Dieter Schramm Manfred Hiller Roberto Bardini

# **Vehicle Dynamics** Modeling and Simulation 2nd Edition



Vehicle Dynamics

Dieter Schramm · Manfred Hiller Roberto Bardini

# Vehicle Dynamics

Modeling and Simulation

Second Edition



Dieter Schramm University Duisburg-Essen Duisburg Germany

Manfred Hiller University Duisburg-Essen Duisburg Germany Roberto Bardini BMW Group München Germany

ISBN 978-3-662-54482-2 DOI 10.1007/978-3-662-54483-9

#### ISBN 978-3-662-54483-9 (eBook)

Library of Congress Control Number: 2017939320

#### © Springer-Verlag GmbH Deutschland 2014, 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer-Verlag GmbH Germany The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

# **Preface 2nd edition**

The focus of this book is on the fundamentals of "Vehicle Dynamics" and the mathematical modeling and simulation of motor vehicles. The range of applications encompasses basic single track models as well as complex, spatial multibody systems. The reader will be enabled to develop own simulation models, supported to apply successfully commercial programs, to choose appropriate models and to understand and assess simulation results. The book describes in particular the modeling process from the real vehicle to the mathematical model as well as the validation of simulation results by means of selected applications.

The book aims at students and postgraduates in the field of engineering sciences who attend lectures or work on their thesis. To the same extent, it addresses development engineers and researches working on vehicle dynamics or apply associated simulation programs. The modeling of Vehicle Dynamics is primarily based on mathematical methods used throughout the book. The reader should therefore have a basic understanding of mathematics, e.g., from the first three semesters' study course in engineering or natural sciences.

This second edition of the book is the English version of the third German edition.

The authors thank all persons who contributed to this edition of the book. Amongst all persons who contributed by giving hints and sometimes, simply asking the right questions we want to highlight in particular the indispensable contributions of Frederic Kracht for diligent proofreading and the solution of unsolvable problems incident to the secrets of contemporary word processor software.

Duisburg, Germany Duisburg, Germany München, Germany March 2017 Dieter Schramm Manfred Hiller Roberto Bardini

# Preface

The main focus of this book is on the fundamentals of "Vehicle Dynamics" and the mathematical modeling and simulation of motor vehicles. The range of applications encompasses basic single track models as well as complex, spatial multibody systems. The reader will be enabled to develop own simulation models, supported to apply successfully commercial programs, to choose appropriate models and to understand and assess simulation results. The book describes in particular the modeling process from the real vehicle to the mathematical model as well as the validation of simulation results by means of selected applications.

The book is aimed at students and postgraduates in the field of engineering sciences who attend lectures or work on their thesis. To the same extent it addresses development engineers and researches working on vehicle dynamics or apply associated simulation programs.

The modeling of Vehicle Dynamics is primarily based on mathematical methods used throughout the book. The reader should therefore have a basic understanding of mathematics, e.g., from the first three semesters' study course in engineering or natural sciences.

This edition of the book is the English version of the second German edition.

The authors thank all persons who contributed to this edition of the book. Amongst all persons who contributed by giving hints and sometimes simply asking the right questions we want to highlight in particular the indispensable contributions of Stephanie Meyer, Lawrence Louis and Michael Unterreiner who contributed with translation and proof reading of some chapters. We also thank Frederic Kracht for diligent proofreading and the solution of unsolvable problems incident to the secrets of contemporary word processor software.

Duisburg May 2014 Dieter Schramm Manfred Hiller Roberto Bardini

# Contents

| 1 | Intro                                 | duction. |                                                  | 1  |
|---|---------------------------------------|----------|--------------------------------------------------|----|
|   | 1.1                                   | Probler  | n Definition                                     | 1  |
|   |                                       | 1.1.1    | Modeling Technical Systems                       | 3  |
|   |                                       | 1.1.2    | Definition of a System.                          | 5  |
|   |                                       | 1.1.3    | Simulation and Simulation Environment            | 5  |
|   |                                       | 1.1.4    | Vehicle Models                                   | 6  |
|   | 1.2                                   | Comple   | ete Vehicle Model                                | 9  |
|   |                                       | 1.2.1    | Vehicle Models and Application Areas             | 11 |
|   |                                       | 1.2.2    | Commercial Vehicle Simulation Systems            | 11 |
|   | 1.3                                   | Outline  | of the Book                                      | 14 |
|   | 1.4                                   | Webpa    | ge of the Book                                   | 14 |
|   | Refe                                  | rences   |                                                  | 15 |
| 2 | Fund                                  | lamental | s of Mathematics and Kinematics                  | 17 |
|   | 2.1                                   | Vectors  | š                                                | 17 |
|   |                                       | 2.1.1    | Elementary Algorithms for Vectors                | 17 |
|   |                                       | 2.1.2    | Physical Vectors                                 | 18 |
|   | 2.2 Coordinate Systems and Components |          | nate Systems and Components                      | 19 |
|   |                                       | 2.2.1    | Coordinate Systems                               | 19 |
|   |                                       | 2.2.2    | Component Decomposition                          | 19 |
|   |                                       | 2.2.3    | Relationship Between Component Representations   | 20 |
|   |                                       | 2.2.4    | Properties of the Transformation Matrix          | 22 |
|   | 2.3                                   | Linear   | Vector Functions and Second Order Tensors        | 22 |
|   | 2.4                                   | Free M   | otion of Rigid Bodies                            | 24 |
|   |                                       | 2.4.1    | General Motion of Rigid Bodies                   | 24 |
|   |                                       | 2.4.2    | Relative Motion                                  | 28 |
|   |                                       | 2.4.3    | Important Reference Frames                       | 31 |
|   | 2.5                                   | Rotatio  | nal Motion                                       | 32 |
|   |                                       | 2.5.1    | Spatial Rotation and Angular Velocity in General |    |
|   |                                       |          | Form                                             | 32 |

|   |                      | 2.5.2          | Parameterizing of Rotational Motion             | - 33     |
|---|----------------------|----------------|-------------------------------------------------|----------|
|   |                      | 2.5.3          | The Rotational Displacement Pair and Tensor     |          |
|   |                      |                | of Rotation                                     | 34       |
|   |                      | 2.5.4          | Rotational Displacement Pair and Angular        |          |
|   |                      |                | Velocity.                                       | 36       |
|   |                      | 2.5.5          | CARDAN (BRYANT) Angles                          | 37       |
|   | Refe                 | rences         |                                                 | 41       |
| 2 | Vino                 | motion o       | f Multibady Systems                             | 12       |
| 3 | 2 1                  | Structu        | ro of Vinometia Chains                          | 43       |
|   | 5.1                  | 2 1 1          | Templopies Modelling                            | 43       |
|   |                      | 5.1.1<br>2.1.2 | Kinemetia Modelling                             | 43       |
|   | 2.2                  | 5.1.2          |                                                 | 43       |
|   | 3.2                  | Joints 1       | n Kinematic Chains                              | 47       |
|   |                      | 3.2.1          | Joints in Spatial Kinematic Chains              | 4/       |
|   |                      | 3.2.2          | Joints in Planar Kinematic Chains               | 49       |
|   |                      | 3.2.3          | Joints in Spherical Kinematic Chains            | 49       |
|   |                      | 3.2.4          | Classification of Joints.                       | 50       |
|   | 3.3                  | Degree         | s of Freedom and Generalized Coordinates        | 52       |
|   |                      | 3.3.1          | Degrees of Freedom of Kinematic Chains          | 52       |
|   |                      | 3.3.2          | Examples from Road Vehicle Suspension           |          |
|   |                      |                | Kinematics                                      | 53       |
|   |                      | 3.3.3          | Generalized Coordinates                         | 54       |
|   | 3.4                  | Basic F        | Principles of the Assembly of Kinematic Chains  | 55       |
|   |                      | 3.4.1          | Sparse-Methods: Absolute Coordinates            |          |
|   |                      |                | Formulation                                     | 57       |
|   |                      | 3.4.2          | Vector Loop Methods ("LAGRANGE"                 |          |
|   |                      |                | Formulation)                                    | 59       |
|   |                      | 3.4.3          | Topological Methods: Formulation of Minimum     |          |
|   |                      |                | Coordinates                                     | 60       |
|   | 3.5                  | Kinema         | atics of a Complete Multibody System.           | 62       |
|   |                      | 3.5.1          | Basic Concept                                   | 62       |
|   |                      | 3.5.2          | Block Wiring Diagram and Kinematic Networks     | 63       |
|   |                      | 3.5.3          | Relative Kinematics of the Spatial Four-Link    |          |
|   |                      |                | Mechanism                                       | 64       |
|   |                      | 3.5.4          | Relative, Absolute and Global Kinematics        | 66       |
|   |                      | 3.5.5          | Example: Double Wishbone Suspension             | 69       |
|   | Refe                 | rences         | · · · · · · · · · · · · · · · · · · ·           | 71       |
| 1 | Fau                  | ations of      | Mation of Complex Multibody Systems             | 73       |
| - | 12 <b>4u</b> a<br>14 | Fundan         | nental Equation of Dynamics                     | 15       |
|   | 4.1                  | for Dei        | nemai Equation of Dynamics                      | 72       |
|   | 1 2                  |                | In mass systems                                 | 13<br>75 |
|   | 4.2<br>1 2           | JUUKL          | ANCE Equations of the First Vind for Doint Mass | 13       |
|   | 4.3                  | LAGK           | ANGE Equations of the First Kind for Point Mass | 75       |
|   |                      | System         | 8                                               | 13       |

|   | 4.4   | LAGRA      | ANGE Equations of the Second Kind               |     |
|---|-------|------------|-------------------------------------------------|-----|
|   |       | for Rig    | id Bodies                                       | 76  |
|   | 4.5   | D'ALE      | MBERT's Principle                               | 78  |
|   | 4.6   | Compu      | ter-Based Derivation of the Equations of Motion | 80  |
|   |       | 4.6.1      | Kinematic Differentials of Absolute Kinematics  | 81  |
|   |       | 4.6.2      | Equations of Motion                             | 83  |
|   |       | 4.6.3      | Dynamics of a Spatial Multibody Loop            | 84  |
|   | Refer | ences      |                                                 | 92  |
| 5 | Kine  | matics a   | nd Dynamics of the Vehicle Rody                 | 95  |
| J | 5 1   | Vehicle    | -Fixed Reference Frame                          | 95  |
|   | 52    | Kinema     | tical Analysis of the Chassis                   | 98  |
|   | 5.2   | 5 2 1      | Incorporation of the Wheel Suspension           | 20  |
|   |       | 0.2.1      | Kinematics                                      | 99  |
|   |       | 522        | Equations of Motion                             | 101 |
|   | Refer | ences      |                                                 | 102 |
|   |       |            |                                                 |     |
| 6 | Mode  | eling and  | Analysis of Wheel Suspensions                   | 103 |
|   | 6.1   | Functio    | n of Wheel Suspension Systems                   | 103 |
|   | 6.2   | Differen   | it Types of Wheel Suspension                    | 105 |
|   |       | 6.2.1      | Beam Axles.                                     | 106 |
|   |       | 6.2.2      | Twist-Beam Suspension.                          | 107 |
|   |       | 6.2.3      | Trailing-Arm Axle                               | 108 |
|   |       | 6.2.4      | Trailer Arm Axle                                | 110 |
|   |       | 6.2.5      | Double Wishbone Axles                           | 110 |
|   |       | 6.2.6      | Wheel Suspension Derived from the MacPherson    | 110 |
|   |       |            | Principle                                       | 112 |
|   | 6.0   | 6.2.7      | Multi-Link Axles.                               | 113 |
|   | 6.3   | Charact    | eristic Variables of Wheel Suspensions          | 115 |
|   | 6.4   | One Di     | mensional Quarter Vehicle Models                | 118 |
|   | 6.5   | Three-L    | Dimensional Model of a MacPherson Wheel         |     |
|   |       | Suspens    | sion                                            | 121 |
|   |       | 6.5.1      | Kinematic Analysis                              | 122 |
|   |       | 6.5.2      | Explicit Solution                               | 126 |
|   | 6.6   | Three-L    | Jimensional Model of a Five-Link Rear Wheel     | 101 |
|   |       | Suspens    | sion                                            | 131 |
|   |       | 6.6.1      | Kinematic Analysis                              | 131 |
|   |       | 6.6.2      | Implicit Solution                               | 134 |
|   |       | 6.6.3      | Simulation Results of the Three Dimensional     |     |
|   |       |            | Quarter Vehicle Model                           | 139 |
|   | Refer | ences      |                                                 | 143 |
| 7 | Mode  | eling of t | he Road-Tire-Contact                            | 145 |
|   | 7.1   | Tire Co    | pnstruction                                     | 146 |
|   | 7.2   | Forces     | Between Wheel and Road                          | 147 |

|   | 7.3        | Station    | ary Tire Contact Forces                           | 147        |
|---|------------|------------|---------------------------------------------------|------------|
|   |            | 7.3.1      | Tires Under Vertical Loads                        | 149        |
|   |            | 7.3.2      | Rolling Resistance                                | 150        |
|   |            | 7.3.3      | Tires Under Longitudinal (Circumferential)        |            |
|   |            |            | Forces                                            | 150        |
|   |            | 7.3.4      | Tires Subjected to Lateral Forces                 | 162        |
|   |            | 7.3.5      | Influence of the Camber on the Tire Lateral Force | 165        |
|   |            | 7.3.6      | Influence of the Tire Load and the Tire Forces    |            |
|   |            |            | on the Patch Surface                              | 166        |
|   |            | 7.3.7      | Fundamental Structure of the Tire Forces          | 166        |
|   |            | 7.3.8      | Superposition of Circumferential and Lateral      |            |
|   |            |            | Forces                                            | 167        |
|   | 7.4        | Tire M     | odels                                             | 170        |
|   |            | 7.4.1      | The Contact Point Geometry                        | 171        |
|   |            | 7.4.2      | Contact Velocity                                  | 176        |
|   |            | 7.4.3      | Calculation of the Slip Variables                 | 177        |
|   |            | 7.4.4      | Magic Formula Model                               | 178        |
|   |            | 7.4.5      | Magic Formula Models for Superimposed Slip        | 180        |
|   |            | 7.4.6      | HSRI Tire Model                                   | 181        |
|   | 7.5        | Instatio   | nary Tire Behavior                                | 184        |
|   | Refer      | ences      | ·                                                 | 185        |
| 8 | Mod        | eling of t | the Drivetrain                                    | 187        |
| 0 | 8 1        | Drivetr    | ain Concents                                      | 187        |
|   | 8.2        | Modeli     | ησ                                                | 189        |
|   | 0.2        | 8 2 1      | Relative Motion of the Engine Block               | 189        |
|   |            | 822        | Modelling of the Drivetrain                       | 190        |
|   |            | 823        | Engine Bracket                                    | 101        |
|   |            | 824        | Modeling of Homokinetic Joints                    | 106        |
|   | 83         | Modeli     | ng of the Engine                                  | 198        |
|   | 84         | Relativ    | e Kinematics of the Drivetrain                    | 200        |
|   | 85         | Absolu     | te Kinematics of the Drivetrain                   | 202        |
|   | 8.6        | Equation   | ons of Motion                                     | 202        |
|   | 87         | Discuss    | sion of Simulation Results                        | 203        |
|   | Refer      | ences      |                                                   | 205        |
| 0 | Fore       | Compo      | monto                                             | 207        |
| , | 0 1        | Forces     | and Torques in Multibody Systems                  | 207        |
|   | 2.1        | 011        | Reaction Forces                                   | 207        |
|   |            | 9.1.1      | Applied Forces                                    | 209        |
|   | 02         | 7.1.2      | ng Brake System                                   | 210<br>210 |
|   | 9.2<br>0.2 | Agradu     | ng Diake System                                   | 210        |
|   | 9.3        | Aerody     |                                                   | 212        |

|    | 9.4   | Spring a       | and Damper Components                             | 214 |
|----|-------|----------------|---------------------------------------------------|-----|
|    |       | 9.4.1          | Spring Elements                                   | 214 |
|    |       | 9.4.2          | Damper Elements                                   | 215 |
|    |       | 9.4.3          | Force Elements Connected in Parallel              | 217 |
|    |       | 9.4.4          | Force Elements in Series                          | 217 |
|    | 9.5   | Anti-Ro        | 11 Bars                                           | 218 |
|    |       | 9.5.1          | Passive Anti-Roll Bars                            | 218 |
|    |       | 9.5.2          | Active Anti-Roll Bars                             | 221 |
|    | 9.6   | Rubber         | Composite Elements                                | 222 |
|    | Refer | ences          | 1                                                 | 224 |
| 10 | Singl | a Track I      | Models                                            | 225 |
| 10 | 10 1  | Linear S       | Single Track Model                                | 225 |
|    | 10.1  |                | Equations of Motion of the Linear Single Track    | 225 |
|    |       | 10.1.1         | Model                                             | 226 |
|    |       | 10.1.2         | Stationary Steering Behavior and Cornering        | 220 |
|    |       | 10.1.2         | Instationary Steering Behavior: Vahiola Stability | 232 |
|    | 10.2  | Nonlina        | ar Single Track Model                             | 235 |
|    | 10.2  | 10.2.1         | Kingle Hack Model                                 | 237 |
|    |       | 10.2.1         | Tire Ecross                                       | 237 |
|    |       | 10.2.2         | Drive and Proke Torques                           | 240 |
|    |       | 10.2.5         | Emotions of Motion                                | 243 |
|    |       | 10.2.4         | Equations of Motion                               | 245 |
|    | 10.2  | 10.2.5         |                                                   | 240 |
|    | 10.3  | Linear F       | Coll Model                                        | 247 |
|    |       | 10.3.1         | Equation of Motion for the Rolling of the Chassis | 248 |
|    |       | 10.3.2         | Dynamic Tire Loads                                | 252 |
|    | D     | 10.3.3         | Influence of the Self-steering Benavior           | 200 |
|    | Refer | ences          | • • • • • • • • • • • • • • • • • • • •           | 257 |
| 11 | Twin  | Track <b>M</b> | 10dels                                            | 259 |
|    | 11.1  | Twin Tr        | cack Model Without Suspension Kinematics          | 259 |
|    |       | 11.1.1         | NEWTON's and EULER's Equations for a Basic        |     |
|    |       |                | Spatial Twin Track Model                          | 262 |
|    |       | 11.1.2         | Spring and Damper Forces                          | 264 |
|    |       | 11.1.3         | NEWTON's and EULER's Equations                    |     |
|    |       |                | of the Wheels                                     | 266 |
|    |       | 11.1.4         | Tire-Road Contact                                 | 267 |
|    |       | 11.1.5         | Drivetrain                                        | 269 |
|    |       | 11.1.6         | Brake System                                      | 271 |
|    |       | 11.1.7         | Equations of Motion                               | 272 |
|    | 11.2  | Twin Tr        | ack Models with Kinematic Wheel Suspensions       | 273 |
|    |       | 11.2.1         | Degrees of Freedom of the Twin Track Model        | 273 |
|    |       | 11.2.2         | Kinematics of the Vehicle Chassis                 | 276 |
|    |       | 11.2.3         | Generalized Kinematics of the Wheel Suspension    | 278 |
|    |       |                |                                                   |     |

|    |       | 11.2.4             | Wheel Suspension with a Trailing Arm            |     |
|----|-------|--------------------|-------------------------------------------------|-----|
|    |       |                    | Suspension.                                     | 283 |
|    |       | 11.2.5             | Kinematics of the Wheels While Using a Trailing |     |
|    |       |                    | Arm Suspension                                  | 288 |
|    |       | 11.2.6             | Tire Forces and Torques                         | 291 |
|    |       | 11.2.7             | Suspension Springs and Dampers                  | 292 |
|    |       | 11.2.8             | Aerodynamic Forces                              | 293 |
|    |       | 11.2.9             | Steering                                        | 293 |
|    |       | 11.2.10            | Anti-roll Bar                                   | 294 |
|    |       | 11.2.11            | Applied Forces and Torques                      | 295 |
|    |       | 11.2.12            | NEWTON's and EULER's Equations                  | 296 |
|    |       | 11.2.13            | Motion and State Space Equations                | 300 |
|    | 11.3  | Simplifie          | ed Driver Model.                                | 300 |
|    |       | 11.3.1             | Controller Concept                              | 300 |
|    | 11.4  | Paramete           | erization                                       | 303 |
|    | Refer | ences              |                                                 | 304 |
| 12 | Three | Dimons             | ional Complete Vehicle Models                   | 205 |
| 14 | 12.1  | Modelin            | a of the Complete Vehicle                       | 205 |
|    | 12.1  |                    | Vinemetics of a Dear Wheel Driven Complete      | 303 |
|    |       | 12.1.1             | Vahiala Model                                   | 306 |
|    |       | 1212               | Vinematics of Front and Four Wheel Driven       | 500 |
|    |       | 12.1.2             | Complete Vehicle Models                         | 215 |
|    |       | 1212               | Dynamics of the Complete Vehicle Model          | 225 |
|    | 12.2  | 12.1.5<br>Simulati | on of Motor Vehicles                            | 323 |
|    | 12.2  | 12 2 1             | Setup and Concept of EASIM CLL                  | 222 |
|    |       | 12.2.1             | Modular Structure of a Vahiale Model            | 334 |
|    |       | 12.2.2             | Construction of the Equations of Mation         | 220 |
|    |       | 12.2.5             | Numeric Integration                             | 211 |
|    |       | 12.2.4             | Treatment of Events                             | 244 |
|    | Dafar | 12.2.3             |                                                 | 240 |
|    | Kelei | ences              |                                                 | 540 |
| 13 | Mode  | el of a Ty         | pical Complex Complete Vehicle                  | 351 |
|    | 13.1  | Modelin            | g of the Complete Vehicle                       | 351 |
|    | 13.2  | Model V            | Verification and Validation                     | 354 |
|    |       | 13.2.1             | Verification                                    | 355 |
|    |       | 13.2.2             | Validation                                      | 355 |
|    | 13.3  | Paramete           | erized Vehicle Model                            | 363 |
|    |       | 13.3.1             | Definition of a Reference Model                 | 363 |
|    |       | 13.3.2             | Comparison of Parameterized Versus Validated    |     |
|    |       |                    | Models                                          | 366 |
|    | Refer | ences              |                                                 | 370 |

| .4 | Selected Applications |          |                                                  |   |
|----|-----------------------|----------|--------------------------------------------------|---|
|    | 14.1                  | Simulati | on of Test Maneuvers                             | 3 |
|    |                       | 14.1.1   | Simulation of a Step Steering Input (ISO 7401)   | 2 |
|    |                       | 14.1.2   | Simulation of Stationary Circular Travel         | 1 |
|    |                       | 14.1.3   | Simulation of a Double Lane Change               | 1 |
|    | 14.2                  | Simulati | on of Vehicle Rollover                           | 1 |
|    |                       | 14.2.1   | Virtual Proving Grounds                          | - |
|    |                       | 14.2.2   | Results of the Simulation.                       | - |
|    | 14.3                  | Control  | of the Roll Dynamics Using Active Anti-Roll Bars | í |
|    |                       | 14.3.1   | Passive Anti-Roll Bar                            | 4 |
|    |                       | 14.3.2   | Stiffness Distribution Between Front-            |   |
|    |                       |          | and Rear Axle                                    | 4 |
|    |                       | 14.3.3   | Adjustment of the Roll Dynamics by Means         |   |
|    |                       |          | of Active Anti-Roll Bars                         | 4 |
|    |                       | 14.3.4   | Control Unit Design                              | 4 |
|    |                       | 14.3.5   | Response and Disturbance Reaction                | 4 |
|    |                       | 14.3.6   | Roll Torque Distribution with Fuzzy Logic        | 4 |
|    |                       | 14.3.7   | Active Principle                                 | 4 |
|    |                       | 14.3.8   | Potential of a Roll Torque Distribution          | 4 |
|    | 14.4                  | Driving  | Simulators                                       | 4 |
|    |                       | 14.4.1   | Areas of Application and Implementation          |   |
|    |                       |          | of Driving Simulators                            | 4 |
|    |                       | 14.4.2   | The Control Circuit Driver-Vehicle-Environment   | 4 |
|    |                       | 14.4.3   | Implementation of Driving Simulators             | 4 |
|    |                       | 14.4.4   | Simulation Models and Interfaces                 | 4 |
|    |                       | 14.4.5   | Motion Systems                                   | 4 |
|    |                       | 14.4.6   | Conducting Experiments with Driving Simulators   | 4 |
|    |                       | 14.4.7   | Recording of Measured Values in Simulator Tests  | 4 |
|    |                       | 14.4.8   | Implementation of Simple Driving Simulators      | 4 |
|    | Refer                 | ences    | -<br>• • • • • • • • • • • • • • • • • • •       | 4 |
|    |                       |          |                                                  |   |

# Nomenclature and Definitions

# Variables and Physical Quantities

The name of variables and physical quantities are in general written in italic letters. The notations of locations (points), components and names of coordinate systems, numbers as well as mathematical standard functions, such as e.g. "sin" or "cos" are not written in italic letters.

In addition, the following applies for vectors and tensors as well as matrices:

- Vectors are represented by bold lower case letters, tensors and matrices by bold upper case letters.
- Dots over the respective quantity indicate time derivatives.

# **Special Notation for Physical Vectors**

The subscription of vectors and tensors is made according to the following rules:

- An index on the lower right side represents a denotation and numbering. It denotes, e.g. the body or the coordinate system of the respective quantity.
- For quantities which are described with respect to other quantities a lower left index denotes the reference body or the reference coordinate system. A void index indicates the inertial system as reference system.
- In case that a physical vector is represented by coordinates, the coordinate system is indicated by a left upper index. If no index is present, a physical vector or tensor is given without indicating a specific coordinate system.
- Operators, like inversion, transposing and raising to power as well as differentiation with respect to other variables as time are indicated by a respective right upper index.

Differentiation with respect to time is indicated by a dot over the respective variable. At this position also other indications like vinculi "−" or tildes "∼" can be present.



#### **Examples for Subscriptions**

- $\dot{\boldsymbol{r}}_i$  Absolute velocity of point  $P_i$
- $\dot{r}_{i,j}$  Absolute velocity (absolute variation with time) of difference vector  $r_j r_i$
- $_{k}\dot{r}_{i}$  Relative velocity of " $P_{i}$ " with respect to reference system "k"
- $_{k}\dot{\boldsymbol{r}}_{i,j}$  Relative velocity  $_{k}\dot{\boldsymbol{r}}_{j} _{k}\dot{\boldsymbol{r}}_{i}$
- ${}_{k}^{i}v_{j}$  Coordinate representation of the absolute velocity of point P<sub>j</sub> with respect to coordinate system "k", described in coordinates of coordinate system "i"
- ${}^{j}T_{i}$  Rotation tensor, transforming the coordinate representation of vector "a" in coordinate system "i" to coordinate system "j": " ${}^{j}a = {}^{j}T_{i}{}^{i}a$ "

Partial derivatives of a m-dimensional vectorial function

$$f(x) = \begin{bmatrix} f_1(x_1, \cdots, x_n) \\ \vdots \\ f_m(x_1, \cdots, x_n) \end{bmatrix}$$

with respect to coordinates of a *m*-dimensional vector x are arranged in a (m, n) - dimensional functional- or JACOBIAN-Matrix:

$$\frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_1(\boldsymbol{x})}{\partial \boldsymbol{x}} \\ \vdots \\ \frac{\partial f_m(\boldsymbol{x})}{\partial \boldsymbol{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1(\boldsymbol{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\boldsymbol{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\boldsymbol{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\boldsymbol{x})}{\partial x_n} \end{bmatrix}.$$

# Examples for "Physical" Vectors and Their Representation

| $\boldsymbol{e}_{x_i}, \boldsymbol{e}_{y_i}, \boldsymbol{e}_{z_i}$          | Unity vectors for coordinate systems                                             |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <b>u</b> <sub>i</sub>                                                       | Normalized orientation vector (joint axes)                                       |
| $\boldsymbol{r}_i$                                                          | Position vector to reference point $O_i$ of an "object" (body) " $i$ "           |
| <b>r</b> <sub>ī</sub>                                                       | Position vector to predecessor of reference point $O_i$                          |
| $\boldsymbol{s}_i$                                                          | Position Vector to center of gravity $S_i$                                       |
| $\boldsymbol{p}_i$                                                          | Position vector to "point of interest" $P_i$ (e.g. application point of a force) |
| $\boldsymbol{r}_{i,j} = \boldsymbol{r}_j - \boldsymbol{r}_i$                | Vector difference between two reference points $P_i, P_j$                        |
| $\boldsymbol{v}_i, \dot{\boldsymbol{v}}_i, \boldsymbol{a}_i$                | Velocities, accelerations                                                        |
| $\boldsymbol{\omega}_i, \dot{\boldsymbol{\omega}}_i, \boldsymbol{\alpha}_i$ | Angular velocity, angular acceleration                                           |
| $\boldsymbol{F}_i$                                                          | Force                                                                            |
| $L_i, T_i$                                                                  | Torque                                                                           |
| $\boldsymbol{\Theta}_{S_i}, 	heta_{S_i}$                                    | Tensor of inertia, moment of inertia                                             |
| $T_i$                                                                       | Rotation tensor                                                                  |
| $(x, y, z)_i$                                                               | Coordinate system $(K_i)$                                                        |
| $\mathbf{K}_i = \{\mathbf{O}_i; x_i, y_i, z_i\}$                            | Coordinate system $(K_i)$ , alternative notation                                 |
| $x_i, y_i, z_i$                                                             | Coordinate axes                                                                  |
| $\xi_i, \eta_i, \zeta_i$                                                    | Coordinate axes                                                                  |
|                                                                             |                                                                                  |

# Scalars

| $m_i$                 |             | Mass    |
|-----------------------|-------------|---------|
| <i>i</i> , <i>j</i> , | $k, \ldots$ | Indices |

| N, n | Number of elements, components (e.g. $n_{\beta}, N_{\beta}$ ) |
|------|---------------------------------------------------------------|
| α    | Angle                                                         |
| f    | Number of degrees of freedom (DoF) (also $f_i$ )              |

# **Vectors and Matrices**

- $\boldsymbol{E}, \boldsymbol{I}$ Unity matrix or unity tensor
- "Vector" of implicit constraint equations g
- "Vector" of generalized coordinates q
- М Mass matrix
- "Vector" of generalized zentripedal- and CORIOLIS forces b
- Q Generalized forces
- $\beta e^{(i)}$ Relative or natural joint coordinates

$$0,0,\ldots,\underbrace{,1,}_{i^{th}\ position}\ldots,0,0$$

- Position coordinates w
- Ζ Reaction forces



$$\dot{\boldsymbol{r}}_{j} = \dot{\boldsymbol{r}}_{i} + \dot{\boldsymbol{r}}_{i,j}$$
 $\dot{\boldsymbol{r}}_{i,j} = \boldsymbol{\omega}_{i} \times \boldsymbol{r}_{i,j} + \dot{\boldsymbol{r}}_{i,j}$ 
 $_{i}\dot{\boldsymbol{r}}_{i,j} = _{i}\dot{\boldsymbol{r}}_{j} - _{i}\dot{\boldsymbol{r}}_{i}$ 

Note

$$m{r}_{i,j} = {}_i \, m{r}_j$$
  
 $\dot{m{r}}_{i,j} 
eq {}_i \, \dot{m{r}}_j$ 

# **Trigonometric Functions**

Due to space requirements " $\cos \varphi$ " and " $\sin \varphi$ " are, where appropriate, replaced by the short forms " $c\varphi$ " and " $s\varphi$ " respectively.

# Chapter 1 Introduction

This book addresses the fundamentals, mathematical description and simulation of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single track models up to complex three-dimensional multibody models. A particular focus is the process of establishment of mathematical models from real cars and the validation of the simulation results. The methods presented will be explained in detail based on selected application scenarios.

The intention of this book is to enable the reader to develop his own simulation models and to use them for his daily work, to apply commercial simulation tools in an efficient and dedicated form. In particular the reader will be enabled to choose the appropriate model for a give technical task and to validate the results of simulations.

# **1.1 Problem Definition**

Vehicle dynamics is a branch of vehicle mechanics that deals with the motional actions necessary for moving road vehicles and their resulting forces under consideration of the natural laws. Reference to vehicle dynamics is found in many areas of development of motor vehicles, vehicle systems and their components.

In this chapter an overview of the modeling methods, the fundamental definitions related to vehicle dynamics and the embedding of vehicle dynamics in the development of vehicles will be given.

The use of complex mathematical vehicle models to simulate and develop vehicle systems and their applications, such as in the development of vehicle dynamics control systems or braking systems, has gained significance especially over the last years. The reasons are, on the one hand, economical:

• The effort involved in vehicle testing and measurement has been increasing along with the complexity of the vehicle systems and the prescribed testing conditions. This has a corresponding influence on the development budget available.

© Springer-Verlag GmbH Deutschland 2018 D. Schramm et al., Vehicle Dynamics, DOI 10.1007/978-3-662-54483-9\_1 • The increasingly competitive automotive market is forcing manufacturers and suppliers to also contain the costs in the development stage, by replacing prototypes and tests with simulations and virtual prototypes.

On the other hand, many reasons can be attributed to the technology of the new systems. The majority of these are mechatronic systems, ref. e.g. (Isermann 2008), whose typical increase in functionality and optimized product value are based on the function- and hardware oriented combination of mechanical, electrical and electronic components and subsystems, as well as their respective operating systems and functional software.

The interaction of these individual systems, which are derived from different technological domains, on the one hand results in never before seen functional range and product quality and on the other hand in cost efficient solutions, by integrating mechanical, electrical and electronic hardware into modules. The design and testing of such systems with their enormous functional diversity requires high standards in methods of design and testing programs and, as a result, modeling and simulation techniques:

- Vehicle models are the basis for the design and development of vehicle systems and components.
- Vehicle maneuvers can be simulated repeatedly under predefined parameters and conditions.
- Critical maneuvers can be replaced by safe simulations.
- The continuous shortening of product cycles for new models requires shorter developmental phases. This can only be achieved through the implementation of simulations and virtual prototypes.

Based on these requirements, the fields of application for the method of multibody systems in the development of vehicle systems, which is presented in this book, can be deduced:

- Kinematics and dynamics of the chassis and the steering.
- Vehicle dynamics of the entire vehicle.
- Ride comfort of the entire vehicle.
- Analysis of accidents.

The goal in each case is a mathematical description of the relevant areas and functions of the vehicle that can be variably applied for the design, development and evaluation of vehicle dynamics. The numerical simulation of vehicle handling, which is based on these mathematical models, has recently gained enormous significance. It allows the simple, quick and efficient investigation of maneuvers without the need for elaborate testing. The simulation allows for a variation of parameters and conditions in a way that is not possible in actual testing. Since, however, the results generated by numerical simulations are only approximations and their accuracy is dependent on the exactness of the models and the reliability of the system data, great care has to be put into the modeling of these systems.

#### 1.1 Problem Definition

The driving characteristics of passenger vehicles are influenced by several factors. The wheel locations, which are supposed to conduct predefined motions relative to the chassis, play an important role. By choosing beneficial geometrical parameters in the construction of a wheel suspension system, for example, the stability of the vehicle whilst cornering or changing lanes is guaranteed. Modern wheel suspensions are typically multibody systems with closed kinematic loops. In addition, the handling can be influenced through elastic bearings in the wheel suspensions. For example, the longitudinal flexibility of the wheel location can be achieved through a soft bearing of the transverse link.

The complicated systems and the wish for a reproduction of real events that is as accurate as possible make the development of simulation models a comprehensive and challenging task. Setting up equations efficiently is of vital importance in order to limit the modeling effort and minimize the computation time required for the simulation. Thus the goal of this book is to present an efficient way of creating realistic simulation models of a vehicle. To this end, an overview of the basic mechanical and mathematical processes will be provided, in which the topological structure of the vehicle will be described in detail using fundamentals such as the methodology of kinematic differentials and that of the characteristic joint pairs. Based on this, the modeling of the subsystems and components

- chassis, wheel suspensions,
- wheels and tires,
- force elements,
- drivetrain

and finally the entire system will be dealt with.

#### 1.1.1 Modeling Technical Systems

There are two fundamentally different methods to describe the dynamic behavior of a real process using mathematical models, appropriate to the task at hand:

- In theoretical modeling, the mathematical models are derived from physical laws.
- In experimental modeling a specific model structure, which in most cases is also mathematically formulated, is used as the foundation. On the basis of this model structure, the individual parameters are identified using input and output measurements. A special form of this method is called (model-) identification.

This book almost exclusively deals with theoretical modeling. Physical parameters will be assumed to be known or at least assessable. Typical sources of parameters in vehicle technology are:



- Computer-aided design models for measurements, masses and moments of inertia.
- Direct measurements of masses, moments of inertia, spring and damper characteristics, and, if possible, friction coefficients.
- Assumptions, estimations and, where applicable, identification methods for other, more difficult or vague characteristics such as friction effects, elasticity in bearings, etc.
- Identification of parameters and characteristic maps through other methods of calculation and simulation such as the finite-element method and of calculating electric and magnetic fields etc.

The identification methods are often used in this context to determine parameters of theoretical models that are either unknown or difficult to measure. Examples are tire models (Chap. 7) or characteristics of force elements (Chap. 9), such as rubber bearings or dampers.

The aim of modeling is to obtain a mathematical-analytical description of the respective system which allows for an investigation of the relevant aspects of the system behavior and the influence of the system components on it, (Fig. 1.1). It is possible to develop models of varying complexity and validity. On the one hand, the more complex a model is, the more accurate the simulation of the system behavior is. On the other hand, however, this will invariably result in complex and mostly nonlinear model equations as well as a need for better computing performance. Additionally, the number of model parameters that have to be determined increases along with the complexity of a model. Most of the time, the effort to procure the parameters required will outweigh the effort in creating the model equations by far. Therefore it is always necessary to critically evaluate whether an increase in model complexity is still adequate to its aims.

### 1.1.2 Definition of a System

The term system will often be used in this book. Therefore it is important to briefly define what is meant by a system in this book (Hiller 1983):

A system is identified as a set of elements (parts, components), that influence each other through internal functional relationships and physical laws (interaction), on which external influences act (inputs) and the effects of which are commuted to the outside (outputs). Thus, the most important properties of a system are its changeability (motion) and its controllability through a suitable choice of inputs (forces and applied motion). The relationship between external influences on the system and the resulting changes of the system state is defined as system dynamics.

A major part of this book deals with the investigation and analysis as well as the prediction of the dynamic behavior of the vehicle system and its subsystems and components. The following subtasks can be identified:

- Modeling: modeling always involves idealizations and abstractions (Sect. 1.1.4).
- Model investigation: deals with, primarily numeric, solutions to the equations of motion.
- Selection of controlling inputs: Examples in a motor vehicle are steering angle, accelerator and brake pedal position as well as the characteristics of the road surface, but also actuator forces, such as the active anti-roll bars which are examined in Chap. 14.
- Simulation of the system characteristics (Chap. 12).

#### 1.1.3 Simulation and Simulation Environment

Every simulation aims at describing the observed system as accurate as possible in order to be able to deduce the behavior of the real system from the behavior of the model. In this book a vehicle or part of a vehicle as well as, if necessary, a part of its environment will be referred to as a system. Below, solely the simulation of mathematical models on one (or several connected) computers will be examined. The models will be purely mathematical in nature. The simulation is thus equivalent to the running of software, combined, if necessary, with hardware components which are connected via suitable interfaces. The latter are usually referred to as hardware-in-the-loop (HiL) simulations. It is necessary to run the simulation in real time in order to provide the hardware with data.

If one visualizes the vehicle as a mechatronic system, in which, for example, the aforementioned vehicle dynamics control systems and driver assistance systems play an ever increasing role, the simulation of the dynamics of the vehicle components or the entire vehicle as a tool in the process of mechatronic development (VDI-Guideline-2206 2004).

#### 1.1.4 Vehicle Models

The models described in this book are to make it possible to represent the dynamic behavior of real vehicles as realistically as possible. To accomplish this, the models have to meet at least the following criteria:

- Complete spatial kinematics and kinetics of the entire vehicle and, if required, also its subsystems.
- Nonlinear kinematics of the wheel suspension.
- Nonlinear and, where required, also dynamic representations of the force elements.
- Dynamic tire forces.

On the other hand the models have to remain manageable. This is especially important if the simulation models are to be implemented in a hardware-in-the-loop test rig or a drive simulator. In this case the computation time has to remain suitable. This also holds for the use of the models for optimization tasks.

To simulate the handling of a vehicle, different types of vehicle models are possible, depending on the desired level of detail and the task at hand, ref. Table 1.1.

If one assumes the vehicle chassis to be rigid, then the chassis has six degrees of freedom in space, which can, however, be reduced through further assumptions, such as those found in single track and twin track vehicle models. To simulate the vehicle longitudinal motion, it may be sufficient to define just one degree of freedom. Then the other degrees of freedom of the body have to be constrained by using so-called constraint or boundary conditions. Even for a simple model that describes the lateral dynamics, a minimum of two degrees of freedom, for the lateral motion and the yaw motion, is required.

In twin track and especially in complex multibody system models, further degrees of freedom to describe the motion of the components of the wheel suspensions and the drivetrain are required. Furthermore, the subsystems of the vehicle such as the drivetrain, brakes and steering have to be modeled. Systems such as the ABS, ESP, driver assistance systems and other mechatronic systems can also be integrated into the model.

| Model type                     | Degrees of freedom | Chapter                    |
|--------------------------------|--------------------|----------------------------|
| Single track model, linear     | 2                  | 10                         |
| Single track model, nonlinear  | 3–7                | 10                         |
| Twin track model               | 14–30              | 11                         |
| Complex multibody system model | >20                | 12 and 13, subsystems: 5-9 |
| Finite-Element-model           | >500               | Not dealt with             |
| Hybrid model                   | >500               | Not dealt with             |

Table 1.1 Modeling of motor vehicles

#### 1.1 Problem Definition

The use of simulation programs for the development of technical systems in vehicles has gained significance in recent years and is currently state of the art. The prediction of the dynamic behavior of the vehicle allows for conclusions about driving stability, driving safety and comfort of new vehicle systems. Furthermore, such models can show the influence of control systems and actuators on the vehicle's handling and are often prerequisite for an efficient development of such systems. The mechanical components that occur in these systems can be modeled and simulated using the following approaches (Schiehlen and Eberhard 2004).

**Multibody Systems (MBS)** Multibody systems are suitable for the description of mechanical systems, which consist of bodies that are mostly rigid and are connected via bearings and joints. A multibody system usually consists of rigid bodies with mass, which are subject to concentrated forces and moments at discrete points (Schiehlen and Eberhard 2004). Some of the symbols, commonly used for a typical multibody system, are represented, along with a corresponding example from vehicle technology, in Fig. 1.2.

A rigid body of a multibody system is characterized by its mass and moment of inertia. Characteristic points of a rigid body are the center of gravity S as well as a finite number of node-points  $P_i$ , at which concentrated forces and moments act or other bodies are connected via corresponding joints. Elasticity and damping are represented as massless force elements and their typical symbols are shown in Fig. 1.2 along with the corresponding component typically found in a vehicle. Respectively, through depiction of force laws and constraint motions, drivetrains



and the actuators can be represented. Of major interest in modeling and simulation are the motion variables of the bodies and, sometimes the forces and moments acting on the bearings and drivetrains. The mathematical description of the kinematics and kinetics of the multibody system results, depending on the modeling and formalization, in ordinary differential or differential algebraic systems of equations with relatively small degrees of freedom and will be dealt with in Chaps. 3 and 4. Here, "kinematics" refers to the description of the possible motions of mechanical systems, while "kinetics" refers to the motion of mechanical systems under the influence of forces.

**Finite-Element-Method (FEM)** This method is primarily being used to give a mathematical description of the elastic and, where applicable, plastic characteristics of mechanical systems, in which mass and elasticity are distributed continuously throughout the body. The model consists of many finite elements with a simple geometry, whose principle deformation options are constrained by so-called elementary functions. The method is primarily used to examine the effect of external forces on the deformation and stress distribution of a body. The mathematical formulation of the finite-element-method leads to ordinary differential equations with many degrees of freedom.

**Continuous Systems (COS)** Continuous systems are used for the depiction of elastic characteristics of mechanical systems, in which mass and elasticity, as well as plasticity are distributed continuously throughout the body. The mathematical formulation of continuous systems leads to a description using partial differential equations with infinite number of degrees of freedom. The respective field of application of these structurally different substitute systems is mainly dependent on the geometry and the distribution of stiffness of the initial mechanical system, the goal of the investigation and, thus implicitly, the aspired area of validity of the simulation model. The method of finite elements and the continuous systems are primarily suitable for mechanical systems or bodies with evenly distributed elasticity.

Multibody systems are ideally suited for complex models that help describe vehicle dynamics. However it is also possible to create a vehicle model using the finite-elements-method. This has its advantages especially, when structural deformation and stress distribution have to be determined along with vehicle kinematics and kinetics.

Hybrid mechanical systems which require the modeling of both rigid and elastic bodies can be represented through a combination of multibody systems and the finite-elements-method for example. These are called hybrid systems (Louis and Schramm 2011).

When choosing a suitable method for the simulation of a vehicle, the following aspects have to be considered as well:

• For most of tasks in vehicle dynamics it is sufficient to examine a very limited frequency spectrum, Table 1.2, (Bürger and Dödelbacher 1988; Frik 1994). Hence, it is possible to limit the model to depict a spectrum between 0 and ca. 30 Hz.

| Table 1.2         Typical           functional in multiple         functional in multiple | Oscillation mode                  | Frequency (Hz) |
|-------------------------------------------------------------------------------------------|-----------------------------------|----------------|
| subsystems                                                                                | Body motion                       | 1–2            |
| 54059500115                                                                               | Longitudinal vehicle oscillations | 4-10           |
|                                                                                           | Motor jerk                        | 10–13          |
|                                                                                           | Wheel suspensions, deflection     | 10–15          |
|                                                                                           | Steering oscillations             | 10–16          |
|                                                                                           | Body oscillations                 | 30-40          |

- An exception from the limitation outlined above is for example the simulation of vehicle dynamics control systems. Because of the relatively short time constants of the hydraulics, higher frequency vibrations can occur. These oscillations occur within the region of the natural frequency of the wheel suspensions—due to the bearing elasticity in individual joints—between 15 and 30 Hz as well as the natural frequency of the radials at around 50 Hz. Since these oscillations influence the signals detected by the sensors of the vehicle control systems and lie within the sensor sampling rate, they must be included in the simulation of the regulated vehicle maneuvers.
- In every modeling approach it may be very difficult and in some cases even impossible to obtain the required model data. This is especially the case with friction and damping characteristics, bearing elasticity and tire parameters.

#### **1.2 Complete Vehicle Model**

Below, a complete vehicle model is considered to consist of the subsystems chassis, drivetrain, wheel suspensions, wheels, brakes and steering. Inputs to this model are the brake pedal and accelerator position, steering wheel angle, the engaged gear or the position of the automatic lever defined by the driver. The environment acts on the vehicle through the predefined environmental conditions, such as side and head wind, frictional connection coefficient of the road, road inclination and road bumps (Fig. 1.3).

An example of a complex vehicle model that has been modeled as a multibody system is shown in Fig. 1.4. It is not always necessary required to model an entire vehicle. It is possible to divide the vehicle model into its subsystems, which can be examined individually and, if necessary, combined to a complete model afterwards. In Fig. 1.4, this is shown using a complex vehicle model which has been split into its typical subsystems

- vehicle structure (chassis, underbody),
- drivetrain,
- · wheel suspensions,
- wheels,
- brakes,
- steering system.



Fig. 1.3 Interaction of a vehicle with the driver and the environment



Fig. 1.4 Example of a complex vehicle model

|                         | Single to  | ack model | Two track model       |                    | Multibody systems model  |                    |                                         |
|-------------------------|------------|-----------|-----------------------|--------------------|--------------------------|--------------------|-----------------------------------------|
|                         | linear     | nonlinear | without<br>kinematics | with<br>kinematics | reduced                  | complex            | combined with finite-<br>element method |
|                         | Ċ          | <u>-</u>  | No.                   |                    | (Jene)                   |                    |                                         |
|                         | planar tra |           | islation, yaw         |                    |                          |                    |                                         |
| Tune of motion          |            |           |                       |                    | roll-, pitch-,<br>dynami | vertical<br>cs     |                                         |
| Type of motion          |            |           |                       |                    |                          | Component          | motion                                  |
|                         |            |           |                       |                    | Special .                | Applications, Roll | over, Accident, Crash                   |
| Degrees of freedom      | 2          | 3-7       | 14-                   | - 25               | 20-                      |                    | 20                                      |
| Frequency spec-<br>trum | 0-         | 2 Hz      | 0-5                   | 5 Hz               | 0–3                      | 0 Hz               | 0–200 Hz                                |

Table 1.3 Overview of vehicle models

#### **1.2.1** Vehicle Models and Application Areas

Depending on the required application, different vehicle models can be used. The fundamental models shown in Tables 1.3 and 1.4 will be discussed in detail in this book. Table 1.4 also indicates whether the respective model is suitable for offline (O) or real-time (E) applications.

# 1.2.2 Commercial Vehicle Simulation Systems

Nowadays, a multitude of simulation programs and even entire simulation environments with toolsets are available to simulate vehicle dynamics. In this section, a few of these commercial vehicle simulation software systems will be mentioned. The list is however neither complete, nor is the fact that a program has been mentioned or has been omitted an indication of its quality.

MBS Examples of frequently used software solutions for general multibody systems are listed in Table 1.5. They support the development of models through elementary libraries, which contain general as well as application specific elements and usually include graphic user interfaces for model creation (preprocessor) and evaluation (postprocessor). The systems mentioned are either useful to support

|                             |                                          | Single trad | ck        | Twin track |            | MBS-Model |         |
|-----------------------------|------------------------------------------|-------------|-----------|------------|------------|-----------|---------|
|                             |                                          | Linear      | Nonlinear | W/o        | With       | Reduced   | Complex |
|                             |                                          |             |           | kinematics | kinematics |           |         |
| Layout                      | Components                               | O/E         | O/E       | O/E        | O/E        | O/E       | 0       |
|                             | Functions                                | O/E         | O/E       | O/E        | O/E        | O/E       | 0       |
| Concept design and          | Software                                 | O/E         | O/E       | O/E        | O/E        | O/E       | 0       |
| test                        | Hardware                                 | Е           | Е         | Е          |            |           |         |
|                             | Hardware-in-the loop (HiL)               | ы           | Е         | Е          |            |           |         |
|                             | Software-in-the-loop (SiL)               | ы           | Е         | Е          |            |           |         |
| Vehicle simulator           | Human machine interface                  | ы           | Е         | Е          | Е          |           |         |
|                             | Investigation of algorithm and functions | Щ           | ш         | Э          | н          |           |         |
|                             | Acceptance                               | ы           | Е         | Е          | Е          |           |         |
| Integration in<br>algorithm | Series application                       | ц           |           |            |            |           |         |
| I ation speed (O: offline I | T. real-time)                            |             |           |            | -          | _         |         |

Table 1.4 Simulation speed (O: offline, E: real-time)

Lation speed (O: offline, E: real-time)