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This collection of papers is dedicated to Marcel K. Richter, in appreciation of
the fundamental impact that his research, mentoring, and personality has had on
economics and on economists.

Marcel K. Richter’s research has taken economic theory to places it needed to
g0, and along the way has left tight, crisp, important, and beautifully elegant results.
Each paper is a destination, a result that is worth the trip, a stop that instructs the
student on the effectiveness of mathematics and the liberating power of crystalline
logic. No paper of his is carelessly written.

A good representative of Ket Richter’s work is his 1966 Econometrica paper
“Revealed Preference Theory.” This paper has had a profound influence, not only on
the problem of preference characterization, but also on the use of powerful logical
tools in economic theory. Using set theory and mathematical logic, it provided a
simple, clear, and general method to address the topic of consumer rationality, which
strongly contrasted with the complex alternative literature on revealed preference
and integrability theory. This was followed by “Rational Choice” and by the joint
work with Leonid Hurwicz, “Revealed Preference Without Demand Continuity
Assumptions,” both published in Preferences, Utility and Demand, edited by J.
Chipman, L. Hurwicz, M.K. Richter, and H. Sonnenschein (1971).

Many other topics in economic theory benefited from Ket Richter’s lucidity.
He developed fundamental relationships between preference, utility and demand,
in, among others, “Continuous and Semicontinuous Utility” (IER 1980), “Duality
and Rationality” (JET 1979), “An Integrability Condition with Applications to Util-
ity Theory and Thermodynamics” (with Leonid Hurwicz, JME 1979), and “Ville
Axioms and Consumer Theory” (with Leonid Hurwicz, Econometrica 1979). To-
gether with G. Fuhrken, he wrote “Polynomial Utility” (ET 1991) and “Additive
Utility” (ET 1991). With Taesung Kim he wrote “Nontransitive Nontotal Consumer
Theory” (JET 1986). With Rosa L. Matzkin, he provided conditions for rational-
ization of finite demand observations, in “Testing Strictly Concave Rationality”
(JET, 1991), and with Kam Chau Wong, he provided conditions for the existence
of a concave utility function on finite sets, in “Concave Utility on Finite Sets”
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(JET 2004). His “Cardinal Utility, Portfolio Selection and Taxation” (RES 1960)
developed the theory of portfolio demand under the assumption that the utility of
the investor depended only on characteristics of the probability distribution of the
portfolio’s uncertain earnings.

The theory of the core and Walrasian allocations benefited from Ket Richter’s
major contributions, such as “Existence of Nonatomic Core Walras Allocations”
(JET 1986) and “The Core-Walras Equivalence” (JET 1984), both co-authored with
Thomas Armstrong, and from “Coalitions, Core and Competition” (JET 1971). In
“Invariance Axioms and Economic Indexes” (Econometrica 1966), he contributed
to the axiomatic foundations of index number theory. With Leonid Hurwicz, Ket
generalized constrained maximization and implicit function theory in “Optimiza-
tion and Lagrange Multipliers” and in “Implicit Functions and Diffeomorphisms
without C1”” (both published in Advances in Mathematical Economics 2003).

More recently, with Kam Chau Wong, Ket Richter has moved forward the theory
of bounded rationality, by studying issues involving the computability and defin-
ability of utility, demand, and equilibrium. Some of the papers in this series are
“Computable Preference and Utility” (JME 1999), “Noncomputability of Com-
petitive Equilibrium” (ET 1999), and “Definable Utility in O-Minimal Structures”
(JME 2000).

Revealed preference is, however, the topic with which Marcel K. Richter is
most associated. Besides the papers mentioned above on this topic, other classics
are his paper with Leonard Shapiro, “Revelations of a Gambler” (JME 1978); his
well known paper with Daniel McFadden, “Stochastic Rationality and Revealed
Stochastic Preference” (in Preference, Uncertainty and Rationality, edited by J.
Chipman, D. McFadden, and M.K. Richter, 1990), which laid the foundation for
the existence of a random utility rationalization of probabilistic choice; and his joint
paper with Andreu MasColell, Rolf Mantel, and Daniel McFadden, “A Character-
ization of Community Excess Demand Functions” (JET 1974), in which revealed
preference theory was used to demonstrate that a variant of the Sonnenschein-
Debreu characterization held without the added restriction to a strictly positive
closed price cone.

Marcel K. Richter’s mentoring has been as unique as his research. The input
and dedication he has demonstrated in his research has paralleled the input and
dedication he has given to his students. For Ket Richter, no student thesis is ready
to be defended until all ideas are clearly presented, all details are worked out,
and all the lines of the thesis have undergone the close scrutiny of his red pen.
In fact, Ket Richter has been a consummate mentor. All University of Minnesota
students in economics have benefited from Ket’s friendly help and open door, and
his willingness to take up any topic. Ket’s personality is as impressive as, and very
much in line with, his research. He truly cares about each person and makes his or
her happiness his own concern.

The papers assembled in this issue are by colleagues, students, and admirers
of Marcel K. Richter. They deal with topics deeply connected to his work and
interests, such as preferences, demand, equilibrium, core allocations, and testable
restrictions. On behalf of everybody who has contributed to this symposium, we
wish Ket all the best and thank him for his many contributions.
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Revealed stochastic preference:
a synthesis*
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Summary. The problem of revealed stochastic preference is whether probability
distributions of observed choices in a population for various choice situations are
consistent with a hypothesis of maximization of preference preorders by members
of the population. This is a population analog of the classical revealed preference
problem in economic consumer theory. This paper synthesizes the solutions to this
problem that have been obtained by Marcel K. Richter and the author, and by J. C.
Falmagne, in the case of finite sets of alternatives, and utilizes unpublished research
of Richter and the author to give results for the non-finite choice sets encountered
in economic consumer theory.

Keywords and Phrases: Choice, Stochastic preference, Revealed preference,
Random utility maximization.

JEL Classification Numbers: D1, C6.

1 Introduction

The problem of revealed stochastic preference asks the question: Are the distri-
butions of choices observed for a population of individuals in a variety of choice
situations consistent with rational choice theory, which postulates that individu-
als maximize preferences? In economic consumer theory, each choice situation is
defined by a budget set; in psychometrics, by the alternatives offered in an ex-
periment; and in political voting behavior, by the issues presented in an election.

* The preparation of this paper was supported by the E. Morris Cox endowment at the University of
California, Berkeley. I am indebted to Robert Anderson, Salvador Barbara, Werner Hildenbrand, Rosa
L. Matzkin, and Aviv Nevo for useful suggestions and comments. I am especially indebted to Marcel
K. Richter, who was the source of many of the ideas and arguments contained in this paper.
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Distributions of responses arise because of taste heterogeneity in the population,
or because of stochastic elements in individual preferences. The last possibility
connects rational choice theory to psychometric models of choice based on random
scale maximization. This paper synthesizes the relatively complete solutions to the
revealed preference problem that have been obtained for finite choice sets, and
extends these results to the non—finite choice sets commonly encountered in eco-
nomic consumer behavior. This paper is based primarily on unpublished research
that Marcel K. Richter and I did in 1971, and on subsequent published results for the
finite case by Falmagne (1978) and by McFadden and Richter (1990). Ket Richter
has had an impact on economic theory far beyond the papers published over his
name. It is a fitting tribute to his career to draw upon his unpublished ideas and
words to suggest the scope and significance of his influence.

The origin of the revealed stochastic preference problem is the classical eco-
nomic theory of revealed preference, where the Samuelson—Houthaker Strong Ax-
iom of Revealed Preference (SARP) and Richter’s Congruence Axiom provide tight
necessary and sufficient conditions for consistency of one individual’s choices
with preference maximization (see Samuelson, 1938; Houthaker, 1950; Richter,
1966,1971). Marschak (1960) connected this theory to the psychometric literature
(Thurstone, 1927; Luce, 1959), posing the question of when observed choice proba-
bilities could be rationalized as consistent with random utility maximization (RUM).
Papers addressing the revealed stochastic preference problem include Block and
Marschak (1960), McFadden and Richter (1971,1990), McFadden (1973,1975),
Falmagne (1978), Fishbern (1978), Cohen (1980), Barbara and Pattanaik (1986),
McLennan (1990), Fishburn and Falmagne (1989), Barbara (1990), Cohen and
Falmagne (1990), Fishburn (1992), and Bandyopadhyay, Dasgupta, and Pattanaik
(1999).!

The ingredients of a revealed preference problem are the universe of objects
of choice, a family of feasible budget sets giving the alternatives from which a
decision—maker must choose, a class of permissible decision rules consistent with a
specified theory of choice behavior, and observations on the probabilities of choices
made. Both the SARP and the Congruence Axiom consider classes of decision
rules that maximize a preference preorder. They differ in that the SARP requires
permissible decision—rules to produce unique maxima on feasible budget sets, and
assumes a unique offer is observed, while the Congruence Axiom allows decision
rules that yield multiple maxima, and assumes that decision—makers offer the sets
of acceptable alternatives in the case of ties. One can generate a variety of revealed
preference problems by varying the ingredients, particularly the family of feasible
sets, the class of permissible decision rules, and the structure of observations. Some
of the possibilities are discussed in the conclusion.

This paper is organized as follows. Section 2 sets notation and gives a for-
mal statement of the revealed stochastic preference problem. Section 3 reviews

1 There is a large literature in mathematical psychology dealing with concepts of stochastic transi-
tivity, and their relationship to the RUM hypothesis; see Fishburn (1999). There is also a very extensive
literature on the Luce Choice Axiom (Luce, 1959), which provided the foundation for the econometric
theory of discrete choice behavior; see McFadden (1974), Halldin (1974), Manski (1977), McFadden
(1981), McCausland (2002). McFadden (2001) surveys this subject and provides many references.
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the revelation problem when the universe of alternatives is finite, and relates the
necessary and sufficient conditions for this problem obtained by McFadden and
Richter (1971, 1990) and by Falmagne (1978). Section 4 gives the McFadden and
Richter (1971) results on the extension of set functions, together with new results on
countable additivity. Section 5 draws upon this mathematical theory to obtain nec-
essary and sufficient conditions for the revealed stochastic preference problem with
a non—finite universe of alternatives that includes the classical economic consumer
problem. Section 6 concludes with discussion of further extensions and problems.

2 The revealed stochastic preference problem
2.1 Notation

The following notation for the space of alternatives, the choice situations, observed
behavior, and the hypothesis of rational behavior will be used throughout the paper:

(X,X) ametric space X of possible objects of choice, and the Borel o-algebra
X of subsets of X.

Q anon—empty index set, a metric space interpreted as indexing the feasible
choice situations.

B(q) a non-empty set in X for ¢ € Q, interpreted as the set of available
alternatives, or “budget set”, in choice situation q.

d: Q — X a decision rule that maps Q into subsets of X, with § # d(q) C
B(q), interpreted as a behavior rule that designates the decision-maker’s
acceptable alternatives in B(q). The decision rule is decisive if d(q) is
a singleton; a non-decisive choice is interpreted as the offer of a set of
“tied” alternatives.

(g, C)  apair, termed a trial; composed of a feasible choice situation ¢ € Q and
a set C € X. The outcome of a trial is a success (failure) if C contains
(excludes) the choice d(¢) made by an individual in situation ¢. A trial
can be a partial success if the decision rule is non-decisive and d(q)
intersects C but is not contained in C.

(D.D, () a probability space consisting of a set D of decision rules, a Boolean
o-algebra D of measurable subsets of D, and a probability ¢ on D. This
is interpreted as the universe of decision rules that could appear in a
population of decision-makers.

I, a choice probability on X for ¢ € Q, with IT,(C) for C € X inter-
preted as the proportion of individuals in the population with choice func-
tions satisfying d(¢) C C. The algebra D contains the sets D(g, C) =
{d € D|d(q) € C} for ¢ € Q and C € X, so that the probability
I1,(C) = ¢(D(g, C)) that the trial (g, C) is a success is defined. The
choice probability satisfies IT,(B(q)) = 1, and if the decision rules of the
population are almost surely decisive, it satisfies I7,(C) + I1,(C°) = 1.
More generally, let 11, and I] ; denote set-valued bounds for ¢ € Q,
satisfying 11, (C) < ((D(q,C)) < II (C) for C € X.



4 D.L. McFadden

=< (¢q1,C1), -, (¢m, Cm) > atrial sequence, an ordered sequence with repeti-

tions permitted, and elements (¢;, C;) € Q x X fori = 1,...,m, where
m is a positive integer.

H a set of choice functions in D, interpreted as the choice functions consis-
tent with a specified hypothesis of rational choice behavior. The algebra
D contains H, so that the sets H(q, C) = D(gq, C) N H are contained in
the Boolean o-algebraH = {ANH|A € D} forq € Qand C € X, and
¢(H(q, C)) is defined as the probability that the trial (¢, C) is a success
for decision rules that satisfy the rational choice hypothesis.

ap(t) the H-intersection number of a trial sequence t =
< (q1,C1), -, (Gm, Cpn) >, defined to be the maximum number
of successes for the sequence attainable by a choice function in H:

ax(t) = max 2 1(d(¢:) € Ci).

u : X — R a utility or scale function on X, a representation of a preference pre-
order. A utility function u is weakly decisive if d(q) = d(q;u) = {z €
B(q)|u(x) > u(z’) for all 2’ € B(q)} is non-empty for ¢ € Q, and is
decisive if d(g; u) is a singleton for ¢ € Q.

(U,U,v) anon-empty set of utility functions u specified by a hypothesis of rational
choice behavior, a metric space, with ¢/ the Borel o-algebra of subsets
of U, and v a probability on U, termed a random utility maximization
(RUM) model. A space of decision rules (H, H, ) and a space of utility
functions (U, U, v) are consistent (or, the set H of decision rules is U-
rational) if each u € U is weakly decisive, and each d € H is of the form
d(q; u) for some u € U and all ¢ € Q, the inverse image of H(g, C) is
inl forq € Q,C € X (i.e., U(q,C) = {u € Uld(q;u) C C € U),
and ((H(q, C)) = v(U(q, C)).

ay(t)  the U-intersection number of a trial sequence t =< (¢1, C1), ..., (¢m,
C,.) >, defined to be the maximum number of successes for
the sequence attainable by a utility function in Uj ie., ay(t) =
maxy,eu Yy 1(d(g;;u) € C;). If the space H of decision rules and
the space U of utility functions are consistent, then the decision-rule and
utility intersection numbers are the same.

2.2 Discussion

The central results in this paper concern random utility maximization, and uti-
lize spaces (U, U, v) of weakly decisive utility functions. These results will have
equivalent restatements in terms of the consistent space of decision rules (H, H, ().
We will also give some results directly for a space of hypothesized decision rules
(H,H, {); these can be applied to theories of choice other than random utility
maximization. The universe (D, D, ¢) of decision rules will play no direct role in
our analysis; but is useful in interpreting revealed preference problems as null hy-
potheses H on this universe. In this interpretation, the revealed preference problem
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can be viewed as an extreme case of the econometric problem of estimating the
probability measure ¢ or bounding ¢(H).

In the classical theory of economic consumer demand, each alternative is a
commodity vector represented by a point in a closed consumption set X contained
in the non-negative orthant of R™; X is often assumed to be convex. The space
of choice possibilities Q is a set of n-vectors of positive commodity prices ¢ =
(¢1,---,Gn), where income is normalized to one. Then, the possible choice sets
are the budget sets B(q) = {z = (21,...,zn) € X|q121 + ... + gnzn < 1};
with Q restricted so that B(g) is always non-empty. The admissible behavior rules
H C D under the theory of utility-maximizing choice behavior are those consistent
with a specified family of weakly decisive utility functions U. For this setup, it
will often be natural to impose some combination of the following assumptions:
[A1]. X is compact and convex; [A2] The feasible choice sets B(q) are closed
and convex for ¢ € Q; [A3] Q is a metric space, and the mapping B(¢q) from
Q into non-empty subsets of X is a continuous, compact-valued, convex-valued
correspondence;> [A4a] Utility functions u € U are uniformly bounded, continuous
and quasi-concave, or uniformly Lipschitz, and strictly quasi-concave, [A4b] Utility
functions u© € U are defined on an open neighborhood of X, and are uniformly
bounded and concave.

A complete theory of choice behavior requires either (1) that the structure of the
choice problem is such that decision rules are always decisive, if necessary through
the introduction of explicit tie-breaking mechanisms, or (2) that decision-makers
are observed to offer sets of “tied” acceptable alternatives and they passively ac-
cept assignments from their offers. An incomplete theory that does not specify
tie-breaking mechanisms may nevertheless be empirically complete if in practice
decision-rules are almost surely decisive. Shape restrictions may ensure that eco-
nomic consumer choice is decisive; i.e., if budget sets are compact and convex, and
admissible utility functions are continuous and strictly quasi-concave, then deci-
sion rules always yield singletons. However, more generally utility maximization
does not rule out ties. We will assume that offer sets of admissible alternatives
are observed, and define I7,(C) to be the probability that the observed offer set in
choice situation ¢ is contained in C. The sum of the probabilities II,(C) + II,(C¢)
is less than one if the probability of a partial success (where d(q) intersects but is
not contained in C) is positive. In this case, we can consider observed lower bounds
II; on the probabilities of success and upper bounds I/ ;r on the probabilities of
success or partial success (i.e., I (C) = 1 —II, (C¢)). Alternately, if we observe
II,(C) + II,(C¢) = 1 for all C € X, then admissible decision rules are almost
surely decisive at each ¢ € Q, and 11, is an almost surely complete description of
the distribution of demand.

2 A correspondence is continuous if it is upper and lower hemicontinuous in the terminology of
Hildenbrand (1974, 1.B.III). When the space of closed non-empty subsets of (X, X’) is metrized by the
Hausdorff distance, then an equivalent characterization is that B(q) is a continuous function from Q
into this metric space.
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2.3 Revelation problems

We define the revelation problems we will consider.

2.3.1 The revealed distribution problem

If 11, is a probability on X for ¢ € Q, find a probability ¢ on H (or, by extension, a
probability ¢ on D satisfying ((H) = 1) such that II,(C) = ((H(g, C)) for C €
X, ¢ € Q. [Alternately, find a probability v on I/ such that IT,(C) = v(U(g, C))
for C € X,q € Q].

2.3.2 Revealed dominating distribution problem

If 11, and II, (;L are non-negative bounded set functions on X for ¢ € Q, find a
probability ¢ on H such that 77, (C) < ((H(q,C)) < II/ (C)forC € X, q € Q.
[Alternately, find a probability v on & with I, (C) < v(U(q, C)) < I1,f (C) for
CeX,qeqQ].

2.3.3 The axiom of revealed stochastic preference [ARSP]

For a class H of hypothesized decision rules, or alternately, for a class U
of hypothesized utility functions, and for each finite sequence of trials t =
<(q1,C1), ., (gm, Cr) > with C; € X and ¢; € Q,

> 11, (Ci) < om(t) = max Y 1(d(g:) € Ci) , (1)
i=1 i=1
or alternately,
(C;) < = . cQC)).
; 11,,(Cy) < au(t) Iuneag; 1(d(giiu) € Cy) 2)

The expressions ag (t) and v (t) are, respectively, the H-intersection number
and U-intersection number for the trial sequence t. When H is U-rational, these
numbers coincide. More generally, the axiom may be applied to hypothesized deci-
sion rules H that are not necessarily obtained from utility maximization. ARSP says
that the sum of choice probabilities over a finite sequence of trials is no larger than
the maximum number of successes that an admissible decision rule [alternately, an
admissible utility function] can produce. A central result for the revealed distribu-
tion problem, due to McFadden and Richter (1971), is that under some regularity
conditions, ARSP is necessary and sufficient for consistency of observed choice
probabilities with a specified theory of choice behavior.
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3 Finite families of choice situations
3.1 Discussion

In psychometric and voting applications, as well as discrete choice applications in
economics and marketing, it is natural to consider choice situations in which the
space of possible alternatives is finite. The classical economic choice problem can
also be interpreted as finite when the index set Q of budgets is finite, so that X can
be partitioned into a finite family of subsets {Xy, ..., X,,} with the property for
eachi =1,...,mand q € Q, either X; C B(q) or X; N B(gq) = 0, and X is the
field generated by the partition. In this case, observations provide no information
on choice behavior within partition sets, so that the partition sets can themselves
be defined as the objects of choice.

Throughout this section, we will define the index set Q as the family of feasible
“budget sets” in X, and name singleton sets by their elements, so that ITg(x)
denotes a choice probability for C = {z} when B is a feasible choice set in the
family Q, and by construction I7g(z) = 0 for ¢ B. Note that if X contains m
elements, then there are m! possible total orders of these elements. We will represent
these orders by the finite family U of utility functions from X onto the integers
{1, ...,m}; note that this definition excludes ties, so that utility-maximizing choice
functions will be decisive.

The revealed stochastic preference problem was originally examined for the
case of X finite by Marschak (1960), Block and Marschak (1960), and Luce and
Suppes (1965), and it is for this case that the most complete characterizations of
a solution have been given, by McFadden and Richter (1971, 1990), Falmagne
(1978), and Barbara (1990). A closely related result with a different application
was obtained by Freedman and Purves (1969). We will need several definitions.

3.2 Definitions

3.2.1. A set Q of choice situations forms a net if for every feasible set of alterna-
tives, every larger set contained in X is also feasible; i.e.,if B € Qand A C X\B,
then B U A € Q. A set of choice situations is exhaustive if it forms a net and it
contains each singleton in X.

3.2.2.  Suppose choice situations Q form a net. Let #(A) denote the number of
elements in a subset A of X. For x € X\ A € Q, the Block-Marschak polynomial
Ko, A is the function

#(A)
Koa= Y ()N 3" Txc(@) . 3)
i=0 CCA&#(C)=i

The Block-Marschak polynomials can also be defined recursively, with

K::r,@ = Hx(l'),
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Kea=Ixa@) - > Kuc,
CcA

forall A C X\B and B € Q; see Falmagne (1978, Theorem 2). An implication
of this construction is ITg(z) = > ccx\p Ka,c for B € Q. When the choice
probabilities are the result of utility maximization, Barbara and Pattanaik (1986)
provide a useful interpretation of K, o as the probability of the event that x is
ranked behind the elements of A and ahead of all the remaining elements in X\ A..

For a trial (B, z) with z € B € Q, and for u € U, define ag 4, = 1(x =
argmax, ¢gu(x’)). Form a column vector m composed of subvectors for each
B € Q, with each subvector composed of the choice probabilities IIg(z) for
2 € B. Form the matrix A with element ag , , in the row corresponding to the
trial (B, x) and column u for v € U. An element of A is one if the associated trial
is a success for the specified utility function, and is zero otherwise. Then, integer-
weighted row sums of A will be the number of successes attainable for a specified
trial sequence (with repetitions given by the integer weights) for the various utility
functions, and the maximum of these rows sums will be the U-intersection number
for the trial sequence.

3.3 Theorem

If X is finite, U is the class of utility functions that totally order X, Q is a family
of choice situations, with B € Q a non-empty subset of X, and ITg () is a choice
probability for x € B € Q satisfying IIg(B) = 1, then the following conditions
are equivalent:

(a) There exists a probability v on I/ that rationalizes the choice probability; i.e.,

g(z) = Z aB gy uvy for zeBeQ. (4)
uelU

(b) The system of linear inequalities 7 < Av,v > 0,1'v < 1 has a solution.

(c) The linear program min,, g 1’ssubjecttor > 0,5 >0, Av+s>m,1'v <1
has an optimal solution with s = 0.

(d) The linear program max,. ,(r'm—t) subjectto0 < r < 1,¢ > 0,and ' A < t1’
has no positive solution.

(e) The choice probabilities ITg(z),z € B € Q, satisfy ARSP [cf 2.4].
If the set Q of feasible choice situations forms a net, then (a)—(e) are equivalent
to

(f) The Block-Marschak polynomials K, x\g for z € B € Q, are non-negative.

Proof. 1f a probability v satisfies (a), then it satisfies (b) with m = Av. Conversely,
if 7 satisfies (b), then m = Aw since 7 satisfies IIg(B) = 1, so that (a) is satisfied.
But v solves (b) if and only if v and s = 0 solve (c). The linear program (d) is
dual to the linear program (c), so that (c) has an optimal solution with s = 0 if and
only if (d) has no positive solution; see Karlin (1959, V.4.1). An optimal solution to
(d) satisfies t = max, r’ A,, where A, is a column of A. Thus, (d) has a positive
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optimal solution if and only if for some r satisfying 0 < r < 1, one has r'm >
t = max, r’ A,. Butif this is true, then one can achieve the strict inequality with a
vector r whose components are all rational numbers. Clear a common denominator
so that r is a vector of non-negative integers. Then, max,, 7’ A, is the intersection
number of the sequence of trials with the components of r giving the number of
repetitions for each trial, so that (d) has a positive solution if and only if ARSP in
(e) is violated. This establishes that (a)—(e) are equivalent.

Consider condition (f), and suppose Q forms a net so that the Block-Marschak
polynomials K, A are defined for v € X\A € Q. Letr =< rq,...,r, > denote
an ordered sequence of the elements of a set A = {ry,...,7x} C X, where k =
0,...,#(X), and Ra denote the family of all ordered sequences r of the elements
of A.Let B\r denote the set of elements of B that are not contained in the sequence
r. For r C B, define

Se,B = {u € Ulu(ry) > ... > u(rg) > u(z) for x € B\r}.

Then, S, B contains the utility functions for which the elements in r are ranked
in descending order and are better than any remaining elements in B. If (a) holds,
it is immediate from the construction of S, g that for v € B € Q,IIg(z) =
v(S<x>B).Thesets S, g for B € Q have the property that S, x> g forz € B\r
is a partition of S; g (Falmagne, 1978, Lemma 1) and for x € B € Q and
A =X\B,Scx> B = Uc<aUreRrg S<r,x>,x, with the sets in this union disjoint
(Falmagne, 1978, Lemma 2). Note that UzexS<x> x = U. The family of sets
To = {S<rx>x|r € Be Qandr € R¢ for C C X\B} then form a Boolean
semi-algebra (Neveu, 1965, 1.6.1). Consider the sets M, 4 = {u € Ulu(z') >
u(z) > u(z”)forz’ € Aandx # 2" € X\A} = Upycrp S<r,x>,x, and note that
the sets in the last union are disjoint. Barbara and Pattanaik (1986, Theorem 2.1)
utilize the recursive definition of Kx a to prove by induction for z € X\ A € Q
that when (a) holds, K, o = v(My A) = ErCRA V(S<rx>x) > 0.

Then, (a) implies (f).

Suppose that the Block-Marschak polynomials are non-negative for a class of
feasible choice sets Q that forms a net, so that (f) holds. Following Falmagne (1978,
Theorem 4), construct a set-valued function v on Ty in the following steps:

(1) Forz € X, v(Scx>x) = Ky g = IIx ().

(2) Forz,y € X, o # y,v(Scyx>x) = Ky 1y} = IIx\ ) () — x(2).

(3) Suppose v has been defined for S, x withr € R 4 forall A suchthat X\ A € Q
and #(A) < k. Suppose A meets this condition with #(A) = k — 1, and
suppose z € X\ A satisfies (X\A) Ux € Q. Define A =} p v(Srx).
Then, define v(S<y x> x ) by the recursion (S<r x> x) = Ky.a - v(S,x)/A
if A > 0, and otherwise v(S<r x> x) = 0.

It is immediate from this construction and the fact that S, x~ x is a partition of
S, x for x € X\r that v is non-negative and additive on Zy, with v(U) = 1;
see Falmagne (1978, Lemma 4). Then v has a unique extension to a probability
on the Boolean algebra 7 generated by Z; (Neveu, 1964, 1.6.1). Further,defining
v(A) = sup{r(B)|B € T&B C A} for A C U extends v to a probability on
the Boolean algebra of all subsets of U; see Neveu (1965, 1.6.2). The final step of
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the proof is to show that the constructed probability v satisfies (a). Since ITg () =
chX\B Kz c for B € Q, it is sufficient to show that C; A = (Mg a) =
> rca V(Scr x> x) for X\ A € Q. But the construction v(S<y x> x) = Ky a -
v(Sy x)/A implies ZreRA V(S<rx> x) = Ky, a. This completes the proof. O

3.4 Remarks

The equivalence of (a)—(e) was established by McFadden and Richter (1971,1990).
The equivalence of (a) and (f) when the family of feasible choice sets is exhaustive
was established by Falmagne (1978), with useful interpretation and refinements
given by Barbara and Pattianiak (1986). Theorem 3.3 generalizes the Falmagne
result slightly by noting that it is not necessary that the feasible choice sets be
exhaustive, provided that they form a net so that the Block-Marschak polynomials
are defined.

The linear programs (c) and (d) provide finite algorithms that can, in principle,
determine if observed choice probabilities can be rationalized. These are, further,
completely general, requiring no particular structure for the set of feasible choice
situations. The construction for condition (f) is also a finite algorithm, with the
advantage that each step in the recursive construction of the measure v defines a
probability on a Boolean semi-algebra of subsets of /. In some applications, such
as construction of bounds, this intermediate information may be directly useful. The
primary limitation of the Block-Marschak polynomial condition is that it requires
that the feasible choice sets form a net. This excludes some natural applications,
such as those where only paired comparisons are observed, or those defined by
economic budget sets for a finite number of price vectors.

Part of the literature on stochastic choice has concentrated on situations where
decision-makers are faced with binary choice situations (see Luce, 1959; McLen-
non, 1991; Fishburn, 1999). Falmagne’s condition on the Block—Marschak poly-
nomials is not applicable to this case, and while ARSP is applicable, it does not
fully exploit the geometry of the polytope containing the vectors of rationalizable-
choice probabilities. Fishburn (1992) surveys the results on this problem, including
the mathematical literature on the polytopes generated by the decisive preference
preorders.

4 Extension of set functions
4.1 The dominance problem

The results of this paper for the non-finite case hinge on the following mathematical
problem: If P is a non-negative bounded set function on a family S of subsets of
a non-empty set H, find a probability 7 on the Boolean algebra Z generated by S
such that 7(S) > P(S) for S € S. The following axiom is the key to the existence
of a solution.
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4.2 The dominance axiom

For each finite sequence t =< Sy, ..., S,, > in S, with repetitions allowed,

=1 =1

4.3 Finitely-additive extension theorem

P is a non-negative bounded set function satisfying the dominance axiom on a
family S of subsets of a non-empty set H if and only if there exists a finitely
additive probability 7 on a Boolean algebra Z of subsets of H containing S such
that n(S) > P(S) for S € S. If, further, S is closed under complementation and
contains H, and P satisfies P(S) + P(S¢) = 1for S € S, then n(S) = P(S) for
Ses.

Proof. Necessity of the dominance axiom. Let Sy, ..., S,, be a sequence of sets in
S, and Ty, ..., T, the partition of H that they induce. Then T; € Z. Let k; equal
the number of sets S; containing T';. Then

n n m

DOP(S:) <D 0(S) = D ks n(T) < maxk; = ap(< S8, >).
i=1 i=1 j=1 -

Sufficiency of the dominance axiom. Suppose P satisfies the dominance axiom. Let
Y denote the linear space spanned by the indicator functions 1g of the sets S € Z,
and Z denote its linear subspace spanned by the indicator functions 1g of the sets
S € S. Define on Y the norm || f ||= supgen|f(d)|. Define a convex cone in Z,

W = {f €Z|f= Z kilg, for m>0, non-negative scalars k;, and S; € S},
i=1

and on W define the functional

p(f) = sup { S kPS)If = kils, form >0,
=1

=1

non-negative scalars k;, and S; € S } .

On the space R x Z with the norm |r|+ || f || for (r, f) € R x Z, define the sets
AL ={(r,f) e RxZ|r >|| f |} and Az = {(r,f) € R x W|r < p(f)}.
Then A; and A, are convex cones, and A; has a non-empty interior in the
norm topology of Z. Suppose A; and A, have a common point (7%, f°). Then,
|| £O 1< r® < p(f°) — e for some positive . From the definition of p( f), there ex-
ists a representation f0 = >""" | k; 1, such that p(f°) < Y, k; P(S;) + /2.
Then supgepy Y ey kils,(d) < >oi~, kiP(S;) — /2. Since this inequality is
continuous in the k;, these numbers can be chosen to be rational, and a common de-
nominator cleared so that the inequality sup ey > iy ki 1s,(d) < v, ki P(S;)
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holds for some k; integral. Considering a sequence of sets S; with repetitions k;
for s =1, ..., m gives a violation of the dominance axiom. Hence, A; and A, are
disjoint. A separating hyperplane theorem (Dunford and Schwartz (1964, V.2.8)
implies the existence of a non-zero continuous linear functional (\,{) on R x Z
such that \r — {(f) > 0 for (r, f) € Ay and Ar — ((f) < 0 for (r, f) € As.
If A < 0, the first inequality holds at (1,0) € A; only if A = 0. However, A = 0
requires ((f) < 0 for all f € Z, implying {(f) = 0, a contradiction of (A, ()
non-zero. Hence, A > 0, and we can normalize it to one. Then, the first inequality
implies || f ||> ¢(f) on Z, while the second inequality implies ((1g) > P(S) for
S € §. The Hahn-Banach theorem implies ¢ can be extended to a linear functional
on'Y satisfying (f) <|| f ||. Then n(S) = {(1s) is a finitely additive probability
satisfying the dominance condition n(S) > P(S) for S € S.

If S is closed under complementation and P(S) + P(S¢) = 1 for S € S, then
the inequality 1 = P(S) + P(S¢) < n(S) + n(S°¢) = 1 implies n(S) = P(S) for
Ses. o

4.4 Compact families

A family /C of subsets of a set H is compact if every sequence of members with the
finite intersection property has a non-empty intersection. The family formed from
IC by the operations of finite union and countable intersection is again compact
(Neveu, 1965, 1.6.1).

4.5 Tightness

Suppose a non-negative bounded set function P is defined on a family S of subsets
of a set H. Suppose that S is closed under complementation and contains H, and
that P(S) + P(S°) = 1 for S € S. The function P is tight if there is a compact
family of subsets K of H such that for each ¢ > 0 and S € S there exist S’ € S
and K € L suchthat " C K C Sand P(S) — P(S') <e.

The definition does not require that P(K) be defined for K € K, but simplifies
(to the requirement that P(S) — P(K) < ¢ for some K C S and K € K) when
IC C S.If S is (almost surely) finite, it is itself a compact class.> More generally,
suppose H can be partitioned into “atoms” {Hj, ..., Hx} plus a non-atomic set
Hy, Sy is a family of subsets of Hy, and S is a family whose members can be
written as finite unions of sets in Sy and the atoms Hj, ..., Hy, or complements of
such sets. If ICy is a compact class of subsets of Hy that is closed under countable
intersection, then /C formed by finite unions of Hy, ..., Hy, and sets K € Ky is
again a compact class. Thus, P can satisfy our definition of tightness even if it has
a finite number of atoms. When S is a Boolean algebra and K is contained in S, our
definition of tightness coincides with that of Neveu (1965, 1.6.3). The following
result relates tightness and countable additivity.

3 The class S is almost surely finite if it is countable, and P(S) = 0 for all except a finite number
of sets Sin S.
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4.6. Lemma. If P is a non-negative, finitely additive set function defined on the
Boolean algebra 7 generated by a family S of subsets of a non-empty set H, and
if P is tight on S, then P is countably additive on Zy, and has a unique countably
additive extension to the Boolean o-algebra 7 generated by Z,. Conversely, if P is
countably additive on a Boolean o-algebra Z, then each of the following conditions
is sufficient for it to be tight:

(a) H is a Polish space (i.e., a complete separable metric space) and 7 is its Borel
o—field.

(b) Hisacompact Hausdorff space with a countable base, and Z is its Borel o-field.

(c) H is a countable space, and Z is the field of all subsets of H.

Proof. Suppose P is finitely additive on the Boolean algebra Z; generated by a
family of sets S, and P is tight on S. We show that P is tight on Z, and consequently
o-additive. First let T,, = N}_;S; be a finite intersection of sets S; € S. The
tightness assumption on P implies there exists a compact class C of subsets of
H, which we take without loss of generality to be closed under finite union and
countable intersection, such that given € > 0 there exist S} C C; C S; with
C; € K and P(S;) — P(S}) < e-27*. The set N_, C; is in K. The set inclusion
(NP1 S)\(NF=1S%) € U (S;\S;) and the additivity and sub-additivity of P
imply

P(NLs) -2 (NLs) =P (s (NLs)

Z S = DIP(S) ~ P(S))] < e

Then P satisfies the definition for tightness on the family Sy of all sets formed
from S by the operation of countable intersection. Next, cons1der the family Ss of
all sets formed from S; by the operation of finite union V = U 1 T; of pairwise
disjoint sets T; € &;. From the previous construction, there ex1st C € K and
T, € & satisfying T, C C; C T; and P(T;) — P(T)) < e/N, implying
U;vlej S ’C,V’ = U;-V:lT; € Sy, and P(V) — P(V’) < e. But §; = T
(Neveu, 1965 1.2.2), so that we have established that P is tight on Z .

Suppose sets V,,, V! € Ty and C,, € K satisfy V!, C C,, CV,,, P(V,) —
P(V!) < e and V,, \ 0. Then, C,, \, @, and compactness implies there exists
N such that Viy € Cx = 0. Then P(V’y) = 0, implying P(Vy) < ¢, and
P is continuous at @, and hence countably additive. The Hahn extension theorem
(Dunford, 1964, I11.5.8) establishes that P has a unique countably additive extension
to the Boolean o-algebra Z generated by Zj.

Consider the sufficient conditions for tightness. Condition (a) is given by Neveu
(1965), 11.7.3. Condition (b) reduces to condition (a) by the Urysohm metrization
theorem. Condition (c) reduces to condition (a) by assigning H the metric p(z, y) =

1(z # y). O
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4.7 Countably additive extension theorem

Suppose S is a family of subsets of a non-empty set H that contains H and is closed
under complementation, and P is a non-negative bounded set function on S that
satisfies P(S)+ P(S°) = 1 for S € S and s tight. Then, P satisfies the dominance
axiom if and only if there exists a countably additive probability 7 on the Boolean
o-algebra Z of subsets of H generated by S such that n(S) = P(S) for S € S.

Proof. The proof of Theorem 4.3 establishes the existence of 7 finitely additive on
7 and satisfying n(S) = P(S) for S € S if and only if the dominance axiom holds.
This also establishes the necessity of the dominance axiom when 7 is countably
additive. For the sufficiency of the dominance axiom, apply the first resultin Lemma
4.6 to the finitely additive measure 7. O

5 Solutions for general revealed stochastic preference problems
5.1 Discussion

Consider the revealed distribution problem of 2.3.1, where I, is a probability on
X for ¢ € Q, and one seeks a probability ( on H, or alternately a probability v
on U, that rationalizes the observed choice probabilities. Theorem 5.2 establishes
that the Axiom of Revealed Stochastic Preference (ARSP) in 2.4 is necessary and
sufficient for the existence of a finitely additive probability solving the revealed dis-
tribution problem. Its corollaries extend this result to solve the revealed dominating
distribution problem. Theorem 5.3 gives regularity conditions under which ARSP
is necessary and sufficient for the existence of a countably additive representation
solving the revealed distribution problem. Its corollaries show that these regularity
conditions are met for a formulation of the classical economic consumer revealed
preference problem.

5.2 Theorem

Suppose 1, is a finitely additive probability on X, ¢ € Q, satisfying IT,(C) +
II,(C°) = 1 for each C € X. Then ARSP is necessary and sufficient for the
existence of a finitely additive probability n on H solving the revealed distribution
problem.

Proof. Recall that (H, H) is the measurable space of hypothesized decision rules,
with H(q, C) = {d € H|d(¢q) C C} for ¢ € Q and C € X. Define the class of
sets S = {H(q,C)|q € Q and C € X'}. By assumption, # contains S.

Necessity. Suppose 7 is a finitely additive probability satisfying I7,(C) =
n(H(q,C)) for ¢ € Q and C € X. For a finite sequence of trials t =
< (q1,C1), s (gm, Cm) > with C; € X, q; € Q, define S; = H(g;, C;),i =
1,...,m,and P(S;) = n(H(g;, C;)). Theorem 4.3 then implies that 7 satisfies the
dominance axiom; i.e., Y .-, II,,(C;) < agy(t). This condition coincides with
ARSP.
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Sufficiency. Suppose ARSP. If I, (Cy) > II,,(Cz) and H(g:,Cq) =
H(QQ,CQ),theH

15, (C1) + 15, (C2°) < am(< H(q1, C1), H(gz, C3) >) = 1,

implying II,, (C1) < II,,(Cs2). Hence, one can define uniquely a set function
P on S satisfying P(H(q,C)) = II,(C),C € X,q € Q. By construction, P
satisfies the dominance axiom. Theorem 4.3 then establishes that the dominance
problem has a solution, and hence that there exists a finitely additive probability 7
on H such that I7,(C) < n(H(q, C)) for C € X, ¢ € Q. Since I1, is a probability
satisfying IT,(C) + II,(C¢) = 1, this solution satisfies II,(C) = n(H(q, C)) for
C € X, q € Q, and hence solves the revealed distribution problem. 0O

5.2.1 Corollary to Theorem 5.2. 1f 11, is a non-negative bounded set function on
X, q € Q, then a necessary and sufficient condition for the existence of a finitely
additive probability  on H satisfying I1,(C) < n(H(g,C)) for C € X,q € Q,
is that 11, satisfy ARSP.

5.2.2 Corollary to Theorem 5.2. 1f 11, and II ; are non-negative bounded set
functions on X,q € Q, then a necessary and sufficient condition for the ex-
istence of a finitely additive probability n on H solving the revealed domi-
nating distribution problem is that the function II, on X,q € Q defined by
I1,(C) = max{II, (C),1 — I,/ (C°)} satisfy ARSP.

Proof. Necessity of ARSP. If there exists a probability  on A such that 11, (C) <
n(H(g,C)) < I17(C) for all C € X, then n(H(g,C%)) < I1f(C*), implying
1 — IT}(C¢) < n(H(g, C)), and hence n(H(g, C®)) > II,(C). Corollary 5.2.2
then implies that 11, satisfies ARSP.

Sufficiency of ARSP. If II, satisfies ARSP, then by Corollary 5.2.1, there exists
n on H such that I7,(C) < n(H(g, C)). Then 1, (C) < n(H(q,C)) and 1 —
ITF(C¢) < n(H(q, C®)) imply the result. O

5.3 Theorem

Suppose the universe of alternatives X is a complete separable metric space, and
let X be its Borel o—field. Suppose the feasible choice sets B(g) are non-empty
compact subsets of X. Suppose the set H of decision rules consistent with a hy-
pothesis of rationality is given a topology whose basis are the sets H(g, C) for
g € Q and open C € X. Suppose that H is a compact space in this topology,
and let H be its Borel o-field. Suppose 11, is a countably additive probability on
X, q € Q, satisfying IT,(C) + II,(C¢) = 1 foreach C € X, and II,(B(q)) = 1.
Then ARSP is necessary and sufficient for the existence of a countably additive
probability 7 on H solving the revealed distribution problem.

Proof. The necessity of ARSP is immediate from Theorem 5.2. To prove suffi-
ciency, suppose ARSP holds, and that 7 is a finitely additive probability, given
by Theorem 5.2, that satisfies n(H(q,C)) = II,(C) for ¢ € Q,C € X.
For C € X open, the set H(q,C)¢ is closed by construction, and satisfies
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n(H(q, C)%) = 1— II(C) = II(C*). Then, the family S = {H(q, C)°|q € Q,
open C € X'} is a family of closed subsets of a compact space, and is therefore a
compact class. On the family S = {H(q, C)¢|q € Q, C € X'}, n satisfies

n(H(g, C)°) = I1,(C) = sup{I1,(C"*))|C" open, C C C'}
= sup{n(H(g, C")*)|C’ open, C C C'},

since by Lemma 4.6 II, is countably additive, hence tight, on the compact feasible
choice sets B(q). Therefore, ) is tight on S, and Lemma 4.6 implies that it is
countably additive on H. |

5.3.1 Corollary. Suppose X is a convex compact metric space with metric p, and
the feasible choice situations B(q) are convex closed non-empty subsets of X.
Suppose I1, is a (countably additive) probability on X', ¢ € Q, satisfying I1,(C) +
II,(C°) = 1 for each C € X, and I1,(B(g)) = 1. Suppose decision-makers
are hypothesized to maximize utilities from a family U of uniformly bounded
functions on X that are equicontinuous; i.e., for each ¢ > 0 there exists & > 0 such
that z, 2’ € X and p(z,2") < ¢ implies sup,,cy |u(z) — u(z’)| < e. Then ARSP
is necessary and sufficient for the existence of a (countably additive) probability v
on U solving the revealed distribution problem.

Proof. The Arzela-Ascoli theorem (Dunford and Schwartz, 1964, IV.6.8) estab-
lishes that U is a compact subset of the space C(X) of continuous functions
on X, with || u ||= sup,ex |u(z)| for u € C(X). For open C € X, the set
U(q,C) = {u € Ulsup,eccnp(q) () > supyepg)cu(a’)} is open. To
show this, suppose u € U(q, C). Then there exists 2/ € B(q) with u(z”) >
SUP,ep(q)\c U(7) + € for some € > 0. Consider v’ satisfying || u — v [|[< /3.
Then, u'(z"”) > sup,eg(gnc ¥ (2') + /3, implying v’ € U(g, C). Hence,
U(g, C) with C open is an open set in U. Theorem 5.3 then gives the result.
O

5.3.2 Corollary. Suppose X is a convex compact subset of a locally convex normed
linear space L, and the feasible choice situations B(q) are convex closed non-
empty subsets of X. Suppose II, is a countably additive probability on X" for
q € Q, satisfying I1,(C) + II,(C°) = 1 for each C € X, and II,(B(q)) = 1.
Suppose decision-makers are hypothesized to maximize utilities from a family U of
uniformly bounded and concave functions on an open set containing X. Then ARSP
is necessary and sufficient for the existence of a countably additive probability v
on U solving the revealed distribution problem.

Proof. Assume that the uniform bound on v € U is || u ||< 1. Each point in X has
an open neighborhood that is contained in the open set on which utility functions
are defined. Since X is compact, it has a maximum diameter . Also, one can
extract from the open neighborhoods a finite sub-cover; let A be the diameter of
the smallest neighborhood in this sub-cover. Suppose z, ' € X. By construction,
the domain of the functions in U contains  — (' — 2)A/u. Then, for0 < 6 < 1,
concavity implies

uw((1—0)x + 0z") > (1 — O)u(z) + Ou(x’),
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oru(z +0(z' —x)) —u(x) > Ou(z") — u(z)] > —20

and

u(x) = u((M(Op + X)) (@ +6(z —z))
+(0u/(Op + X)) (@ — (2" = 2)A/ )
(

)
> (M (Op+ N))u(z +0(z' — )
+(Op/(Op+ N)u(z — (' — )M/ ), or
u(z +0(2" — ) —u(x) < (Op/(On+ N))[u( +0(z" - x))
—u(z — (¢ = 2)A/p)] < 20p/X .

Given € > 0, choose § = & - min(1/2,A/2u). Then, U satisfies the condition
that z, 2’ € X with p(z,z’) < 6 implies |u(x) — u(z')| < ¢ for all uw € U, and
Corollary 5.3.1 gives the result. O

5.4 Remarks

Theorem 5.3 is difficult to apply without sufficient conditions for the compactness
of the set H of hypothesized decision rules. Corollary 5.3.2, which was suggested
by Rosa Matzkin, provides conditions which correspond to the classical revealed
preference problem. The requirement that the utility functions v € U be defined
on an open set containing X can be replaced by a condition on the subgradient
I'(x,u) ={p € L*|u(y) — u(z) < p(y — x) for y € X'} that there exist a bound
K > Osuchthat @ # I'(z,u)N{p € L*| || p ||< K} forz € X,u € U (see
Matzkin, 1992; Brown and Matzkin, 1996).

If in Corollary 5.3.1, Q is compact and B(g) is a continuous correspondence,
then it is sufficient to test ARSP for trial sequences drawn from a countable subset
of the set of possible trials, and if ARSP fails, this will be detected in a finite
number of trials (see McFadden, 1979). Thus, under these regularity conditions, a
test of the validity of ARSP is computable. Going further, one can consider a net
formed by nests of trial sequences t =< (g1, C1), ..., (Gm, Cin) >; i.e., sequences
t; C to C ..., and utilize the linear program in Theorem 3.1(c) to recover the
convex closed sets G of rationalizing probabilities on the finite algebras of subsets
of H induced by the trial sequences t;, provided ARSP holds. For each set H;
in the Boolean algebra generated by the H(g, C)¢ for C open and ¢ € Q, the
net formed by the probabilities 74 (H;) for 7 € G, and a net of trial sequences
t containing the trials that enter the finite intersection and union operations that
produce H; will contain a sub-net that converges to 7(H; ) for a probability 7 that
solves the revealed distribution problem in Theorem 5.2. Thus, there is a sequence
of finite linear programming problems that provide a computable test of ARSP, and
computable bounds for the rationalizing probabilities.

Two published papers have considered somewhat different versions of the issue
of countably additive rationalizations. McFadden (1975) examines the question of
when a joint probability over endowments and a compact set of preferences can be
found that rationalize observed moments, such as per capita mean market demands.
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By restricting and redefining the observed moments, the general moment problem
can be specialized to the revealed distribution problem. Cohen (1980) extends the
finite analysis considered in Section 3 to the case where X is infinite, but all choice
sets B(q), ¢ € Q, are finite. The Block-Marschak polynomials are defined for each
finite restriction of X, and a net of choice sets contained in this restriction. Now
consider a net of nested restrictions of X, and generalized sequences of the prob-
ability measures constructed by Falmagne’s method, as described in Theorem 3.3.
Conditions are then given under which a generalized subsequence has a countably
additive limit. Cohen’s proof is difficult, but the essential idea is that when choices
can be rationalized for all nested sequences of finite X, and compactness condi-
tions hold in the limit so that there can be no countable union of disjoint sets with
positive measure, then the Kolmogorov consistency theorem and the Caratheodory
extension theorem apply to achieve countable additivity. Theorem 5.3 and its corol-
laries provide more easily checked conditions for countable additivity, and handle
the economic choice application where choice sets are not finite.

6 Extensions

New revealed preference problems can be generated by varying the family of fea-
sible choice sets, the class of permissible decision rules, and the structure of ob-
servations. For example, one could consider classes of permissible choice rules
that are either more restrictive than classical preference maximization (e.g., op-
timization of smooth preferences, or preferences that are homothetic, have linear
Engle curves, or are in parametric families) or less restrictive (e.g., incomplete op-
timization of preferences, preferences that are not preorders, or preferences that are
context or perception-dependent).* One could also consider observational situa-
tions encountered in practice (e.g., composition of market and experimental choice
data, conditional distributions or conditional moments of choices given observable
consumer characteristics). The classical revealed preference problem is tradition-
ally formulated under the assumption that an individual’s choices are observed in
a sequence of static budget situations without carry-over of durables, experience,
or learning from one situation to the next. The revealed distribution problem as-
sumes that individuals are not tracked and that information is collected only on a
population’s distributions of choices. However, our analysis of this problem has
maintained the assumption that the budget situations are static, without dynamics
introduced by intertemporal maximization and state dependence. A much broader
class of revealed preference problems could be formulated that allow these dynamic
elements, and account explicitly for the panel data structure implicit in observation
of repeated choice situations. For example, the observed choices of an individual in
repeated choice situations may be interpreted as a realization of a stochastic process
indexed by the choice situations, and the distributionof the stochastic process in a
population, or its moments, may constitute the observations that can be analyzed.

4 Homotheticity restrictions permit stochastic preference versions of the computational tests of re-
vealed preference theory developed by Varian (1982,1983). One could go further and formulate para-
metric or nonparametric econometric tests of ARSP for a variety of hypothesized decision models.



