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Preface

This book discusses recent advances in biomedical sensing as well as image
analysis and processing techniques so as to develop a unified framework for
computer-aided disease diagnosis. One of the aims is to discuss different approa-
ches that will enable us to efficiently and reliably identify different features that are
present in biomedical images. Another aim is to provide a generic framework for
image classification.

The following four biomedical imaging modalities are considered: terahertz
(THz) imaging, dynamic contrast-enhanced MRIs (DCE-MRIs) including func-
tional MRI (fMRI), retinal fundus imaging and optical coherence tomography
(OCT). THz imaging is chosen as it is a very promising emergent diagnostic
modality that complements MRI. Under certain circumstances, it can also be
independently used to identify and assess disease proliferation. OCT is a
non-invasive imaging technique relying on low-coherence interferometry to gen-
erate in vivo, cross-sectional imagery of ocular tissue, and it complements fundus
photography. Furthermore, OCT data sets have a structure similar to that found in
THz imaging and MRI. Commonalities in these data structures can be explored by
developing a unified multichannel signal processing framework for biomedical
image analysis. Integration of complementary data sets provides additional features
which can assist in inferring disease proliferation.

This book also provides an account of recent advances in artificial intelligence
(AI) algorithms that may be applied to the multichannel framework discussed.
Feature extraction and classification methods taking into consideration recent
advances in support vector machine (SVM) and extreme learning machine
(ELM) classifiers are also explained, and these formulations are extended to higher
dimensional spaces for multiclass signal classification. The discussion also provides
some future directions for machine learning approaches using Clifford algebra
classifiers and deep learning architectures with geometric neurons. These recent
advances can potentially lead to particularly powerful artificial intelligence AI
algorithms that may one day automate several diagnostic processes.

Because of the multidisciplinary exposure of the subject, this book should be
useful to final-year undergraduate or graduate students and research practitioners in
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Biomedical Engineering, Applied Physics and Computer Science departments, who
have already some familiarity with the topics discussed and are interested in
learning about the latest advances on the subject. The different topics covered
should also provide new ideas for discipline hopping, improving employability and
career progression.

In addition, Chaps. 3–6 this book provides a generic framework for biomedical
signal processing and classification which should be useful to computer science
practitioners and AI software developers entering the biomedical field. The pro-
posed multichannel framework points towards the direction of developing an open
software architecture for signal denoising and feature extraction upon which spe-
cialized routines – tailored to different biomedical applications – can be developed.
This is also beneficial from a software standardization perspective.

One of the issues commonly encountered in biomedical image analysis is that
scientists from different disciplines focus on the different aspects associated with an
image. A molecular spectroscopist will be focusing on locations in an image where
efficient energy exchange between the excitatory signal and the tissue under study
has taken place. This process would include the identification of specific
ro-vibrational lines (for gases) or bands (for liquids and solids) as biomarkers under
different physiological conditions. In contrast, an engineer would be focusing on
signal processing, whereas a computer scientist on identifying the boundaries
between different types of tissues or identifying and suppressing artefacts arising
from different illumination conditions. In contrast, clinicians would be mostly
concerned with the identification of different types and the pathological state of
tissue as well as the visualization of small regions in the body and the mapping of
opaque objects using a particular imaging technique. All these scientists tend to
operate at different levels of complexity across a range of hierarchy levels from
molecules all the way to the cellular, tissue, organ or organism level. The diversity
of processing algorithms and the fact that modelling at one level of hierarchy does
not scale well to higher levels of complexity due to the multiparametric emergent
properties of biological media, are major contributing factors that have impeded
progress towards automating the diagnostic process. An effort has been made to
account for these different perspectives.

This book is, therefore, structured as follows:
Chapter 1 provides a general introduction to THz spectroscopy and then focuses

on THz-transient spectrometry. The different system configurations and types of
signals recorded are explained. The MRI imaging modality is also introduced. The
tensorial nature of the MRI signal is also explained. THz and MRI time series
analysis are placed in a common signal processing framework on the basis of the
data structures associated with single pixels or voxels. An introduction to retinal
fundus imaging as well as optical coherence tomography is also provided.
Similarities and differences between these four different measurement modalities
are highlighted.

Chapter 2 provides an overview of clinical applications using the four imaging
modalities discussed in Chap. 1. This includes biomedical applications of THz
spectroscopy and MRI, contrast imaging on the basis of tissue water content,
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identification of biomarkers and the visualization of tissue oxygenation levels on
the basis of the BOLD signal observed through fMRI. In addition, possibilities for
combining THz spectroscopy and MRI with other sensing techniques using a
multichannel framework are highlighted. Finally, recent advances in the application
of fundus imaging to disease diagnosis and the application of OCT imaging for the
visualization of increased vascularization in mammograms as well as the detection
of abnormalities in infant brains are reported.

The following chapters take the view that the problem of developing automated
classifier solutions for assessing disease progression should be seen as the tuning of
three different modules that may be individually optimized for particular samples
and data sets: the data acquisition imaging module, the data denoising
pre-processing and feature extraction module and finally the classifier module.
Tuning may be tailored separately for each module according to the features
resolved by each measurement modality so as to optimize the classifier learning
process.

Chapter 3 discusses different signal denoising methodologies applicable to both
THz and MRI systems as well as fundus photography and OCT. Data windowing,
apodization, parametric model fitting and multiresolution feature extraction
methodologies with wavelets as well as adaptive wavelets for both THz and MRI
data sets are also reviewed. The above discussions are effectively focusing on
robust feature extraction and selection strategies, firstly from a single pixel per-
spective and then from an imaging perspective. Benefits from adopting a fractional
order calculus approach to detect features in an image are explained. Recent
advances in fundus image denoising are also highlighted. A multiresolution image
fusion scheme that could be used to combine MRI with THz data sets is proposed.
This chapter then discusses several feature selection strategies for both THz and
MRI data sets. In the case of THz data sets features in time, frequency or wavelet
domains associated with single pixels are considered. In the case of MRI data sets,
the discussion focuses on features observed across entire images, taking into con-
sideration textural information. Spatiotemporal correlations across different areas in
an image, as identified through fMRI, are discussed. Advances in a
graph-theoretical framework that can potentially elucidate such correlations are also
mentioned. In addition, feature extraction and selection in retinal fundus imaging
and OCT are reviewed.

Chapter 4 discusses recent advances in different classifier methodologies, with
an emphasis on complex support vector machine and extreme learning machine
approaches. An extension to multidimensional extreme learning machine classifiers
is provided. Examples of binary as well as multiclass classification tasks using THz
data sets are presented. The performance of other classifiers such as multimodal
logistic regression, and naïve Bayesian, in performing classification of THz data
sets is compared. In addition, some recent advances in clustering and segmentation
techniques for THz data sets as well as for fundus images are discussed. Current
methods for automatic retinal vessel classification are highlighted, as it is envisaged
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that the improved edge detection algorithms discussed in the previous chapters in
conjunction with the proposed classification methodologies, can lead to better
discrimination between arteries and veins. Finally, this chapter discusses some
recent advances in automated image classification using performance criteria
directly developed by clinicians.

Chapter 5 provides a more in-depth analysis of MRI data sets. A recently
developed spatiotemporal enhancement methodology for DCE-MRIs that makes
use of a tensorial multichannel framework is explained. Examples from breast
tumour reconstruction are provided to showcase the proposed methodology. It is
shown that tumour voxels registered in three-dimensional space can be recon-
structed better after increasing contrast from background images using the proposed
methodology. The algorithm can be used to perform both feature extraction and
image registration. This chapter also discusses the general structure of supervised
learning algorithms for functional MRI data sets. Advances in supervised multi-
variate learning from fMRI data sets that promise to further elucidate brain disor-
ders are discussed. Finally, the general structure of topological graph kernels in
functional connectivity networks is explained. The prospects for developing
machine learning algorithms that would automatically provide spatiotemporal
associations of brain activity across different regions using graph theory method-
ologies are discussed. A more critical view of what may be achieved taking into
consideration limitations in the fMRI measurement modality is provided. Finally,
some recent advances from the computer vision community of relevance are
highlighted as possible future research directions.

Chapter 6 provides an outlook to future multichannel classifiers, incorporating
multiple features in their input space. Such approaches are also suitable for clas-
sifying multidimensional tensorial data sets. The discussion focuses on Clifford
algebra-based feature classification. A multichannel approach enables the fusion of
information acquired from multiple images at different time stamps, so it can
potentially elucidate disease progression. In addition, this chapter discusses recent
advances in deep learning as related to MRI as well as THz imaging data sets. The
use of geometric neurons which can combine information from complementary
sensing modalities is highlighted as an important future research direction for
feature extraction and classification in MRI. In addition, the proposed Clifford
framework could also benefit the THz imaging community, providing improved
classification results when these systems undergo clinical trials.

Chapter 7 provides some concluding remarks related to the recent advances in
signal processing and classification across the four imaging modalities discussed
throughout this book. It aims to highlight how progress in each of the above
research areas can be shared to accelerate progress across different biomedical
imaging modalities. Furthermore, this chapter summarizes some of the main aspects
of the unified multichannel framework that was developed throughout this book.
Finally, this chapter concludes by providing some future directions towards a
generic framework for the automated quantitative assessment of disease prolifera-
tion. It is envisioned that in the near future, a combination of several biomedical
sensing modalities will be integrated through sensor fusion and that artificial
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intelligence techniques will efficiently use the complementary information, to
improve disease diagnosis.

The authors would like to gratefully acknowledge Dr. John W. Bowen from
Reading University, Prof. Roberto K.H. Galvão from Instituto Tecnológico de
Aeronáutica, São José dos Campos, Brazil, and Prof. Derek Abbott from the
University of Adelaide for their valuable discussions over the years that have led to
the development of our current understanding of the topics discussed in this book.

Melbourne, Australia Xiao-Xia Yin
Reading, UK Sillas Hadjiloucas
Melbourne, Australia Yanchun Zhang
March 2017
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Chapter 1
Introduction and Motivation for Conducting
Medical Image Analysis

The demand for advanced image analysis techniques stems from the recent prolifera-
tion of new biomedical imagingmodalities across the electromagnetic spectrum. The
number of scans currently performed in most hospital environments has exploded
placing unprecedented workloads on personnel associated with their interpretation.
At the same time, we are also witnessing remarkable advances in artificial intelli-
gence (AI). New algorithms are paving the way for the provision of automatic image
interpretation which can lead to improved diagnosis and better understanding of dis-
ease progression. Furthermore, advances in biomedical equipment suitable for home
use are also providing new opportunities for the further proliferation of AI systems
and lead to advances in networked home care technologies which promise to make
possible the remote diagnosis of the onset of disease much earlier than before, thus
minimizing the need for consultation by experts. Such practice is also likely to pro-
vide almost expert opinion at reduced cost. Through these advances, one can foresee
some inevitable developments that will affect how the provision of health care will
be managed in the near future across the developed world.

From a signal processing and AI perspective, most of the imaging modalities
display some underlining commonalities. In order to establish the generic underly-
ing common problems encountered across the various imaging methods, this book
focuses on just four representativemodalities that operate at different parts of the elec-
tromagnetic spectrum: THz pulse imaging or TPI, MRI, fundus imaging and OCT.
The aim of the first chapter is to introduce each measurement modality and explain
how they complement each other. This will enable us to introduce in subsequent
chapters a possible common framework that can lead to unified signal processing
and image classification using machine learning. The common underlying theme in
all four diagnostic methods considered is the imaging of tissue at various states of
hydration and the possibility of providing diagnosis of the onset of disease or an
assessment of disease proliferation on the basis of changes in the physicochemical
environment of the cells, e.g. through changes in blood flow or through the use of
biomarkers which can also lead to textural changes in the tissue. We first discuss

© Springer International Publishing AG 2017
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2 1 Introduction and Motivation for Conducting Medical Image Analysis

the technological aspects of THz spectroscopy, the different system configurations
commonly used as well as the type of signals generated. An introduction to MRI
and recent developments in contrast enhanced imaging is then provided. The need
to develop a tensorial representation of the signal to account for anisotropy is also
highlighted. This chapter also places THz imaging and MRI imaging in a common
multi-dimensional signal processing framework. In addition, an introduction to reti-
nal fundus imaging and OCT imaging is provided. Finally, similarities with the other
two imaging modalities are highlighted. The similarity in these data structures nat-
urally leads to a unified approach for data pre-processing and image classification
extending pattern recognition to new application areas [1].

1.1 Introduction to Time-Resolved Terahertz
Spectroscopy and Imaging

1.1.1 Time Domain and Frequency Domain
THz Spectroscopy

Investigations at the terahertz (THz) part of the electromagnetic (EM) spectrum
loosely defined between 100GHz–10THz are of much relevance to the biological
sciences because THz radiation interacts strongly with polar molecules [2–4]. Bio-
logical tissue is generally composed of polar liquids so discrimination between tissue
types can be made on the basis of water content. The technique is very sensitive in
providing contrast between samples at various degrees of water saturation [5–7], and
has applications in the evaluation of the severity of burns or partially necrotic skin
samples [8] and the imaging of basal cell carcinomas [9–12] which can show an
increase in interstitial water within the diseased tissue [5, 13].

Since THz photons have significantly lower energies (e.g. only 1.24meV at
300GHz) thanX-rays, they have been considered bymany as non-invasive. Although
non-linear interactions between biological tissue and coherent THz radiation have
been predicted by Fröhlich [14] and experimentally verified by the careful work of
Grundler and the analysis of Kaiser [15] in the ’90s, the current and widely held
view is that any measurement technique that operates at THz frequencies should
be evaluated using current guidelines on specific absorption rates. These are only
associated with the thermal effects of the radiation with the tissue; so from a clini-
cal perspective, such irradiation can be considered as non-invasive. Such a view is
also further supported by noting that the Gibbs free energy conveyed in the THz
light beam is insufficient to directly drive chemical reactions. For example, the
molar energy at a frequency f of 100GHz would be given from E = Nhf where
N = 6.023 × 1023 mol−1, Avogadro’s number), and h = 6.626 × 10−34 Js (Planck’s
constant), resulting in a calculated value of only E = 0.04kJmol−1 which is so low
(approximately 100 times lower than the amount of molar energy required for ATP



1.1 Introduction to Time-Resolved Terahertz Spectroscopy and Imaging 3

Fig. 1.1 Multidisciplinary interpretation of the electromagnetic spectrum

hydrolysis) that for most practical purposes; we may assume that the interference
with biochemical processes would be minimal (Fig. 1.1).

Furthermore, in the THz part of the spectrum, many molecules have character-
istic ‘fingerprint’ absorption spectra [16–18]. Substances in the condensed phase
are held together by either ionic, covalent or electrostatic forces, and therefore the
lowest frequency modes will be associated with intermolecular motion [19]. The
interaction between THz radiation and biological molecules, cells, and tissues can
be understood using assumptions of propagation of an angular spectrum of plane
waves through the material [21]. Following standard postulates of dielectric the-
ory, a medium may be characterized in terms of its permittivity ε (the ability of the
medium to be polarized) and conductivity σ (the ability of ions to move through the
medium). At higher frequencies, transitions between different molecular vibrational
and rotational energy levels become increasingly dominant and are more readily
understood using a quantum-mechanical framework [22]. THz pulse spectroscopy
provides information on low-frequency intermolecular vibrational modes [23].

THz imaging can thus be remarkably informative regarding a sample’s compo-
sition. The Fourier transform of the associated time domain waveform over a broad
spectral range allows the calculation of the frequency dependent refractive index and
absorption coefficients of the sample. Sincewavelengths are longer in the THz part of
the spectrum, there is sufficient phase stability in the experimental apparatus enabling
the extraction of phase information by varying the time delay between the THz wave
and the probe beam [16]. When some materials are sufficiently transparent to THz
radiation, it is feasible to measure transmission responses and acquire spectral infor-
mation. Reflectance imaging is also straightforward, and through the combination
of transmittance and reflectance, a spectral absorbance may be inferred. This is not
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always possible at the infrared, optical and ultraviolet parts of the spectrum where
errors, due to scattering of shorter waves due to the surface roughness of the samples,
preclude direct calculations of absorbance. Reduced scattering of THz waves thus
minimises errors in inferred absorbance from measurements of transmittance and
reflectance. Alternative measurement topologies which provide differential absorp-
tion have also been developed; such systems can produce very informative contrast
images for the evaluation of disease progression.

Further advantages of imaging using THz radiation include the improved penetra-
tion depthwithin the tissue and the ability to differentiate between organs on the basis
of tissue water content. Since 70% of the human body is composed of water, a large
proportion of the excitation energy is significantly attenuated and, as a consequence,
the resultant spectra in many biomedical experiments may only be unambiguously
resolved after the application of elaborate post-processing techniques. Excluding
super-resolution techniques, imaging resolution is limited by the diffraction wave-
length and is thus inferior to infrared or optical imaging but superior to microwave
based imaging modalities.

Although much of the pioneering work in building interferometric spectro-
radiometers and other continuous wave measurement systems at the THz part of
the spectrum took place at Queen Mary College over a period of almost 30 years
under the guidance of D. H. Martin [20], it was only during the past two decades that
THz science and technology has flourished as a universally accepted new sensing
modality. Using continuous wave systems [24], there is a variety of instruments that
may be assembled using quasi-optical active and passive components. The AB Mil-
limetre vector network analyser, if available, is the preferred choice for continuous
wave measurements with significant signal-to-noise per spectral bin all the way up to
1.2 THz. It is not, however, as user friendly for extracting scattering parameters as
other commercially available solutions that operate at lower frequencies. An account
of different topologies using null-balance methods can be found in [25] whereas
polarimetric measurements for dichroic samples should ideally be performed using
the topologies discussed in [26, 27] or Fabry-Perot structures, e.g. [28]. Alterna-
tive broadband experimental configurations may include Mach–Zehnder or Martin-
Puplett configurations as discussed in [7, 20, 21]. When high power per spectral bin
is needed, THz imaging may also be performed (at significant cost) with high-power
THz sources under pulsed scanningmode and pulse-gated detection using large scale
facilities (e.g. Jefferson lab, FELIX etc.). Currently, however, bio-medical investiga-
tions using these facilities are fewer than those performed in the physical sciences
e.g. the semiconductor community.

Although there are several THz imaging systems that can be built using contin-
uous wave sources by appropriately adapting the above configurations to perform
raster-imaging of the sample [24], the focus of this book is on time domain spec-
troscopy (TDS) with ultrashort-pulse laser sources because of their recent prolifera-
tion. Such systems are more versatile for biomarker identification than their continu-
ous wave counterparts because they are inherently very broadband without requiring
liquid-helium cooled detectors (heterodyne based continuous wave systems aremore
narrow-band and lack such versatility because of the lack of such wide tunability of
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the sources). Furthermore THz pulse imaging (THz-TPI) has important applications
in in vivo, in vitro and ex vivo biosensing [8, 16, 29, 33]; identifying ‘fingerprint’
resonances due to overtone and combination bands [5, 30].

At this point it is worth noting that there are several similarities between THz-TDS
and the pulsed radar sensing modality. In THz-TDS, the time gated reflections are
analysed directly in the time domain by observing their attenuation, phase delay and
temporal spread after interacting with matter. Good temporal definition can provide
localization of tissue interfaces on the basis of refractive index differences (the real
part associated with impedance mismatch and the complex part with the attenuation
due to the number of absorbers and their extinction coefficient). Studies in reflection
geometry can occasionally also enable the indirect assessment of sample or layer
thickness, as well as determining the position of embedded unknown objects, etc.
[16].

An important advantage of time-domain systems over their continuouswave coun-
terparts that are plagued by etalon effects is that of being able to perform pulse time
gating. This is possible as long as the multiple reflections in the measurement system
are sufficiently far apart so as not to bemixedwith themolecular de-excitation signals
of the sample. The typical time-resolvedTHz spectrometer used inmost of the studies
discussed so far, utilize a short coherence length infrared source (centered at around
800nm) to generate a sub-100 femtosecond duration pulse train with repetition fre-
quency of around 80MHz. Each infrared pulse, is split into separate pump and probe
beams. The pump beam is used to excite an optical rectification crystal, which acts as
a T-ray emitter, and the T-rays produced (duration around 200 fs) are collimated and
focused onto a sample by a pair of parabolic mirrors. The T-rays emerging from the
sample are re-collimated by another pair of mirrors, before being combined with the
probe beam in a T-ray detector crystal. As a result, the modification by the sample T-
ray and the probe beams propagates through the THz detector crystal co-linearly. The
pump beam, which is also transmitted through a chopper, travels through an optical
delay stage that is modulated accordingly, so that the pump and probe beams arrive at
the detector in a time-coincident manner. The electro-optic detector crystal produces
an output that is proportional to the birefringence observed from the interaction of
the THz pulse with the time-coincident infrared pulse replica within the crystal. This
output is proportional to the T-ray response of the sample and this signal is measured
with the use of a balanced optical photo-detection scheme. A lock-in amplifier (LIA)
is also used to demodulate the signal, and this avoids 1/f (flicker) noise problems
that are present in this detector-limited measurement scheme. Typically, THz-TPI is
performed through a 2D raster scan after translating the sample in both the x and y
direction, while keeping it at the focal plane of the parabolic mirrors. A typical setup
[31, 34], is shown in Fig. 1.2.

Details of typical THz transient systems can be found elsewhere [33]. An inter-
esting quasi-optical circuit topology for simultaneous measurements of both trans-
mittance and reflectance that was reported by Ung et al. [35] is shown in Fig. 1.3.
In that system, the frequency dependent reflectance R(ω) and transmittance T(ω)

signatures are given from:
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Fig. 1.2 A schematic experimental setup for electrooptic transmission THz imaging with ZnTe as
EO generation and detection, illuminated by a femtosecond laser

R(ω) = 1 − ñ(ω)

1 + ñ(ω)
+
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(̃n(ω)+1)3 · exp[−i2̃n(ω)ω

c d]
1 − ( ñ(ω)−1

ñ(ω)+1 )
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T(ω) = 4̃n(ω)

[1 + ñ(ω)]2 · exp{−i[̃n(ω) − 1]ω
c d}

1 − ( ñ(ω)−1
ñ(ω)+1 )

2 · exp[−i2̃n(ω)ω
c d] (1.2)

where the normal incidence complex refractive index is (ω) = n(ω) − ik(ω) and the
absorption coefficient is: α(ω) = 4πk(ω)/c where c is the speed of light, k is the
wave number, d is the sample thickness and the tilde denotes a complex quantity. An
alternative phase-sensitive topology is reported in the work by Pashkin et al. [36]. An
interesting prospect for dispensing with the conventional x, y, z scanning stages for
image formation at the focus of the paraboloids by adopting a metamaterials based
scanning technique for image formation is discussed in [37, 38].

The resultant measurement at each pixel position of an image is an entire time-
dependent waveform. Therefore, the result from TDS-TPI is a three-dimensional
(3D) data set, which then can potentially be mapped to two-dimensional (2D) images
[39], where structural and compositional discrimination based on a sample’s optical
properties may be conveniently performed using pattern recognition algorithms. In
the following chapters, sample responses from multiple THz spectrometry exper-
iments are used as examples to provide a generic pattern recognition framework.
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The proposed approach extends the range of applications of pattern recognition to
emergent sensing modalities [1, 40].

A further advantage of the associated phase stability in THz spectrometers (due
to the associated longer wavelength) is that it enables direct measurement of both the
real and imaginary (complex) components of the permittivity. A Debye relaxation
model can be used to analyze the strong absorption of terahertz radiation in polar
liquids at least up to 1THz [5, 32]. Thismodel can be directly related to the associated
intermolecular dynamics. Spectroscopic studies can, therefore, potentially elucidate
the way proteins influence the state of water and can lead to further understanding
of the role of hydration shells in protein interactions [41, 42].

It is also worth noting that in all of the above experimental set-ups one needs to
always consider that there may also be additional pseudocoherence errors because
different parts of the beam across its aperture travel different paths through different
regions of the sample (if it is of non-uniform thickness), interfering constructively or
destructively with each other when they recombine. A recent account of advances in
THz metrology discussing errors in both continuous wave as well as THz-transient
systems can be found in [43]. Such errors are endemic to much of the THz literature
although this is not extensively discussed. Management of these artefacts and their
relevance to imaging applications is therefore an open issue requiring further consid-
eration. For the case of reflectometric measurements using continuous wave sources,
it is occasionally possible to de-embed the reflection signature from different layers
as discussed in the work by Hadjiloucas et al. [44]. The technique has been applied
to waveguide measurements but has yet to be applied to reflection measurements of
biological tissue when the different strata contain different water content (Fig. 1.3).

Fig. 1.3 Quasi-optical setup for simultaneous reflection and transmissionTHz-TDSmeasurements.
The path of the 800nm laser beam is depicted in red, while the THz beam path is shown in green,
with all beams horizontally polarized. The sample is placed in the focus of the parabolic mirrors
and, for a reference measurement in reflection geometry, a mirror is used adopted from [35]
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From a technological point of view, THz imaging is thus an emergent complemen-
tary imagingmodality ofmuch interest within the biomedical community, potentially
competing with positron emission tomography (PET) imaging which has picomo-
lar sensitivity but poor spatial resolution and magnetic resonance imaging (MRI),
which provides millimolar sensitivity with high spatial resolution. A diffraction lim-
ited imaging system operating at 2THz would have a spatial resolution of 150µm,
which may be considered limiting for many biomedical applications for which this
imaging modality offers niche applications (e.g. differential imaging of cancer cells
in breast tissue of pregnant or lactating women). From a clinical perspective, tumours
need to be identified at the earliest possible developmental stage and, unless suitable
THz super-resolution techniques can be adopted (a difficult task since beams are dif-
fractively spreading and the optics community has yet to extend existing algorithms
from the infrared to the THz part of the spectrum), it is unlikely that current sys-
tems will be adopted by clinicians. Imaging systems integrating either PET or MRI
modalities with THz pulse imaging to enable the generation of composite images is
the most likely way forward for the integration of this technology in a clinical setting.

1.1.2 Recent Advances in Simultaneous Time-Frequency
Dependent THz Spectroscopy

Time-frequency analysismethods have been developed to provide very parsimonious
parametrizations of time series datasets and, in this sense, nicely complement other
parametrization schemes performed in either time or frequency domains [45, 46].
The wavelet transform (WT) is a popular technique suited to the analysis of short-
duration signals [47]. It decomposes the time series signal using two filter banks
separating the high (detail) and low (approximation) frequency components of the
signal assuming a pre-defined mother wavelet function. The approach provides very
efficient de-noising capabilities in the presence of Gaussian white noise and has
very parsimonious representation. An important feature of this transform is that it
has orthogonal basis functions so that it enjoys perfect reconstruction symmetry,
enabling its inverse transform to reproduce the original dataset without loss of infor-
mation. This is a particularly important property from a biomedical signal processing
perspective as software certification for biomedical purposes should require complete
traceability of all the data processing steps. A further development in the biomedical
signal processing literature has been the use of adaptive wavelets [48], where the
mother wavelet is specifically tailored at each decomposition level (wavelet scale),
to minimize the least squares error associated with the difference between the trans-
formed signal from its original one. The approach holds great promise for optimizing
the extraction of the spectroscopic information contained in each THz pulse tran-
sient as well as in THz TPI generally [49–52]. Figure1.4 showcases the advantages
of time-frequency analysis in terms of the reduction in classification errors. To gen-
erate this graph, the standard deviation of the noise was varied from 0.001 to 0.5. For
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Fig. 1.4 Classification errors (%) as a function of noise level in the interferograms. Nonoptimized
db4 wavelet (green), optimized wavelet (red) and Euclidean distance (blue) classifiers. The inset
shows an inferogram of leather with (a) no artificially added noise and noise with standard deviation
of (b) 0.1 and (c) 0.5. After [52]

each noise level, 250 noisy patterns were generated for each class (lycra and leather).
As can be seen, the classification is much more robust to noise when carried out in
the wavelet domain than in the original domain. Moreover, the robustness to noise
is further increased by the optimization of the WT.

In addition to the above more elaborate routines, there have also been other
examples of studies that incorporateWT pre-processing routines for signal-to-noise-
ratio enhancement and classification of THz spectra [8, 53]. Such a pre-processing
step enabled the successful discrimination of cancerous from normal tissue in wax-
embedded histopathological melanoma sections as well as the classification of den-
tine and enamel regions in teeth [49]. It is now generally accepted that the perfor-
mance of a classifier based on the output of a wavelet filter bank is improved over
that of an Euclidean distance classifier in the original spectral domain [52]. Finally,
an alternative very promising approach for the modelling of de-excitation dynam-
ics, which has its origins to the theory of complex dielectrics, is through the use of
fractional order calculus and the fitting of fractional order models. In this approach,
the time series experimental datasets are modelled using very parsimonious pole-
zero expressions associated with the dynamics of resistive, capacitive or inductive
networks [54–56]. Although the fractional-order system identification literature is
still in its infancy, it promises to provide much lower residual errors in the identified
models, thus significantly advancing the science of chemometrics that is of signif-
icance to the further advancement of the discussed biomedical investigations. The
approach can account for spectral shifts in amorphous materials as well as de-embed
solvation dynamics.

Since dual modality THz/MRI tandem hybrid imaging systems have already been
discussed in the literature [57], it is appropriate to look more closely at recent
advances in MRI sensing before a combined signal/image processing framework
is proposed.


