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Foreword

All of us have to make decisions on our actions, based on our expectations of the

future.

This holds true for individuals as well as for institutions such as companies, city

councils, state governments, and international agencies. But, as we all know, we

live in an ever increasingly complex world with all its uncertainties. Can we find

any guidelines how to plan and act? May be even enviously, we look at physics with

its high predictive power and technical realizations which allow us to send a rocket

to distant planets with high precision. Thus, it is certainly tempting to transfer

insights gained in physics to the treatment of social, socio-economic or economic

processes. The great predictive power of physics is due to its use of mathematics. In

my view, mathematics and its way to think will become more and more important

also in areas I just have mentioned.

An important step in transferring concepts from physics to sociology has been

done in 1972 by my late friend and colleague WolfgangWeidlich who could draw a

close analogy between the formation of public opinion and order–disorder transi-

tions in magnetism. The mathematical vehicle he used is the master equation that I

will discuss below. The author of this book, Günter Haag, was one of Weidlich’s
prominent students and co-workers. Weidlich and Haag published a monograph on

“Concepts and models of a quantitative sociology: The dynamics of interacting
populations” (1983). As I know from Weidlich, Haag contributed considerably

because of both his mathematical skills and his openness for practical applications.

This has led, in particular, to the Weidlich–Haag model and to important further

contributions e.g. to decision theory and regional planning by very concrete studies,

which are also part of this book. But why use the master equation? It provides us

with an excellent means to deal with uncertainties. In fact, it allows us to calculate

probabilities of future states and thus to study various scenarios of developments.

These developments result from purely deterministic relationships—so to speak,

stringent laws, and chance events, on which we can make only guesses. The master

equation combines these effects. In his book, Haag introduces the basic concepts of

probability theory in an easy to understand way, derives the master equations and
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presents numerous explicit examples of its application in physics, chemistry and

especially socio-economics. This book is an important contribution to Synergetics

that deals quite generally with the self-organized formation of structures in Nature

and Society. Haag’s book addresses many problems of great public interest, such as

migration and regional planning. I am sure that it will become an important reading

for students, professors and practitioners.

Stuttgart Hermann Haken

March 2017
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Preface

Since the last decades, the modelling potential of the Master equation has been

widely ignored, especially in the social sciences. Possibly, because the mathematics

looks so complicated and a general introduction to the framework of the Master

equation and its application was not available. Of course, one has to learn about the

solution formalisms and the theory of the Master equation to apply the framework.

The best way to do this is often to consider examples and applications of the Master

equation in different fields and to learn to apply by doing.

The Master equation provides a general framework for model building in

different disciplines like physics, chemistry and biology as examples in the natural

sciences and economy, sociology, psychology and geography in the social sciences.

During the last decades, a rather big set of mathematical solution methods for the

Master equation have been developed. It depends on the system under consideration

which solution method seems to be most appropriate to apply. Therefore, it is one

aim of this book not only to present different mathematical solution methods but

also to show their potential in case of practical examples.

The book is based on courses of mine in the field of interdisciplinary research

held at the University of Stuttgart during the last two decades. And, in fact, some

examples of the book are related to those lectures and courses. But some applica-

tions and research issues are based on consultancy work of STASA (Steinbeis

Applied Systems Analysis GmbH) which I founded in 1995.

To make the book easier to read, it is subdivided into three Parts. Part I

comprises Chaps. 1–4 and is dealing with some statistical fundamentals, the

derivation of the Master equation, the Fokker–Planck equation and other relevant

statistical issues. In addition, solution methods of the Master equation including

some rather new solution tools for a group of special problems are presented. Part I

is rather technical and can be used as a toolbox.

However, benchmarking of different solution methods is important to learn

about the advantages of the Master equation framework compared with other

modelling approaches.
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Therefore, in Part II and Part III of the book, we do not only apply the Master

equation framework to different case studies but also compare it with other solution

methods. A set of examples out of the field of physics, chemistry, population

dynamics, dynamic decision theory, opinion formation and urban and regional

dynamics are treated. However, the main focus of the examples is related to the

social sciences. The examples underline the interdisciplinary modelling potential of

the Master equation approach.

Of course, it is not necessary to follow in Part II and Part III one chapter after the

other. Each chapter can be understood independently of the others. But sometimes it

is helpful to compare applications out of different fields, Especially, since different

methods of solution are applied and compared.

Since the book is written for graduate students, researchers and professionals, it

was my aim to perform all mathematical steps which are relevant to come step by

step to the final solution. Furthermore, it was my intention to introduce the reader by

additional information to the different fields of application. The examples are

selected to explain how the Master equation framework works, but also to introduce

into different important interdisciplinary research topics of our scientific

community.

The target audience therefore consists of interdisciplinary interested scientists,

namely economists, physicists, biologists, geographers, sociologists, computer

scientists, mathematicians and psychologists who are interested in modelling,

simulations and mathematical methods and real-world applications.

Friendly relations with a number of colleagues from many universities all over

the world have influenced the different applications and, therefore, the structure of

the book.

A Nato Advanced Study Institute held in July 1982 in San Miniato, Italy, on

evolving geographical structures focused my interest on interdisciplinary research

of socio-economic space–time processes and patterns as well as real-world plan-

ning problems. Many international cooperation and resulting research projects were

mainly initiated and supported by conferences and workshops organized and

financed by Deutsche Physikalische Gesellschaft (DPG), the International Institute
for Applied Systems Analysis (IIASA), the Istituto Ricerche Economico-Sociali Del
Piemonte (IRES), the Institut National D’Etudes Démographiques (INED) and the

Centre for Regional Science Research Umea (CERUM) to mention a few. It was

not self-evident to find such a friendly acceptance and willingness to cooperate

among economists, geographers, sociologists and regional and transport scientists

with me as a physicist. This shows, however, that the field of interdisciplinary

research is open for new ideas. I wish to thank all of them.

My special thanks go to my friend and mentor Wolfgang Weidlich, who

unfortunately passed away far too early. His encouragement and many intensive

and fruitful discussions and common work that have taken place over many years

made the book possible.
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Last but not least, special thanks go to the Springer-Verlag, especially to Barbara

Feß for perfect managing of the publication task. My thanks also go to two

unknown referees for important and helpful remarks and valuable advice.

Stuttgart Günter Haag
May 2017
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The understanding of the evolution and the internal structure of our world is one

fundamental stimulus of human research. We strive to find out “Was die Welt im

Innersten zusammenhält” (Goethe, Faust I) and what will happen in our future or, as

Douglas Adams (1979) formulated in his famous book “The Ultimate Hitchhiker’s
Guide to the Galaxy” in a simple but realistic way, . . .where do we come from,

where do we go and where do we get the best Wiener Schnitzel?

But all attempts to understand more about issues such as the interactions of

particles and molecules, the complexity of our biological world of plants, cooper-

ation and competition of species, biological cells and the formation of organs in the

fields of physics, chemistry and biology or in the social sciences the dynamics of

economic and social conflicts, decision making, opinion formation and group

dynamics, the building of networks, of urban and regional systems, the traffic

dynamics and collective phenomena in the election of political parties—all these

issues are based on models.

Models can be formulated and built in different languages. In agriculture, there

exists a long tradition of farmers, applying models based on hundreds of years of

experience, condensed in country sayings and weather proverbs. Meteorology

formulates models for weather forecasting in the language of physics and mathe-

matics. Models are based on rules. Rules are based on experience and experiments.

The aim of modelling is always to develop a mathematical model as an image or

picture of reality, formulated in logical symbols instead of words and rules

representing the interactions of the symbols. This means we share the viewpoint

of John L. Casti (1992a, b) “The study of natural systems begins and ends with the

specification of observables describing such a system, and a characterization of the

manner in which these observables are linked”.

The model builder has always the choice what to observe and use as input and

what to ignore. In other words, to neglect things deemed irrelevant for the purpose
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of the model. The model should be kept as simple as possible, said Albert Einstein,

but not too simple. In other words, we are interested in the ways of model building.

The quality of a model, however, depends among others on the compliance

between model output and observed data. In so far, data issues are of crucial

importance for any modelling decision. The purpose is not only to detect and

exclude outliers, but also to determine the quality of the data, since the quality of

the data constrains the quality of the model output.

Measurement errors on one hand and uncertainties and fluctuations on the other

hand are intrinsic in all experiments and data. In many applications those effects are

considered as small perturbations and influence the trajectory of the system only in

a marginal way. If, however, the dynamics of the system is based on nonlinear

interactions, phase transitions may occur and the dynamics of the system depends

on or may even be dominated by fluctuations. Since fluctuations are always present,

it is natural to include them in our models right from the very beginning.

Since the fundamental work of Hermann Haken (1977, 1983), a comprehensive

theory, called Synergetics for the investigation of structural self-organizing space-

time features of interacting multi-component systems has been provided and has

demonstrated its huge modelling potential. Although the interactions and consti-

tuting units of the various systems under consideration seem to be completely

incomparable on the micro-level, a close analogy between them exists on the

macro-level. The interdisciplinary universality of Synergetics has its origin in the

unifying concepts of model building and classification of such phenomena.

In the natural sciences, the elementary units, such as atoms or molecules, and the

fundamental interactions, constituting the system are generally well known. In

principle, model assumptions can directly be verified or falsified by experiments,

and the reproducibility of experiments is fundamental and constitutive. Typically,

one and the same experiment has to be and can be repeated under identical

conditions in order to measure the value or the statistical distribution of values of

an observable with a definite precision.

Much research has been done investigating self-organizing phenomena in the

field of physics, chemistry and biology (Weidlich 1972; Schuster 1984; Klüver and
Klüver 2011; Mainzer 2007; Arthur 1989; Rosser 2011). In these research fields,

Synergetic concepts are mainly treated on the macro-level (Weidlich 2000).

The classical or quantum mechanical density matrix formalism provides a prac-

ticable framework how ensembles of interacting particles or molecules can be treated

mathematically. The huge field of cooperative phenomena provides a lot of interest-

ing examples, such as superconductivity and ferro-magnetism, to mention a few. The

statistics of the laser light, namely, the phase transition from a typical lamb with

stochastically emitting atoms to the high intensity laser light, characterised by

coherently emitting atoms, exemplifies a self-organizing process (Sornette 2006).

Several authors were inspired by the rich field of dynamic processes of biolog-

ical systems, especially by predator prey systems (see also Chap. 6). The search for

analogies between economic and biological evolution was utilised in particular by

Penrose (1952), Dosi (2005), Dosi et al. (1994), and Nelson and Winter (1982). The

role of technological progress as an explanation of contemporary economic growth

and modelling of such highly dynamic complex processes with uncertainties are
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important research topics up to now. Haag (1990a, b), Pyka (1999), and Erdmann

(1993) have utilized the Master equation framework to formulate a dynamic theory

of decision making and an evolutionary theory of innovation. The Schumpeter

Clock (Mensch et al. 1991) as a micro-macro model of economic change including

innovation, strategic investment, dynamic competition and short and long swings in

industrial transformation belongs to the same kind of modelling framework.

In the mid-1990s the labelling “Econophysics” (Mantegna and Stanley 1999) as

interdisciplinary research field was introduced by several physicists, applying

theories and methods originally developed in physics, in other disciplines like

economics. Especially those research problems including uncertainty or stochastic

processes and nonlinear dynamics were points of interest (Soros 1994).

A framework for modelling a wide class of socio-economic phenomena has been

given in the book of Weidlich and Haag (1983). In the following, we will basically

proceed along the line of argumentation given in this book incorporating the results

of more recent research projects related to the field named Sociodynamics. Since

the definition of all these concepts is the same as in Synergetics, one can therefore

consider Sociodynamics as that part of Synergetics which is devoted to social

systems (Weidlich 2006).

Coming back to the difference between natural and social sciences: in social

sciences the interactions between elementary units such as individuals, households,

firms are rather unknown and cannot be derived from first principles. Experimental

tests repeated under identical socio-economic conditions are mostly impossible.

The empirical data base related to a certain subject is often rather limited and the

comparability among data sets is often not guaranteed.

In view of these differences regarding modelling of socioeconomic processes

some critical remarks must be made at the beginning: firstly, no direct short-cut to

transfer concepts from natural to social sciences exists. Appropriate and character-

istic concepts have to be developed for the quantitative description of socio-

economic processes. Secondly, Synergectics, Sociodynamics and all other concepts

can be applied only under certain conditions to a specific class of genuine social

phenomena (Haag 1990a, b). If these conditions are fulfilled, however, a true

structural relationship between natural and social sciences and not just an accidental

analogy can be found. In so far, all ingredients incorporated into the models have to

come from the respective sciences to avoid physicalism, namely a direct use of

physical laws and a re-interpretation of those in terms of social phenomena (Müller
2012; Vega-Redondo 2007).

We have to take into account, that the evolution of any socioeconomic system is

not an autonomous process but the result of human decisions occurring over time as

a broad stream of concurrent, unrelated or interrelated, individual or corporate

choices. The underlying mechanisms behind the millions of decisions made every

day cannot be completely controlled and influenced by public authorities, at least

not in a direct way (Haag 1989). Therefore, planners in charge of such systems face

the difficult task of making decisions concerning a system which is largely subject

to external influences in the form of national policies and entangled economies on

the one hand, while the system is influenced by decisions of private firms, investors,
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and other individual or corporate agents on the other hand. Only limited instruments

of policy are available and at their disposal, and it is of crucial importance to know

in advance which of these are likely to be most effective (Fischer et al. 1988; Ball

2012).

In so far, the human society can be regarded as a multi-component system whose

members, the individuals, adopt different attitudes or kinds of behaviour (Weidlich

and Haag 1983). The causes of global changes in society are assumed to be

correlated with the decisions of agents to change their attitudes. A complex mixture

of fluctuating rational considerations, professional activities, emotional preferences

and motivations finally merge into one of relatively few well demarcated resultant

attitudes. Those attitudes may be related to education, politics, economic activities

and consumer habit, to mention a few. The attitude space is an open one, since

hitherto unknown attitudes may develop or attitudes till now considered important

may disappear.

The attitudes drive the decisions of individuals. Due to individual decision

processes caused by experience, emotions and thoughts based on the individual

network of personal relationships, transitions from one attitude to another one are

possible.

However, the detailed micro-level describing the complex interplay of rational

and emotional, conscious and subconscious, genetic and environmental influences

on the decisions of individuals is typically unknown. Hence, a probabilistic descrip-

tion instead of a deterministic account of decision behaviour is adequate.

In thermodynamics, “entropy” is a measure of the order state of matter. In a

closed system, the entropy is constantly increasing and reaches a maximum of

“disorder” for its equilibrium state. Therefore, the equilibrium state represents the

most probable configuration of the system. In closed physical systems there is a

tendency towards increasing disorder of the micro states of the system. The relation

to the probability of finding a macro state through certain micro states makes it

possible to transfer the entropy concept to different areas of social science (Wilson

1970). Thus the entropy concept has in principle a probabilistic background, related

to the statistical distribution of events in an uncertain situation. Numerous fields of

application of the entropy concept to the modelling of socioeconomic systems have

been examined, such as the distribution of commodity flows and migration flows,

shopping trip distribution or traffic flow assignment. The basic idea is always that

the distribution of the quantities of interest can be selected as the statistically most

likely distribution by means of the entropy principle, taking into account given

restrictions. With regard to the statistical foundation and analysis of spatial inter-

action models, we follow the fundamental theoretical work of Wilson (1970) and

Nijkamp and Reggiani (1998) in Sect. 8.2. However, some criticisms of the entropy

concept are also appropriate. The striking elegance of the method is limited by the

necessary proximity to thermodynamics. Thus, the existence of the entropy can

only be shown for equilibrium systems or systems that are close to equilibrium, that

is, as long as linear regression laws apply. The treatment of systems that are out of
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balance, and this is often the case with socioeconomic systems, is, however, rather

questionable.

The Master equation is suitable for the adequate statistical treatment of

non-equilibrium states. Therefore, the probability that a certain decision configu-

ration is realized will be introduced. The Master equation is the equation of motion

for this probability distribution, where transition rates between different decision

configurations are the essential constituents.

On the macro-level, in turn, the decision configuration describes the distribution

of attitudes of the socioeconomic system and may be considered as an appropriate

set of macro variables for the system under consideration. The modelling of such

transition rates in terms of variables will turn out to be the central part of the model

building in natural and social sciences, respectively.

The Master equation framework can be understood as a tool for model building,

where fluctuations or uncertainties are incorporated in a systematic way. The strong

model building potential of the Master equation is particularly suitable for complex

systems. In other words, we consider systems consisting of many interacting

sub-systems, where nonlinearities are inherent, and uncertainties or fluctuations

are involved and may dominate the dynamics.

The probability distribution over a given configuration contains the most

detailed information about the system. In particular, not only the mean values or

sometimes the most probable values can be calculated but also higher moments

such as the mean square deviations. Correspondingly, the amount of mathematics

required to solve the time-dependent Master equation may be considerable. How-

ever, in most practical cases, the full information contained in the configurational

probability distribution cannot be exploited due to a lack of sufficiently compre-

hensive empiric data. Therefore it makes sense to perform a transition to a less

exhaustive description in terms of quasi-closed equations of motion for mean

values and variances. These dynamic equations can be derived from the Master

equation in a straightforward manner. Hence, the Master equation provides the link

between the micro-level of changes of single configurations (transition rates) and

the macro-level of dynamic equations of motion for mean values and variances.

The non-linear form of the quasi-closed equations of motion expresses the

structure of self-consistence, which is prevalent in all socio-economic systems,

namely the cyclic coupling of causes and effects.

Through their cultural and economic activities, the individual members of the

society contribute to what we will call a collective field related to our society with

cultural, political, religious, social and economic components. This collective field

acts as an order parameter of the socio-economic system and characterizes the

current phase of our society. Moreover, the collective field strongly influences the

decision behaviour of the individuals, by orientating their activities. The feedback

between the actions of the individuals and the collective field—the cyclic coupling

between causes and effects—determines the temporal development of the system.

If the outcome of the Master equation, the probability distribution function, is

sharply peaked, a quasi-stable temporal development of the system characterized

by a certain predictability of its trajectories may occur. However, highly divergent
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alternative paths of evolution of the society are possible, if the control parameters of

the system attain certain critical values. Fluctuations on the micro-scale may decide

into which of the divergent paths the society will bifurcate. The actions of a few

influential persons or decision makers could be an example. In this case, the

probability distribution for the decision configuration has lost its simple

uni-modal structure (Haag 1989). Nearby the phase transition point, forecasting

the system development is rather difficult if not impossible.

On the macro-level phase transitions may lead to stable attractors, periodic

structures, limit cycles or even chaotic trajectories. An excellent introduction into

the field of chaotic systems is given by Devaney (2003) and Gollub and

Baker (1996).

In social sciences, the link between the micro-level of decisions of individuals

and the macro-level of the dynamics of aggregated variables is one main target of

research. However, this important link is not only of theoretical interest. It enables

us to match empirical data with the outcome of the theoretical model. Of course, it

is well known in this context, that it is difficult if not impossible, to give a direct and

unique causal interpretation of the socio-economic situation and the behaviour of

certain macro-variables of society in terms of individual motivations on the micro-

level (Coleman 1992). Instead, we expect that many combinations of such motiva-

tions will merge with different intensities in the individual decision processes and

will produce the observed macro-dynamics. This favours the introduction of aggre-

gated variables (e.g. attractiveness variables), which themselves depend on a set of

individual motivations.

The estimation of the parameters of the model, denoted as trend parameters, is a

further important research topic in social sciences. Depending on the research issue,

it is sometimes possible to introduce a cost function or penalty function, which can

be used to minimize the deviations between the empirical data and the model

output, taking into account various constraints. Different solution algorithms can

be developed and used to optimize the parameter estimation process. In Chap. 8, we

will deal with these problems.

The book is organized in three parts (see Fig. 1.1):

Part I contains the statistical fundamentals and the derivation of the Master

equation and the Fokker-Planck equation. Solution methods of the Master equation,

including some rather new tools for a group of special problems are presented. This

part is rather technical and can be used as a toolbox.

In Chap. 2, some statistical fundamentals needed for the understanding of the

modelling framework of the Master equation are presented. This includes the

definition of common statistical indicators and functions. This tool box is important

since stochastic processes are becoming increasingly important in many branches

of physics, chemistry, biology, population dynamics, economics and social sci-

ences. Despite the diversity of tasks and problems in these fields, there are common

principles and methods which are subject of this book.

Chapter 3 is concerned with the general understanding of the fundamental aspects

of the Master equation. Following the introduction of some concepts of probability

theory, the Markov assumption is introduced and the Chapman-Kolmogorov
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equation for conditional probabilities is derived. The Chapman-Kolmogorov equa-

tion serves as the starting point for the derivation of the Master equation. The

derivation of general properties of the Master equation helps to understand the

broad field of possible applications. The derivation of equations of motion for

mean values and variances on both the stochastic and the quasi-deterministic

level, using the method of shift operators completes this chapter.

After the derivation of the Master equation, it is logical to introduce and discuss

different methods of its solution in Chap. 4. One obvious and frequently applied

method consists in the approximate transformation of the discrete Master equation

in a partial differential equation, namely the Fokker-Planck equation. The not so

well known T-factor method is very efficient in the transformation of the Master

equation into difference equations of reduced order and in continued fractions

which are easier to handle. This method also provides a very elegant way to derive

exact and approximate stationary solutions of the Master equation, even when

detailed balance is not fulfilled. A general graph-theoretical method for the station-

ary solution developed by Kirchhoff for electrical networks is also presented. In

case of detailed balance an exact solution method for the stationary probability

distribution completes the tool box. The chapter closes with exact and approximate

solution methods for one-dimensional Master equations with two particle jumps.

Part II starts with applications of the Master equation framework in the natural

sciences. However, benchmarking of different solution methods is important in

order to compare the Master equation framework with other modelling approaches.

Therefore, we do not only apply the Master equation framework to different case

studies, but also compare it with other solution methods.

Introduction
Chapter 1

Statistical Fundamentals
Chapter 2

Derivation of the Master 
Equation, Chapter 3

Solution Methods of the 
Master Eq., Chapter 4

Chemical Reactions
Chapter 5

Dynamic Decision Theory
Chapter 6

Spin - Dynamics
Chapter 5

Statistics of the Laser
Chapter 5

Population Dynamics
Chapter 7

Migration
Chapter 8

Urban Dynamics and 
Transport, Chapter 9

Statistical Toolbox
Part I

Applications 
Natural Sciences

Part II

Applications 
Social Sciences

Part III

Fig. 1.1 Organization of the book
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In Chap. 5, the derived solution methods of Chap. 4 will be applied to some

important applications out of the field of physics and chemistry in order to demon-

strate the high potential of the Master equation approach in the field of natural

sciences. Chemical reactions are typical examples of discrete dynamic processes

obeying the mass action law. Since the various chemical reactions are considered

independent of each other, a multinomial Poisson distribution is usually expected.

However, in case of nonlinear chemical reactions we demonstrate that although the

transition rates obey combinatorial mass-action law kinetics, a more complicated

statistical distribution is obtained.

The investigation of the phase transition dynamics of spin-systems is used as an

example in statistical non-equilibrium physics. The appearance of a ferromagnetic

order from an initially disordered state, in other words the occurrence of a phase

transition, in its conceptual simplicity is one reason for the interest in this widely

applicable model type. The calculation of escape rates due to very large fluctuations

will be investigated as well.

The derivation of the photon statistics of the Laserlight is selected as a typical

quantummechanical example out of the field of physics. The photon statistics of the

Laser shows a typical phase transition at the so-called Laser threshold. The atoms of

the Laser active material seem to be slaved: all atoms behave in a coordinated way

and emit wave tracks in phase. It is interesting to apply the already introduced

methods to this example and to learn more about how complicated discrete differ-

ence equations may be handled. Parts of this chapter are rather theoretical and may

be skipped in a first reading.

Part III is dealing with modelling concepts in the social sciences. In Chap. 6, we

derive a generalized dynamic choice model for interacting individuals using the

Master equation approach. The famous multinomial-logit decision model is

obtained when the system is in an equilibrium state and individuals are indepen-

dent. The example shows that depending on the initial conditions of the system of

agents (decision makers), and the strength of their interaction, quite different

decision configurations may be obtained. Previous experience may also account

for the decisions of agents, in other words decisions may depend on history. In this

case the Markov assumption does no longer hold, and the Master equation fails.

However, a simple trick seems to help: we fragment the whole time frame into

small time sequences. The single time sequences are chosen so small that the

Master equation holds within each time sequence, but not for the whole process.

This provides a model of nested decision processes with memory. The emergence

of conventions may be used as an example to underline the applicability of this

method.

In Chap. 7, we deal with the issue of population growth. This is intended to point

out ideas and thoughts behind the construction of models in population biology. I

belief that this will help the reader to understand better the theoretical consider-

ations and the outcome of the discrete Master equation approach compared with

classical considerations in population dynamics based on assumed continuous

population development. It is shown, that only if we take into account the discrete

structure of the population, the complicated dynamics of the dying-out process can
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