclusively
APP	amyloid precursor protein		Activated by Designer Drugs
ATP	adenosine triphosphate	DBG	dorsal root ganglion
ΔVM	arteriovenous malformation	DSCT	dorsal spinocerebellar tract
RRR	blood_brain barrier		delta sleen-inducing pentide
BDNE	brain derived pouretrophic factor		Diagnostic and Statistical Manual of
DUNF		DSIVI-V	Montal Disordora, Eth adition
		500	
BIVIP	bone morphogenic protein	ECG	
BPPV	benign paroxysmai positional vertigo	ECT	electroconvulsive therapy
BSAEP	brainstem auditory-evoked potential	EEG	electroencephalography/
CAA	cerebral amyloid angiopathy		electroencephalogram
CADASIL	cerebral autosomal-dominant	EMG	electromyography/electromyogram
	arteriopathy with subcortical infarcts	ENS	enteric nervous system
	and leucoencephalopathy	EP	evoked potential
cAMP	cyclic adenosine monophosphate	ерр	end-plate potential
CBM	cerebellum	EPSP	excitatory postsynaptic potential
CCK	cholecystokinin	FDG	[¹⁸ F]2-fluoro-2-deoxy-D-glucose
cf	climbing fibre	FEF	frontal eye field(s)
cGMP	cyclic guanosine monophosphate	fMRI	functional magnetic resonance
СМСТ	central motor conduction time		imaging
CMUA	continuous motor unit activity	FTD	fronto-temporal dementia
CNF	cuneiform nucleus	GABA	ν-aminobutvric acid
CNS	central nervous system	GAD	glutamic acid decarboxylase
CNTE	ciliary neurotrophic factor	GDNF	glial cell line derived neurotrophic
COMT	catecholamine- <i>O</i> -methyltransferase		factor
CoST	corticospinal tract	GoC	Golai cell
COX		GPa	alobus pallidus external segment
		CDi	globus pallidus, external segment
CPAF	continuous positive all way pressure	Gri C protoin	guanazina triphazphata hinding protain
CPG		G-protein	guanosine inpriosphale-binding protein
CPK		GrC	
CRH	corticotropnin-releasing normone	GIU	Golgi tendon organ
CRPS	complex regional pain syndrome	GWAS	genome-wide association study
CSF	cerebrospinal fluid	HIV	human immunodeficiency virus
СГ	computed tomography	HLA	histocompatibility locus antigen
CVA	cerebrovascular accident	НММ	heavy meromyosin
DA	dopamine	HMSN	hereditary motor sensory neuropathy

HPA	hypothalamic-pituitary-adrenal	OCD	obsessive compulsive disorder
HPLC	high-performance liquid	OD	ocular dominance
	chromatography	OHC	outer hair cell
5-HT	5-hydroxytryptamine (serotonin)	OSA	obstructive sleep apnoea
НТМ	high-threshold mechanoreceptor	PCA	posterior cerebral artery
Hz	hertz	PCR	polymerase chain reaction
IC	inferior colliculus	PET	positron emission tomography
ICA	internal carotid artery	nf	parallel fibre
ІНС	inner hair cell	PG	prostaglandin
	intralaminar nuclei (of the thalamus)		prostagiandin posterior inferior cerebellar artery
		DMC	promotor cortox
	interneurone		
		PININ	
IPAN IPC	intrinsic primary anerent neurones	PMP	peripheral myelin protein
IPS	induced pluripotent stem cell	PNS	peripheral hervous system
IPSP	inhibitory postsynaptic potential	PPC	posterior parietal cortex
JPS	joint position sense	PPN	pedunculopontine nucleus
LC	locus coeruleus	PPRF	paramedian pontine reticular
LEMS	Lambert–Eaton myasthenic syndrome		formation
LGMD	limb girdle muscular dystrophy	PuC	Purkinje cell
LGN	lateral geniculate nucleus of the	RA	rapidly adapting receptor
	thalamus	REM	rapid eye movement
LMM	light meromyosin	ReST	reticulospinal tract
LMN	lower motor neurone	riMLF	rostral interstitial nucleus of the medial
LTD	long-term depression		longitudinal fasciculus
LTP	long-term potentiation	RMS	rostral migratory stream
MAO	monoamine oxidase	RuST	rubrospinal tract
MAO	monoamine oxidase type A	SA	slowly adapting receptor
MAOR	monoamine oxidase type B	SCA	spinocerebellar ataxia
MAOI	monoamine oxidase inhibitor	SCT	spinocerebellar tract
MCA	middle cerebral artery	SHH	sonic bedgebog
menn	miniature end-plate potential	SIF	systemic lunus erythematosus
мен	medial geniculate puclous of the	SMA	supplementary motor area
MGIN	the lamue	SiMA	
MHC	Indiditius	Silli	
	major histocompatibility complex	SIIII	second somalosensory area
MLF	Misi Mastal Otata Examination	SNAP	Soluble INSF attachment protein
MMSE	Mini Mental State Examination	SNARE	SNAP receptor
MN	motor neurone	SNC	substantia nigra pars compacta
MND	motor neurone disease	SNP	senile neuritic plaque
MRA	magnetic resonance angiography	SNr	substantia nigra pars reticulata
MRC	Medical Research Council	SNS	sympathetic nervous system
MRI	magnetic resonance imaging	SOC	superior olivary complex
MRV	magnetic resonance venography	SP	substance P
MsI	primary motor cortex	SPECT	single photon emission computed
MUSK	muscle-specific kinase		tomography
NA	noradrenaline (norepinephrine)	SR	sarcoplasmic reticulum
nAChR	nicotinic acetylcholine receptor	SSRI	selective serotonin re-uptake inhibitor
NCS	nerve conduction studies	STN	subthalamic nucleus
NFT	neurofibrillary tangle	STT	spinothalamic tract
NGF	nerve growth factor	SUDEP	sudden unexpected death
NMDA	N-methyl-p-aspartate	SVZ	subventricular zone
NMDA-R	<i>N</i> -methyl-p-aspartate glutamate	SWS	slow-wave sleep
	receptor	т	Tesla
NM.J	neuromuscular junction	tDCS	transcranial direct-current stimulation
NO	nitric oxide	TENS	transcutaneous nerve stimulation
NS	neostriatum	TIA	transourandous nerve sumulation
	neusinalum pop atoroidal anti inflammatoru drug		tansieni ischdennic alläck
NOE	Notheling and an anti-initial initial of y and		
INOL	n-euryimaleimide sensitive lusion		
0.0	protein		turnour necrosis factor
OR	ollactory duid	IKH	inyrotrophin-releasing hormone

T-tubule	transverse tubule	VLPA	ventrolateral preoptic area
UMN	upper motor neurone	VOR	vestibulo-ocular reflex
UPR	unfolded protein response	VP	ventroposterior nucleus of the thalamus
UPS	ubiquitin-proteosome system	VPL	ventroposterior nucleus of the thalamus,
V1	primary visual cortex (Brodmann's		lateral part
	area 17)	VPM	ventroposterior nucleus of the thalamus,
VA-VL	ventroanterior-ventrolateral nuclei of the		medial part
	thalamus	VPT	vibration perception threshold
VCN	ventral cochlear nucleus	VSCT	ventral spinocerebellar tract
VEP	visual-evoked potential	VTA	ventral tegmental area
VeST	vestibulospinal tract	VZ	ventricular zone

Companion website

Anatomical and functional organization

Chapters

- 1 Development of the nervous system 2
- 2 Organization of the nervous system 4
- 3 Autonomic nervous system 6
- 4 Enteric nervous system 8
- 5 Meninges and cerebrospinal fluid 10
- 6 Blood supply to the central nervous system 12
- 7 Cranial nerves 14
- 8 Anatomy of the brainstem 16
- **9** Organization of the spinal cord 18
- 10 Organization of the cerebral cortex and thalamus 20
- 11 Hypothalamus 22