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Preface

One of the most common problems in mathematics is the solution of a nonlinear equation
F (x) = 0. This problem is not always easy to solve, since we cannot frequently obtain an
exact solution to the previous equation, so that we usually look for a numerical approximation
to a solution. In this case, we use approximation methods, which are generally iterative. The
best known iteration to solve nonlinear equations is undoubtedly Newton’s method:

xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0, with x0 given.

The geometric interpretation of Newton’s method is well known if F is a real function.
In such a case, xn+1 is the point where the tangential line y − F (xn) = F ′(xn)(x − xn) of the
function F (x) intersects the x-axis at the point (xn, F (xn)). The geometric interpretation of
the complex Newton method, F : C −→ C, is given by Yau and Ben-Israel in [84]. In the
general case, F (x) is approximated at point xn as F (x) ≈ Ln(x) = F (xn) + F ′(xn)(x − xn)
and the zero of Ln(x) = 0 defines the new approximation xn+1.

In spite of its simple principle [83], depending on the domain of F , Newton’s method
is applicable to various types of equations such as systems of nonlinear algebraic equations
including matrix eigenvalue problems, differential equations, integral equations, etc., and even
to random operator equations [8]. Hence, the method fascinates many researchers. However,
as it is well known, a disadvantage of the method is that the initial approximation x0 must
be chosen sufficiently close to a true solution in order to guarantee its convergence. Finding
a criterion for choosing x0 is quite difficult. In this text we try to facilitate the choice of x0
under conditions as general as possible.

The long history of Newton’s method has already been well studied, see, e.g., N. Koller-
strom [57] or T. J. Ypma [85]. According to these articles, in [19], P. Deuflhard points out
the facts seem to be agreed upon among the experts. The interested reader may find more
historical details in the book by H. H. Goldstine [35].

In particular, as a summary, we rewrite some notes and remarks given by Ortega and
Rheinboldt in [64], which is a good survey until 1970. Point-of-attraction results date back
to the 19th century. For one-dimensional equations, the quadratic convergence of Newton’s
method was established by Cauchy (1829). For equations in R

n, a point-of-attraction theorem
was given by Runge (1899), who also stressed the quadratic convergence. Independently, a
result for n = 2 was given by Blutel (1910). For convergence results which do not assume the
existence of a solution, Fine (1916) appears to have been the first to prove the convergence of
Newton’s method in n dimensions, where the derivative F ′(x) is assumed to be invertible on
some suitable ball. In the same year, Bennet (1916) formulated related results for operators on
infinite dimensional spaces but for the proofs he referred to Fine. The article of Fine appears
to have been overlooked, and twenty years later Ostrowski (1936) presented, independently,
new convergence theorems and also discussed error estimates. Concurrently, Willers (1938)
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also proved similar convergence conditions. Although both these authors observed that their
results extend immediately to the case of a general n, they themselves presented them only
for n = 2 and n = 3, respectively. Bussmann (1940), in an unpublished dissertation, proved
these results and some extensions for general n; Bussmann’s theorems are quoted by Rehbock
(1942).

Later, the Russian mathematician L. V. Kantorovich gave his now famous convergence
results for Newton’s method in Banach spaces. In 1948, Kantorovich published the seminal
paper [47], where he suggested an extension of Newton’s method to functional spaces and
established a semilocal convergence result for Newton’s method in a Banach space, which is
now called Kantorovich’s theorem or, more specifically, the Newton-Kantorovich theorem, as
we will call from now on. The result was also included in the survey paper [48]. Further
developments of the method can be found in [49, 50, 51, 52, 53] and in the monographs [54, 55].

The main contribution of Kantorovich is the formulation of the problem in a general
setting, the spaces of Banach, that uses appropriate techniques of functional analysis. This
event cannot be overestimated, since Newton’s method became a powerful tool in numerical
analysis as well as in pure mathematics. The approach of Kantorovich guarantees the appli-
cation of Newton’s method to solve a large variety of functional equations: nonlinear integral
equations, ordinary and partial differential equations, variational problems, etc. Various ex-
amples of such applications are presented in [54, 55]. For a list of relevant publications where
Newton’s method is applied to different functional equations, see [64] and the references cited
there.

The Kantorovich result is a masterpiece not only by its sheer importance but by the
original and powerful proof technique. The results of Kantorovich and his school initi-
ated some very intensive research on the Newton and related methods. A great number
of variants and extensions of his results emerged in the literature. Basic results on Newton’s
method and numerous references may be found in the books of Ostrowski [65] and Ortega and
Rheinboldt [64]. More recent bibliography is available in the books of Rheinboldt [74] and
Deulfhard [18], survey paper [85] and the special web site devoted to Newton’s method [59].
A revision of the most important theoretical results on Newton’s method concerning the
convergence properties, the error estimates, the numerical stability and the computational
complexity of the algorithm may be found in [33].

On the other hand, three types of studies can be done when we are interested in proving
the convergence of the sequence {xn} given by Newton’s method: local, semilocal and global.
First, the local study of the convergence is based on demanding conditions to the solution x∗,
from certain conditions on the operator F , and provide the so-called ball of convergence ([16])
of the sequence {xn}, that shows the accessibility to x∗ from the initial approximation x0
belonging to the ball. Second, the semilocal study of the convergence is based on demanding
conditions to the initial approximation x0, from certain conditions on the operator F , and
provide the so-called domain of parameters ([30]) corresponding to the conditions required
to the initial approximation that guarantee the convergence of the sequence {xn} to the
solution x∗. Third, the global study of the convergence guarantees, from certain conditions
on the operator F , the convergence of the sequence {xn} to the solution x∗ in a domain and
independently of the initial approximation x0. The three studies demand conditions on the
operator F . However, requirement of conditions to the solution, to the initial approximation,
or to none of these, determines the different types of studies.

The local study of the convergence has the disadvantage of being able to guarantee that the
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solution, that is unknown, can satisfy certain conditions. In general, the global study of the
convergence is very specific as regards the type of operators to consider, as a consequence of
absence of conditions on the initial approximation and on the solution. There is a plethora of
studies on the weakness and/or extension of the hypothesis made on the underlying operators.
In this textbook, we focus our attention on the analysis of the semilocal convergence of
Newton’s method.

This textbook is written for researchers interested in the theory of Newton’s method in
Banach spaces. Each chapter contains several theoretical results and interesting applications
in the solution of nonlinear integral and differential equations.

Chapter 1 presents an analysis of Kantorovich’s theory for Newton’s method where the
original theory is given along with the best-known variant, which is due to Ortega and uses
the method of majorizing sequences. In addition, we include a new approach by introducing
a new concept of majorant function which is different from that defined by Kantorovich. In
all the results presented, we suppose that the second derivative of the operator involved is
bounded in norm in the domain where the operator is defined.

In Chapter 2, we analyse the semilocal convergence of Newton’s method under different
modifications of the condition on the second derivative of the operator involved. We begin
by presenting the result of Huang where the second derivative of the operator involved is
Lipschitz continuous in the domain where the operator is defined. We pay attention to the
proof given by Huang and see that the condition on the second derivative can be relaxed to a
center Lipschitz condition to establish the semilocal convergence of Newton’s method. This
observation leads us to propose milder conditions on the second derivative of the operator
involved. So, we first prove the semilocal convergence of Newton’s method under a center
ω-Lipschitz condition for the second derivative of the operator involved. Next, the condition
of the second derivative of the operator required by Kantorovich is generalized to a condition
where the second derivative is ω-bounded in the domain where the operator is defined. This
generalization is very interesting because it avoids having to look for a domain where the
second derivative of the operator is bounded and contains a solution of the equation to solve,
which is an important problem that presents Kantorovich’s theory.

The ideas developed in Chapter 2 are extended to higher order derivatives of the operator
involved in Chapter 3, where new starting points for Newton’s method are located despite
the new conditions imposed to the operator. Three sections are included where the semilocal
convergence of Newton’s method is analysed for polynomial operators, operators with ω-
bounded k-th-derivative and operators with ω-Lipschitz k-th-derivative.

Chapter 4 examines the typical situation in which conditions on the first derivative of the
operator are only required, instead of conditions on higher order derivatives, as a consequence
of the fact that this is the only derivative of the operator involved appearing in the algorithm
of the method. We analyse in detail Ortega’s variant of the original Kantorovich’s result from
the method of majorizing sequences and pay special attention to the fact that, if we want to
relax the conditions imposed to the first derivative of the operator, we need to apply another
distinct technique to that of the method of majorizing sequences presented in Chapter 1
to guarantee the semilocal convergence of Newton’s method. In particular, we propose a
system of recurrence relations. Techniques based on recurrence relations were already used
by Kantorovich in his first proofs of the semilocal convergence of Newton’s method. We
then analyse two cases: the cases in which the first derivative of the operator involved is
ω-Lipschitz continuous and center ω-Lipschitz continuous in the domain where the operator
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involved is defined.
We have included a numerical example in each situation analysed theoretically to so

justify its analysis. In particular, in Chapter 1, we present two types of problems that
are used throughout the following chapters: nonlinear integral equations of Hammerstein
type and nonlinear boundary value problems. We analyse these problems some times on a
continuous form and others in a discrete way.

We emphasize the fact that we have tried to facilitate the reading of the textbook from a
detailed development of the proofs of the results given. We also want to point out that the
textbook presents some of our investigations into Newton’s method which we have carried
out over many years, including an abundant and specialized bibliography.

We ended up saying that the main aim of this textbook is to develop, expand and update
the theory introduced by Kantorovich for Newton’s method under different conditions on
the operator involved, but always with the clear objective to improve the applicability of the
method based on the location of new starting points.

Logroño, La Rioja J. A. Ezquerro
June 2016 M. A. Hernández-Verón
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Chapter 1

The classic theory of Kantorovich

According to Polyak [66], Kantorovich proved in 1939 the semilocal convergence of Newton’s
method [46] on the basis of the contraction mapping principle of Banach, and later improved
to semilocal quadratic convergence in 1948/49 (the Newton-Kantorovich theorem) [47, 49].
Also in 1949, Mysovskikh [61] gave a much simpler independent proof of semilocal quadratic
convergence under slightly different theoretical assumptions, which are exploited in modern
Newton algorithms, see [18].

Kantorovich gave two basically different proofs of the Newton-Kantorovich theorem using
recurrence relations or majorant functions. The original proof given by Kantorovich uses
recurrence relations [47]. A nice treatment of this theorem using recurrence relations can be
found in [72]. In [50] Kantorovich gave a proof based on the concept of a majorant function.

An important feature of the Newton-Kantorovich theorem, or related results, is that it
does not assume the existence of a solution, so that the theorem is not only a convergence re-
sult for Newton’s method, but simultaneously a theorem of existence of solution for nonlinear
equations in Banach spaces. In addition, the theoretical significance of Newton’s method can
be used to draw conclusions about the existence and uniqueness of a solution and about the
region in which it is located, without finding the solution itself and this is sometimes more
important than the actual knowledge of the solution (see [55]). The results of this section
follows Kantorovich’s paper [53].

After Kantorovich establishes the Newton-Kantorovich theorem, a large number of results
has been published concerning convergence and error bounds for Newton’s method under the
assumptions of the Newton-Kantorovich theorem or under closely related ones. Among later
convergence theorems, the ones due to Ortega and Rheinboldt [64] are worth mentioning.
Also, there exist numerous versions of the Newton-Kantorovich theorem that differ in as-
sumptions and results, and it would be impossible to list all relevant publications here. We
then only mention some versions that may find in [11, 54, 55, 58, 62, 65].

Throughout the textbook we denote B(x, �) = {y ∈ X; ‖y − x‖ ≤ �} and B(x, �) = {y ∈
X; ‖y − x‖ < �}.

1.1 The Newton-Kantorovich theorem
Newton’s method has the form

xn+1 = NF (xn) = xn − [F ′(xn)]−1F (xn), n ≥ 0, with x0 given, (1.1)

© Springer International Publishing AG 2017   1 
J.A. Ezquerro Fernández, M.Á. Hernández Verón, Newton’s Method: an Updated Approach  
of Kantorovich’s Theory, Frontiers in Mathematics, DOI 10.1007/978-3-319-55976-6_1 



2 CHAPTER 1. THE CLASSIC THEORY OF KANTOROVICH

for the solution of the nonlinear equation F (x) = 0, where F : X −→ Y , X and Y are
Banach spaces and F is twice continuously Fréchet differentiable. Below, we present some
results given by Kantorovich on the convergence of Newton’s method.

1.1.1 Recurrence relations of Kantorovich
Kantorovich established a semilocal convergence theorem for Newton’s method in a Banach
space in 1948 under the following conditions for the operator F and the starting point x0 [47]:

(W1) For x0 ∈ X, there exists Γ0 = [F ′(x0)]−1 ∈ L(Y, X), where L(Y, X) is the
set of bounded linear operators from Y to X, such that ‖Γ0‖ ≤ β,

(W2) ‖Γ0F (x0)‖ ≤ η,
(W3) there exists R > 0 such that ‖F ′′(x)‖ ≤ M , for x ∈ B(x0, R),
(W4) h = Mβη ≤ 1

2 .

Theorem 1.1. (The Newton-Kantorovich theorem) Let F : Ω ⊆ X −→ Y be a twice
continuously Fréchet differentiable operator defined on a non-empty open convex domain Ω
of a Banach space X with values in a Banach space Y . Suppose that conditions (W1)-(W2)-
(W3)-(W4) are satisfied and B(x0, ρ∗) ⊂ B(x0, R) with ρ∗ = 1−√

1−2h
h

η. Then, Newton’s
sequence defined in (1.1) and starting at x0 converges to a solution x∗ of the equation F (x) = 0
and the solution x∗ and the iterates xn belong to B(x0, ρ∗), for all n ≥ 0 Moreover, if h < 1

2 ,
the solution x∗ is unique in B(x0, ρ∗∗) ∩ B(x0, R), where ρ∗∗ = 1+

√
1−2h
h

η, and, if h = 1
2 , x∗

is unique in B(x0, ρ∗). Furthermore, we have the following error estimates:

‖x∗ − xn‖ ≤ 1
2n−1 (2h)2n−1η, n = 0, 1, 2, . . . (1.2)

Proof . First of all, we define β0 = β, η0 = η and h0 = h. After that, we observe that
x1 is well-defined, since the operator Γ0 = [F ′(x0)]−1 exists by the hypotheses. Moreover,
‖x1 − x0‖ ≤ η0, so that x1 ∈ B(x0, ρ∗).

Next, taking into account that

‖I − Γ0F
′(x1)‖ ≤ ‖Γ0‖‖F ′(x0) − F ′(x1)‖

≤ β0

∥∥∥∥∫ 1

0
F ′′(x0 + τ(x1 − x0)) dτ(x1 − x0)

∥∥∥∥
≤ Mβ0‖x1 − x0‖
≤ Mβ0η0

= h0

< 1,

it follows, by the Banach lemma on invertible operators [72], that the operator Γ1 = [F ′(x1)]−1

exists and
‖Γ1‖ ≤ β0

1 − h0
= β1.

Hence, x2 is well-defined.



1.1. THE NEWTON-KANTOROVICH THEOREM 3

In addition, as

F (x1) = F (x0) + F ′(x0)(x1 − x0) +
∫ x1

x0
F ′′(z)(x1 − z) dz

=
∫ x1

x0
F ′′(z)(x1 − z) dz

=
∫ 1

0
F ′′(x0 + τ(x1 − x0))(x1 − x0)2(1 − τ) dτ,

we have

‖F (x1)‖ ≤
∫ 1

0
‖F ′′(x0 + τ(x1 − x0))‖ (1 − τ) dτ‖x1 − x0‖2

≤ M

2 ‖x1 − x0‖2

≤ M

2 η2
0

and

‖x2 − x1‖ = ‖Γ1F (x1)‖ ≤ ‖Γ1‖‖F (x1)‖ ≤ β0

1 − h0

M

2 η2
0 = h0η0

2(1 − h0)
= η1 ≤ h0η0.

Moreover,

h1 = Mβ1η1 = h2
0

2(1 − h0)2 ≤ 2h2
0 ≤ 1

2 .

Therefore, the hypotheses of the Newton-Kantorovich theorem are also satisfied when
we substitute β1, η1 and h1 for β0, η0 and h0, respectively. This allows us to continue the
successive determination of the elements xn and the numbers connected with them, βn, ηn

and hn, so that if we assume

‖Γn‖ ≤ βn = βn−1

1 − hn−1
, (1.3)

‖xn+1 − xn‖ ≤ M

2 βnη2
n−1 = hn−1ηn−1

2(1 − hn−1)
= ηn ≤ hn−1ηn−1 ≤ 1

2n
(2h0)2n−1η0, (1.4)

hn = Mβnηn = h2
n−1

2(1 − hn−1)2 ≤ 2h2
n−1 ≤ 1

2 , (1.5)

where the operator Γn = [F ′(xn)]−1 exists, it follows the following.
As

‖I − ΓnF ′(xn+1)‖ ≤ ‖Γn‖‖F ′(xn) − F ′(xn+1)‖

≤ βn

∥∥∥∥∫ 1

0
F ′′(xn + τ(xn+1 − xn)) dτ(xn+1 − xn)

∥∥∥∥
≤ Mβn‖xn+1 − xn‖
≤ Mβnηn

= hn

< 1,
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we have, by the Banach lemma on invertible operators, that the operator Γn+1 exists and

‖Γn+1‖ ≤ βn

1 − hn

= βn+1.

Hence, xn+2 is well-defined.
Besides, as

F (xn+1) = F (xn) + F ′(xn)(xn+1 − xn) +
∫ xn+1

xn

F ′′(z)(xn+1 − z) dz

=
∫ xn+1

xn

F ′′(z)(xn+1 − z) dz

=
∫ 1

0
F ′′(xn + τ(xn+1 − xn))(xn+1 − xn)2(1 − τ) dτ

we have

‖F (xn+1)‖ ≤
∫ 1

0
‖F ′′(xn + τ(xn+1 − xn))‖ (1 − τ) dτ‖xn+1 − xn‖2

≤ M

2 ‖xn+1 − xn‖2

≤ M

2 η2
n

and

‖xn+2 − xn+1‖ = ‖Γn+1F (xn+1)‖ ≤ ‖Γn+1‖‖F (xn+1)‖ ≤ M

2 βn+1η
2
n = hnηn

2(1 − hn) = ηn+1.

Moreover, since hn ≤ 1
2 , we also have

ηn+1 ≤ hnηn ≤ · · · ≤ hnhn−1 · · · h0η0 ≤ 1
2n+1 (2h0)2n+1−1η0

and
hn+1 = Mβn+1ηn+1 = h2

n

2(1 − hn)2 ≤ 2h2
n ≤ · · · ≤ 1

2(2h0)2n+1 ≤ 1
2 .

As a consequence, (1.3), (1.4) and (1.5) are true for all positive integers n by mathematical
induction.

On the other hand, if we note the identity
ηnϕ(hn) − ηn+1ϕ(hn+1) = ηn,

where ϕ(t) = 1−√
1−2t
t

, which is verificable directly, since

ηn+1ϕ(hn+1) = ηn+1
1 − √

1 − 2hn+1

hn+1
= ηn

1 − hn − √
1 − 2hn

hn

= ηnϕ(hn) − ηn,

it follows, by (1.5), for m ≥ 1 and n ≥ 1, that
‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + ‖xn+m−1 − xn+m−2‖ + · · · + ‖xn+1 − xn‖

≤ ηn+m−1 + ηn+m−2 + · · · + ηn

= ηnϕ(hn) − ηn+mϕ(hn+m)
≤ ηnϕ(hn) (1.6)
≤ 2ηn

≤ 1
2n−1 (2h0)2n−1η0, (1.7)
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so that {xn} is a Cauchy sequence and then convergent. In addition, passing to the limit in
(1.7) as m → +∞, we obtain (1.2).

If we now do n = 0 in (1.6), then

‖xm − x0‖ ≤ η0ϕ(h0) = ρ∗,

so that xm ∈ B(x0, ρ∗), for all m ∈ N. Moreover, limn xn = x∗ ∈ B(x0, ρ∗). Furthermore, x∗

is a solution of F (x) = 0, since ‖ΓnF (xn)‖ = ‖xn+1 − xn‖ → 0, when n → +∞, ‖F (xn)‖ ≤
‖F ′(xn)‖‖xn+1 − xn‖, the sequence {‖F ′(xn)‖} is bounded, since

‖F ′(xn)‖ ≤ ‖F ′(x0)‖ + ‖F ′(xn) − F ′(x0)‖
≤ ‖F ′(x0)‖ + M‖xn − x0‖
≤ ‖F ′(x0)‖ + Mη0f(h0),

and ‖F (xn)‖ → 0 as n → +∞. Therefore, by the continuity of F in B(x0, ρ∗), we obtain
F (x∗) = 0.

Finally, we prove the uniqueness of the solution x∗. We first analyse the case h < 1
2 .

Suppose that there exists a solution y∗ ∈ B(x0, ρ∗∗) ∩ B(x0, R) of F (x) = 0 and such that
y∗ = x∗. Then, we have ‖y∗ − x0‖ ≤ θρ∗∗ = θη0ψ(h0), where θ ∈ (0, 1) and ψ(t) = 1+

√
1−2t
t

.
Next, we suppose ‖y∗ − xj‖ ≤ θ2j

ηj ψ(hj), for j = 0, 1 . . . , n, and prove ‖y∗ − xn+1‖ ≤
θ2n+1

ηn+1 ψ(hn+1).
Indeed, from F (y∗) = 0 and xn+1 = xn − ΓnF (xn), it follows

y∗ − xn+1 = y∗ − xn + ΓnF (xn)
= −Γn (F (y∗) − F (xn) − F ′(xn)(y∗ − xn))

= −Γn

∫ y∗

xn

F ′′(z)(y∗ − z) dz

= −Γn

∫ 1

0
F ′′(xn + τ(y∗ − xn))(y∗ − xn)2(1 − τ) dτ (1.8)

and

‖y∗ − xn+1‖ ≤ M

2 ‖Γn‖‖y∗ − xn‖2

≤ M

2 βn

(
θ2n

ηn ψ(hn)
)2

= θ2n+1
ηn+1 ψ(hn+1).

Then, by mathematical induction, we have proved that ‖y∗ − xj‖ ≤ θ2j
ηj ψ(hj) are true for

all positive integers j.
Now, as

ηn ψ(hn) = ηn
1 +

√
1 − 2hn

hn

≤ 2ηn

hn

= 2
Mβn

and β0 < βn, for n ≥ 0, we have

‖y∗ − xn‖ ≤ θ2n 2
Mβn

< θ2n 2
Mβ0
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and therefore ‖y∗ − xn‖ → 0 as n → +∞, so that y∗ = x∗, since x∗ = limn xn.
For the case h = 1

2 , we suppose that y∗ is a solution of F (x) = 0 in B(x0, ρ∗) and such
that y∗ = x∗. Moreover, ‖y∗ − x0‖ ≤ ρ∗ = 2η0. We now suppose ‖y∗ − xj‖ ≤ η0

2j−1 , for
j = 0, 1 . . . , n, and prove ‖y∗ − xn+1‖ ≤ η0

2n . Indeed, from (1.8), it follows

‖y∗ − xn+1‖ ≤ M

2 ‖Γn‖‖y∗ − xn‖2 ≤ M

2 βn(2ηn)2 = 2hnηn ≤ ηn ≤ η0

2n
.

Then, by mathematical induction on j, we conclude that ‖y∗ − xj‖ ≤ η0
2j−1 are true for all

positive integers j. As a consequence, ‖y∗ − xn‖ → 0 as n → +∞ and therefore y∗ = x∗. �

Note that condition (W4) of the Newton-Kantorovich theorem, which is often called the
Kantorovich condition, is critical, since it means that, at the initial approximation x0, the
value ‖F (x0)‖ should be small enough, that is, x0 should be close to a solution.

According to Galantai [33], if conditions (W1)-(W2)-(W3)-(W4) of the Newton-Kantorovich
theorem are satisfied, then not only the Newton sequence {xn} exists and converges to a so-
lution x∗ but [F ′(x∗)]−1 exists in this case. Rall proves in [71] that the existence of [F ′(x∗)]−1

conversely guarantees that the hypotheses of the Newton-Kantorovich theorem with h < 1
2

are satisfied at each point of an open ball with center x∗.
Notice that the Newton iterates xn are invariant under any affine transformation F −→

G = AF , where A denotes any bounded and bijective linear mapping from Y to any Banach
space Z [33]. This property is easily verified, since [G′(x)]−1G(x) = [F ′(x)]−1A−1AF (x) =
[F ′(x)]−1F (x). The affine invariance property is clearly reflected in the Newton-Kantorovich
theorem. For other affine invariant theorems, we may see Deuflhard and Heindl [17].
Remark 1.2. The speed of convergence of an iterative method is usually measured by the
order of convergence of the method. The first definition of order of convergence was given
in 1870 by Schröder [76], but a very commonly measure of speed of convergence in Banach
spaces is the R-order of convergence [69], which is defined as follows:

Let {xn} a sequence of points of a Banach space X converging to a point x∗ ∈ X
and let σ ≥ 1 and

en(σ) =
{

n if σ = 1,
σn if σ > 1,

n ≥ 0.

(a) We say that σ is an R-order of convergence of the sequence {xn} if there are
two constants b ∈ (0, 1) and B ∈ (0, +∞) such that

‖xn − x∗‖ ≤ Bben(σ).

(b) We say that σ is the exact R-order of convergence of the sequence {xn} if
there are four constants a, b ∈ (0, 1) and A, B ∈ (0, +∞) such that

Aaen(σ) ≤ ‖xn − x∗‖ ≤ Bben(σ), n ≥ 0.

In general, check double inequalities of (b) is complicated, so that normally only seek upper
inequalities as (a). Therefore, if we find an R-order of convergence σ of sequence {xn}, we
then say that sequence {xn} has order of convergence at least σ. So, according to this,
estimates (1.2) guarantee that Newton’s method has R-order of convergence ([69]) at least
two if h < 1

2 and at least one if h = 1
2 .


