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Supervisor’s Foreword

Since its first conceptualization at the hands of Boltzmann at the end of the 19th
century, statistical mechanics can be, as of today, considered a rather mature branch
of theoretical physics. Its most well-known and remarkable success story is without
much doubt the theoretical framework that it provides for the description of
second-order phase transitions, whose foremost and most pedagogical examples are
the ferromagnetic transition in magnetic systems and the liquid-gas transition in
particle systems.

Thanks to statistical mechanics, we are today equipped with a set of theoretical
pictures and tools which provide a full understanding of the phenomena which
underlie the physics of those systems, on both quantitative and qualitative level. We
now know that all these critical phenomena can be understood in terms of a
competition between order-inducing potential energy and disorder-inducing
entropy; we are able to compute, say, the critical exponent which characterizes
the critical behavior of the specific heat of a ferromagnet approaching the Curie
point down to three digits of accuracy, getting a result in agreement with even the
most accurate experiments; and thanks to the remarkable property of universality,
with its theoretical justification provided by the theory of critical phenomena, we
know that the results so obtained will be valid for all the systems which happen to
share the same universality class.

The tools and concepts, which have enabled us scientists to obtain this cornu-
copia of results, from mean-field theory, to the concept of spontaneous symmetry
breaking, to the renormalization group, have been proven useful in (and in some
cases, fundamental to) other branches of physics, such as the Standard Model of
fundamental interactions, and today constitute the bulk of any graduate school-level
curriculum in theoretical physics.

In summary, statistical mechanics has today reached paradigmatic status. Yet,
despite this success, there is still a large class of systems and phenomena whose
description in terms of a statistical mechanical treatment is not only lacking today,
but doesn’t even look forthcoming in the future: we are talking, using perhaps a too
much vague terminology, about disordered systems.

vii



A paradigmatic example of such a system is a disordered ferromagnet, wherein
the interaction between magnetic dipoles fluctuates randomly in space instead of
being a constant, as it is the case for an ordinary ferromagnet; another example is
provided by structural glasses, wherein particles are frozen in a solid-like manner
around an amorphous structure which lacks the long-range order of a crystalline
solid. Despite these last two cases being the most well-known, more examples
could be mentioned, including disordered quantum systems.

The presence of disorder throws off almost all of the conceptual pillars which we
are used to rely on. The presence of disorder makes it impossible to discern a clear
pattern of symmetry breaking; the disordered nature of the coupling constants
means that implementing usual renormalization group techniques is but a futile
endeavor; the lack of long-range order makes ordinary correlation functions a
completely useless tool when it comes to studying critical properties and, perhaps
most importantly, all those disordered systems share the cardinal feature of reaching
an equilibrium state very slowly, on timescales which are comparable or larger than
the typical experimental times, while the most basic assumptions at the heart of
statistical mechanics rely on equilibration and ergodicity as the two main justifi-
cations for introducing a description of an evolving system in terms of a statistical
ensemble.

In summary, these systems pose challenges which go much beyond mere
(however undoubtedly difficult) technical issues, but concern the very nature and
fundamental concepts and assumptions of statistical mechanics, and sit at the
cutting-edge of the research effort in the field.

As I said above, a full framework for the description of disordered systems and
their phase transitions is not a reality as of today. However, success stories and
viable proposals do exist. One of these is the theory of mean-field spin glasses (i.e.
ferromagnets with strong disorder) based on the method of replicas and the concept
of replica symmetry breaking.

The main merit of this framework lies in the fact that it is able to bring back the
basic concepts of spontaneous symmetry breaking, order parameters, and correla-
tion functions, in a setting wherein they had apparently been made unviable or
useless by the presence of disorder; this makes it again possible, for example, to
write a field theory à la Landau which is in principle amenable to a renormalization
group kind of approach.

Another merit is how it has shown a degree of universality which seems to be
comparable to the one attained by the theory of ordinary critical phenomena: a
conjecture formulated in the late eighties by Kirkpatrick, Thirumalai and Wolynes
asserts that the methods and concepts of Replica Theory employed in the treatment
of spin glasses are also relevant for the physics of structural glasses, somewhat
echoing the shared universality of the ferromagnetic and liquid-gas transitions; this
set of conjectures and ideas later coalesced in what is today referred to as the
Random First Order Theory (RFOT) of the glass transition.

As of today, we know for a fact that at mean-field level the conjecture is correct.
However, the accomplishment of proving its worth out of that setting has not yet
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been achieved and today constitutes one of the most extensive and prolific
endeavors in this field of research.

Dr. Rainone’s thesis is part of this endeavor. In particular, it deals with one of the
basic problems enunciated above, namely the one of slow relaxation and conse-
quent metastability of structural glasses when looked at on typical experimental
timescales.

As said above, this intrinsically jeopardizes the very possibility of a statistical
mechanical description; the thesis shows how this difficulty can be worked around
using the theory or replicas and how it can be applied, if only at mean-field level, to
a realistic and canonical model of glass former, enabling us to reproduce known
observations about metastable glasses and to formulate new predictions about their
nature. The theory derived is fully analytic, going all the way from the mathe-
matical model to tangible physical observables such as equations of state and
stress–strain curves, from the microscopic to the macroscopic, in a true statistical
mechanical fashion, applied here for the first time to amorphous systems out of
equilibrium.

The predictions summarized in this thesis are already contributing to setting the
course for future research in the field, and some of them have been already verified
in numerical settings. The thesis is written in a pedagogical manner, wherein all the
conceptual links and passages are thoroughly justified and explained, and calcu-
lations are reported step by step; it contains an extensive introduction to funda-
mentals the glass problem and the theories put forward so far to explain it, not only
RFOT. It will, therefore, be a useful read for students willing to approach the
problem for the first time, and who will therefore be in need of understanding both
the numerous phenomenological facets of the glass problem and the physics of
disordered systems, and the (sometimes obscure) mathematical and conceptual
subtleties of the replica method.

This thesis is, therefore, a piece of work which combines the performance and
report of cutting-edge research with a textbook-like level of pedagogy, which I
believe will make it interesting to a vast public including both veteran researchers
and new students willing to enter the field.

June 2017 Prof. Giorgio Parisi
Dipartimento di Fisica,

Sapienza Università di Roma,
Roma, Italy
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Abstract

This thesis sums up the research work I performed as a Ph.D. student in Sapienza
Università di Roma, and École Normale Supérieure, Paris, under the joint super-
vision of Prof. Giorgio Parisi and Dr. Francesco Zamponi. The thesis focuses on the
theoretical study of metastable glasses prepared through non-equilibrium protocols.

The book is organized as follows: in Chap. 1, we give a general introduction on
the problem and delineate our aims, along with an exposition of the fundamental
phenomenological features of the glass problem (with emphasis on the central
phenomenon of the glassy slowdown) whose reproduction is a minimal requirement
for any theory of the glass transition. In Chap. 2, we give the fundamentals of one
such theory, the Random First Order Theory (RFOT) which constitutes the central
conceptual pillar of the present work, with emphasis on the concept of metastable
state which will be pivotal in the following; in Chap. 3, we review the phe-
nomenology of glasses as measured in experiments and simulations, in particular
differential scanning calorimetry and quasi-static shear strain deformation, corre-
sponding to adiabatic changes of the temperature T and of the strain parameter c,
respectively; in Chap. 4 we present and review in detail the state following con-
struction, along with some of the other tools which can be used within RFOT to
approach the problem of metastability in general; in Chap. 5 we perform the state
following computation for the HS model in the mean-field limit, assuming the
simplest possible structure for a glassy minimum (i.e. a simple paraboloid), and
present the results so obtained; in Chap. 6 we dispense with this last assumption and
perform a more general computation for a arbitrarily complicated structure of the
glassy minima, and present the results so obtained; in Chap. 7 we provide some
comparison with numerics in a simple, modified HS model which allows for a
simple analytical treatment and is also very easy to simulate; finally, in Chap. 8, we
summarize our conclusions and provide some suggestion for further research in the
field of glass physics.

The results presented in this thesis have been already published in journal
articles, but here we present them in a coherent and self-contained manner. We refer
the interested reader to:
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• Chapter 5: C. Rainone, P. Urbani, H. Yoshino, F. Zamponi, “Following the
Evolution of Hard Sphere Glasses in Infinite Dimensions under External
Perturbations: Compression and Shear Strain”, Phys. Rev. Lett. 2015, 114,
015701, DOI 10.1103/PhysRevLett.114.015701.

• Chapter 6: C. Rainone, P. Urbani, “Following the evolution of glassy states
under external perturbations: the full replica symmetry breaking solution”,
Journal of Statistical Mechanics: Theory and Experiment 2016, 2016, 053302.

• Chapter 7: M. S. Mariani, G. Parisi, C. Rainone, “Calorimetric glass transition in
a mean-field theory approach”, Proceedings of the National Academy of
Sciences 2015, 112, 2361–2366, DOI 10.1073/pnas.1500125112; and
P. Charbonneau et al., “Numerical detection of the Gardner transition in a
mean-field glass former”, Phys. Rev. E 2015, 92, 012316, DOI 10.1103/
PhysRevE.92.012316.
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Chapter 1
Introduction

1.1 Equilibrium Supercooled Liquid Versus Metastable
Glasses

This thesis is about glass. As stupid as this assertion looks, it is indeed important to
state this fact loud and clear, at the very beginning.

Why is such an assertion necessary or even appropriate? The glass transition is one
of the great unresolved problems in condensed matter physics (as the introduction
of pretty much every work on the subject loves to remind) and it has been so for
decades. And for decades, research has been produced, and still is, to investigate its
nature. A thesis in the field of the physics of the glass transition which says about
itself “this thesis is about glass” is therefore stating an obvious tautology, at the very
best. The aim of this introduction is to have the reader understand that it is not so,
and that indeed the theoretical research on the properties of glasses (as opposed to
the huge amount of experimental and numerical work that has been done, and is still
being done) is a relatively new subject that we are beginning to explore now.

But a pressing question then arises:whatwere those “decades of research” referred
to above, about?The answer is: not glasses.Or rather, there has been, yes, a ponderous
amount of experimental research about glasses over the last decades (Tool’s works
about fictive temperature are an example), which we will reap and use in this thesis.
But the theoretical research, the research aiming to describe glass-related phenomena
at first principle level, has not been very concerned with glass itself. Rather, most of
the theoretical efforts carried out up to now are about supercooled liquids, that is,
about equilibrium properties of glass formers.

This distinction is very important, and yet oftentimes forgotten. Despite this, it is
indeed pretty obvious from an intuitive point of view. Every research article about
the glass transition will at some point or another contain a sentence of the sort “...it
is impossible to obtain data in this regime due to the extremely large time needed to
equilibrate the sample...”, and indeed, the reason why the glass problem is still open
lies mainly in the fact that data in the deeply supercooled regime are, to state it in an
unambiguous way, impossible to obtain. And yet, in everyday life, glasses are just
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everywhere and are indeed quite easy to manufacture; they are not a rare and exotic
commodity. But despite this, the impression that one gets from the literature is that
getting new data to better understand the glass problem is always sort of a struggle.

The distinction abovemakes it clearwhy:what researchers have been, and still are,
mostly concerned about is the supercooled liquid. And supercooled liquids, unlike
glasses, are indeed very rare and very valuable objects. It is indeed a fact that the
various theories about the glass transition that are on the table today (Random First
Order, Dynamic Facilitation, Frustration Limited Domains etc.) were conceived first
and foremost as theories about supercooled liquids rather than glasses, and their most
defining predictions concern the supercooled regime; this is the reason why it is into
that hard-to-reach regime that those much needed data are to be searched for. In such
a scenario, the glass is at best seen as an enemy (interestingly, much like the crystal)
who sneaks in during your simulation/experiment and ruins your day by pushing out
of equilibrium your precious supercooled liquid sample.

In this thesis, we are concerned with glasses.
The problem with formulating a theory about glass lies in the fact that a glass is

an intrinsically out of equilibrium object, as opposed to the supercooled liquid. This
simple fact is at the origin of all problems that are commonly encountered when
trying to conceive a theory of glasses. If the theorist is aiming for a first-principle
theory, then the obvious starting point is of course statistical mechanics, as in all
other branches of theoretical condensed matter physics. But statistical mechanics is
a framework mainly concerned with the properties of equilibrium systems, whose
thermodynamic state is stable, and whose lifetime is infinite. Glass has no such
property, as we enunciated before: its properties depend of the time t and a glass does
not live forever, but only until the glass former is able to relax and flow again like a
liquid. There are theoretical tools conceived for the treatment of out-of-equilibrium
scenarios, but they are all meant to deal with situations wherein the system is subject
to a drive of some sort (say, an AC current), and they are meant for systems with
long-range order. Glass is amorphous, and is out of equilibrium because it did not
have enough time to relax, not because we are perturbing it in some way. So those
tools are not suitable for our problem.

At this point, it looks like a meaningful theory of glass cannot make do without a
time-based description, a view which the Dynamical Facilitation Theory (DFT), for
example, embraces heartily; however, the dynamics of generic many-body systems,
and in particular glass formers, does not enjoy a unified and commonly accepted first-
principles framework such as the one that statistical mechanics is able to provide for
systems in thermodynamic equilibrium. We will see over the course of this thesis
that this weakness is manifest within DFT, whose models are necessarily phenom-
enological in nature and never start from a microscopic, first-principles description
of the glass-forming liquid. So, it looks like one is between the proverbial rock and
hard place: to have a first-principles theory, one must try to rely on dynamics; but
to rely on dynamics, the theoretician necessarily has to sacrifice something in terms
of microscopic description (like in DFT) or simplifying assumptions (like in Mode
Coupling Theory).
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However, if one actually looks at how the properties of a glass change over time
(for example, its internal energy U as a function of time, or any other convenient
observable), one can see that the dependence on t is actually pretty simple, i.e.
the dynamics looks like a quasi-equilibrium process wherein the observables of the
system remain stable over very long time periods, of the order of the impossibly long
equilibration time needed to observe the supercooled liquid. This picture of glass as
a system in quasi-equilibrium (or restricted equilibrium, as we will say more often)
is at the root of the Random First Order Theory (RFOT) of the glass transition that
this thesis is based on.

The RFOT posits that the glass transition is, yes, a dynamic phenomenon, but that
it has a static origin. This origin comes in the formof aFree Energy Landscape (FEL),
which is essentially a very rough landscape (think of a golf course, for example) of
valleys (minima) separated by ridges (saddles), wherein a single point, representing
the glass former, has to navigate towards the bottom of the lowest valley in order to
attain equilibration. The dynamics of the system then unfolds as a series of downhill
jumps over the ridges (an activation event) separated by long persistence timeswithin
the valleys (referred to as metastable states). The large times needed for activated
jumps to take place delay the onset of equilibration and cause the system to behave
in a “glassy” manner, and as a result of this, the persistence times are so large that
the system is effectively trapped (or equivalently, equilibrated) inside a metastable
state for all times which are relevant for experimental and practical purposes.

What is most important about the FEL is that it is a static object, in the sense
that it is uniquely determined by the equilibrium properties of the system, with no
dynamics or time in play. Despite the fact that it prominently affects the dynamics
of the glass former, it can be in principle studied with suitable static tools. This
scenario opens the possibility that the whole phenomenology of glass could be in
principle described by focusing on the study of the valleys (minima) that the system
is trapped into during the time regime before equilibration, when the glass exists.
In particular, since the system is equilibrated within a metastable state, one could in
principle construct a restricted thermodynamics by defining a Gibbs measure which
only accounts for the micro-configurations which are visited by the system as it
vibrates inside this single minimum. From such a measure one could then compute
a partition function, a thermodynamic potential, and finally, physical observables.

Such a construction is referred to as State Following constructionwithin the theory
of generic systems (not only structural glasses) with a rough FEL and a consequent
RFOT-like behavior. In this thesis we present and apply this construction to a realistic
model of glass former, namelyHardSpheres (HS).We showhow it allows to construct
a fully analytic theory of glass, entirely fromfirst principles,without the need to resort
to dynamical tools; we show how it allows to obtain results for physical observables
which are in agreement with the established phenomenology of glasses, and we show
how it is also able to provide new insights into, and predictions about, the nature of
the glass phase (Fig. 1.1).
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Fig. 1.1 The equations of state of a prototypical glass former. We can distinguish the crystalline
branch, the supercooled branch and, in color, the various metastable glass branches. As a guide,
in this thesis we will mainly focus on cooling protocols wherein one moves down the supercooled
branch and then into the glassy branches, down to T = 0. We will not be concerned with the deeply
supercooled branch (dashed line). Reprinted from [1]

1.2 The Glassy Slowdown

Most liquids (although not all of them [1]) crystallize upon cooling at a certain
melting temperature Tm (see Fig. 1.1). However, it is always possible, employing
some caution, to supercool a liquid below its melting point, avoiding crystallization
and producing a supercooled liquid.

There are multiple ways to accomplish this. In experiments and industrial appli-
cations, one usually cools the liquid fast enough that the nucleation and growth of
the crystal take place on times much longer that the experimental time texp at which
measurements are performed. In simulations, the crystal is usually “killed” by in-
troducing polydispersity, i.e. by considering a liquid whose constituents can have
different physical shapes (for example spheres with different diameters), so that an
ordered, crystalline arrangement of the particles is inhibited. We do not delve into
this issue and refer the reader to the detailed discussion of [1].

Once one has managed to obtain a supercooled liquid, it is possible to lower the
temperature further, always minding the possibility of crystallization. On doing so,
one can then observe a dramatic increase of the relaxation time (we denote it as τR)
(see Fig. 1.2) over a fairly short range of temperature. Besides this sharpness, this
sudden growth is also impressive for its generality: it manifests in systems that range
from atomic liquids, to molecular ones, to colloidal compounds and even metallic
alloys [2]: any liquid can form a glass if supercooled fast enough [3]. This is already a
hint to the fact that the glassy slowdown is a fairly general phenomenon, independent
of the actual nature of the glass former under consideration.

We remind the reader that the relaxation time can be defined in terms of the
viscosity by Maxwell’s relation [1, 4]
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Fig. 1.2 Angell’s plot. When the (T/Tg) ratio is reduced by just one half, the most fragile glass
formers show an increase of the viscosity (and thus the relaxation time) of almost 16 decades, and
the viscosity of the strongest ones increases anyway of about 10 decades. This stunningly sharp
growth is one of the most impressive phenomenons in all of low energy physics. Reprinted from [1]

η = G∞τR, (1.1)

(where G∞ is the infinite frequency shear modulus) so that the glass former becomes
more and more sluggish as the temperature is lowered. This relation is useful since it
allows us to pass from a subtle observable like τR to a much more tangible physical
property like the viscosity.

1.2.1 The Calorimetric Glass Transition

When the viscosity of a liquid is so high, its ability to flow is severely hampered: it
takes a time of order τR to relax any excitation (for example shear) the glass former is
submitted to. This means that on experimental timescales texp < τR the glass former
will effectually respond to an external perturbation as if it were an elastic solid, i.e.
it will present a shear stress proportional to the strain [4]

σ = G∞γ. (1.2)
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Indeed, if we simply define a solid as any substance that has an elastic response, the
glass former is effectively a solid on timescales such that texp < τR . We stress the fact
that this has absolutely nothing to do with the glass transition per se. The fact that
a liquid can respond to shear like a solid on short enough timescales is completely
general: solidity is indeed a timescale-dependent notion [5]. However, if we put this
together with the glassy slowdown, we see that the time we would have to wait to see
a liquid-like response to shear becomes rapidly so large that it becomes effectively
impossible to do so. When this happens, we get the calorimetric glass transition,
defined as the point where the equilibration time of the glass former becomes longer
than the experimental time, thereby making it a solid from the point of view of the
experimentalist. We have then the following implicit definition for the calorimetric
glass transition temperature Tg

τR(Tg) ≡ texp. (1.3)

This definition of Tg is the one we are going to follow in the rest of this thesis.
However, it can be immediately seen that this definition has a problem, namely the
fact the texp depends on how our particular experiment (i.e. our protocol) is designed.
It is actually more correct to talk about glass transition temperatures, with a plural;
but in order to establish a standard, the convention is to set texp to 102 (sometimes
103) seconds.1 This corresponds to having for the viscosity

η(Tg) � 1013 Poise, (1.4)

To put this number into perspective, water has a viscosity of about 0.01 Poise, and
honey’s is about between 20 and 100 Poise. A 10cm tall cup containing a liquid with
a viscosity of 1013 Poise would take about 30 years to empty itself [3], so this value
corresponds by all reasonable standards to a solid-like response.

The definition of Tg allows us to better appreciate the growth of τR at the onset of
the glassy slowdown.We can plot on a logarithmic scale the viscosity versus the ratio
T/Tg for various glass formers. What we get is the plot in Fig. 1.2, called Angell’s
plot [2]. From Angell’s plot we can clearly see that the growth of the viscosity (and
so of τR) is at least exponential in T , and for some glass formers is even sharper.
This is remarkable especially if one considers that the increase of the viscosity at the
melting point Tm is much milder [1].

The definition of the calorimetric glass transition also allows us to introduce
a problem which underlies the physics of glasses in general: namely the fact that
everything has to be defined in a very anthropocentric way. It is true, as discussed in
[1], that the increase of τR is so sharp that the actual value of texp doesn’t effectively
changematters. But this does not deny the fact that the only reason whywe talk about
a calorimetric glass transition lies in the fact that we are not patient (or long-lived, for
that matter) enough to observe the equilibration of the glass former below Tg . One

1Indeed, the increase of τR is so sharp that the actual choice of texp does not make much of a
difference.


