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Supervisor’s Foreword

The remarkable efficiency and reliability of photosynthetic light reactions has been
studied for many decades, giving us important insight into how sustainable solar
energy transduction is directed by the molecular optoelectronics of biological
nanostructures [1]. However, the recent and unexpected observation of robust
quantum dynamics in photosynthetic complexes has challenged our fundamental
understanding of biological photophysics, raising profound debates, and much
interdisciplinary research, on the possible roles of quantum mechanics in biological
and organic systems [2]. Understanding how such ephemeral and non-classical
processes can impact the efficiency of organic light harvesting materials not only
sheds new light on the marvels and intricacy of functional biological nanostruc-
tures; it could also provide a route towards new quantum design principles for
artificial energy technologies [3]. At the same time, these processes challenge us to
develop the theoretical tools capable of describing the complexity of the novel,
real-time, non-equilibrium dynamics whose exploitation may prove to be just as
important as basic electronic structure for the next generation of efficient energy
materials.

Dr. Morgan’s thesis is an important contribution to this exciting new field and
focuses on the theoretical prediction and analysis of the sophisticated ultrafast
optical spectra that probe the crucial first few picoseconds of quantum light har-
vesting. By studying the novel photophysics of thin films of organic pentacene,
Dr. Morgan’s doctoral work provides new insight into the process of singlet fission,
a quantum mechanical effect that allows a single photon to be “doubled” into two
electron-hole pairs, potentially boosting the efficiency of organic photovoltaics.
Simulating the ultrafast nonlinear spectra of pentacene films, Dr. Morgan identified
the experimental signatures of an entangled intermediate state, normally “dark” to
standard optical probes, that leads to fission on sub-picosecond timescales [4].
Proving that this novel detection arises from quantum vibrational effects, this thesis
also reports a collaboratively developed wavelet method to identify similar vibronic
dynamics in photosynthetic reaction centres. This was then applied to real spec-
troscopic data to test the robustness of recently proposed quantum transport
mechanisms in which vibronic effects generate coherent wave-like dynamics, even
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in the presence of the aggressive fluctuation “noise” in the surrounding protein
environment [5].

Such “noisy” interactions are the fundamental origin of energy dissipation and
the—normally—rapid degradation of quantum effects in nanostructured systems.
Elucidating the microscopic physics of protein vibrations is therefore of vital
importance in the quest to understand how quantum effects can be stabilised and
harnessed in molecular devices. The final part of this thesis looks at the dynamics of
vibrational energy in real protein structures, using molecular dynamics and
coarse-grained models to understand the role of nonlinear vibrational modes that,
inter alia, can transfer vibrational energy over extremely long distances and/or even
harvest it from their surroundings when excited out of equilibrium [6]. The
structure-function relations underlying these rich protein dynamics have many
potential applications for light harvesting functions, as well as an impact on several
medically relevant, but still not well understood, biological processes such as
allostery.

It is an immense pleasure to write this foreword for Dr. Morgan’s thesis, which
is a body of work that testifies, on every page, to her outstanding creativity and
intellectual bravery. I am sure that every one of Dr. Morgan’s many experimental
and theoretical collaborators will be as inspired, delighted and proud as I am that
this work has been recognised for this prestigious Springer Thesis Prize, and I look
forward with great anticipation to seeing how the many deeply mined gems
of theoretical insight contained in this thesis will inspire further work through the
publication of this monograph.

Cambridge, UK Dr. Alex W. Chin
May 2017
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Abstract

Recently, evidence has emerged that quantum coherences can be sustained in
photosynthetic complexes over much longer timescales than initially expected. This
evidence comes predominantly from a new technique called 2D electronic spec-
troscopy (2DES), which provides unprecedented access to the ultrafast quantum
and vibrational dynamics of organic and biological systems. Intriguing suggestions
have been made that these quantum coherences might be sustained or even
regenerated by molecular vibrations; however, a full understanding of their origins
has proved elusive. This is due to the exceptional difficulty of interpreting 2DES
experiments, combined with the complexity of the underlying biological systems.

One approach to tackling these challenges is to study simpler organic molecules
first, which nonetheless exhibit fascinating ultrafast photophysics and have useful
applications for photovoltaics. Therefore, here, I begin by presenting an extensive
theoretical analysis of 2DES data for the organic material pentacene, which
undergoes a novel process known as singlet fission. This work elucidates “dark”
entangled states in pentacene and the importance of vibrations during fission.

Time-frequency analysis offers an opportunity to extract further information
from oscillatory 2DES signals. I discuss the difficulties surrounding using
time-frequency analysis to distinguish non-trivial regeneration of electronic
coherences from interferences between vibrational modes. I use 2DES data from
photosystem II as an example and propose that theoretical simulations are essential
to unravel these complicated effects.

Ultimately, microscopic analysis of vibrations is required to fully understand the
complex relationship between electronic and vibrational dynamics in organic and
biological systems. This analysis may be particularly important for nonlinear col-
lective protein modes. Therefore, in the final chapter, I use the nonlinear network
model and molecular dynamics simulations to study vibrations in the Fenna–
Matthews–Olson complex (FMO). This work suggests that localised, nonlinear
discrete breather modes might be formed in biologically relevant parts of FMO and
that the optical properties of FMO could be altered by protein vibrations. Overall,
this approach represents a promising avenue for further research.
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