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Preface

Getting pregnant is usually easy and fun, but the gestation and delivery may be
another story; messy and painful perhaps, but instructive nevertheless. So it is with
this book, which began with enthusiasm and confidence, but ten or so years later the
twists and turns along the way emerge as a key part of the story.

Functional data analysis leads inevitably to dynamic systems. Ramsay and
Silverman (2005) emphasized the reduction in bias and sampling variance that
could be achieved by incorporating even an only approximately correct model into
the penalty term by using a linear differential operator, thereby extending the more
usual practice of defining roughness by the size of a high-order derivative. It was a
natural next step to consider how one or more parameters that were needed to define
such an operator might be estimated from data. Data associating the incidence of
melanoma with solar activity became a prototype problem.

Principal differential analysis—a specific case of what we here term gradient
matching—and its close resemblance to principal components analysis was the
subject of a later chapter in Ramsay and Silverman (2005). The availability of
high-resolution replicated data resulted in some rather successful applications,
notably to data recording complex physical motion: handwriting and juggling.
These analyses estimated low-dimensional basis systems that could be used to
define the linear differential operators whose kernels were spanned by these systems
which largely captured the variation in the data. This leads to the somewhat clumsy
attempt, judging by limited attention that it received, to introduce the reader to
Wronskians and Green’s functions, not to mention such ethereal topics as repro-
ducing kernel Hilbert spaces (we still regard the later chapters of Ramsay and
Silverman (2005) as highly instructive for the so-inclined reader). In contrast,
chapters on function linear regression, which did seem to appeal to readers, were for
us only a partial success. Our attempts to use functions as covariates in a regression
equation to approximate other functions seemed to us only marginally successful
and, as a premonition of trouble to come, we were struck by how hard it was to find
data to illustrate the methodologies involved.

The first serious attention given to parameter estimation for differential equations
began with a collaboration with N. Heckman (Ramsay and Heckman 2000) where
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we noted that the large number of parameters in the smoothing function relative to
the few defining the operator tended to lead to overfitting of the data and bias in the
estimates of the parameters of interest. The idea of parameter cascading described in
Chap. 9 came from realizing that the implicit function theorem provided a way out
of this dilemma by replacing the unrestricted coefficients of the basis function
expansion by a smooth function of the parameters being estimated.

We benefited enormously by a close collaboration and friendship with Kim
McAuley and Jim McLellan in the Department of Chemical Engineering at Queen’s
University, who were able to steer us to the large literature in that field on the
nonlinear least squares estimation strategy described in Chap. 7, and to pass along
the nylon and refinery data used in various chapters.

We discovered again just how hard it was to find data that we could use in
demonstration and test analyses in the engineering world, where data are owned by
industrial concerns protected against access by competitors. When we turned to the
large literature on dynamics in various fields like biology, epidemiology and phys-
iology, we found almost no use or display of data. For example, nearly every text
used the spread of disease (SIR) or the closely related Lotka-Volterra equations as a
first illustration of a nonlinear system; but, if data were available at all, it was only on
infected cases or predator abundances, where data fits were essentially only smooths
of the data and therefore uninformative. Only recently have we discovered the
invaluable archive of dynamic systems with data assembled by Klaus Schittkowski
(Schittkowski 2002), which has been a great help in completing this book, and we are
most grateful for his cooperation.

Why, we asked, were data-based estimations of dynamical system so hard to
find? One answer seemed to be the rather restricted set of parameters yielding the
solution characteristics that motivated such systems as the Lotka–Volterra, SIR,
tank reactor and the FitzHugh-Nagumo, which are featured in this volume.
Parameter estimation strategies, including our own, were prone to bouncing
parameters into regions where they generated completely inappropriate solutions.

But another possible explanation for the paucity of data is that, in many fields,
the differential equation is viewed, effectively, as data itself. That is, if there are
solutions of a proposed system that exhibits the shape characteristics seen in
experiments and natural settings, such as oscillations in predator-prey abundances,
then these systems are considered to be demonstrations that a scientific under-
standing of the live system has been gained. We observed that papers on dynamics
without any display of fits to data often appeared in journals like Nature and
Science. Even the Hodgkin-Huxley papers, themselves exceptional examples of
data-based science, were quickly followed by downgrades of their model to those
like the FitzHugh–Nagumo that retained the general shape features but were not
intended as data models.

Ironically, the idea of the equation as data, although rather difficult for an
information scientist to warm to, dovetails beautifully with the parameter cascading
algorithm that we discuss in Chaps. 9 and 10, where we allow a smooth and
continuous set of compromises between data-fitting and equation-solving. This
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tension between data and equation is everywhere in evidence in these pages as well
as the dynamical system modeling literature. It is, in fact, why we wrote this book.

Our central concept of a dynamical system as a buffer that translates sudden
changes in input into smooth controlled output responses has led us to applications
to data that we have previously analyzed, such as the daily Canadian weather data
and the Chinese handwriting data (Ramsay 2000). We hope to have opened up
entirely new opportunities for dynamical systems where none were envisaged
before, which involve extensions of the functional linear model and what we call
dynamic smoothing.

Dear reader, if you have survived to this point in this Preface, you must be
wondering how much you need to know to read further. Take heart! We have
worked hard to keep the technical level as low as possible, and our first goal is to
bring those with little or even no exposure to differential equations as modeling
objects into this fabulous data analysis landscape. Our emphasis on linear systems
reflects a belief that nature is a tough place where only rugged and stable systems
exhibit adaptive behavior over a wide range of environmental conditions survive.

We thank our former graduate students David Campbell and Jiguo Cao for their
own versions of dynamic systems analyses. Cornell University contributed, besides
the Tennebaum and Pollard team, our colleagues Steve Ellner and John
Guckenheimer whose writing, experimentation and mathematical analysis continue
to inform and inspire our work. We thank our Queen’s collaborators Jim McClellan
and Kim McAuley, as well as their students and colleagues for their guidance
through the fascinating chemical engineering world and their hospitality and
support.

Ottawa, Canada James Ramsay
March 2017
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Symbols

t A time value
i Usually, the index of a variable in a system of differential equations
d The total number of variables in a system
j Usually, the index of an observation
n or ni The number of observations for variable i
t A vector of time values of length n
xi Used to designate a single variable among a set of d variables
x(t) Used to represent the state vector of the system at time t. In the case

of the SIR models above we have x(t) = (S(t), I(t), R(t)) and we will
continue to refer to the constituent parts of the state vector by other
names or by using subscripts as in xðtÞ ¼ ðxSðtÞ; xIðtÞ; xRðtÞÞ. When the
state vector x is viewed as a function of time, it will be described as the
state trajectory.

xi A positive weight to be applied to the fitting terms of the ith variable
D The derivative operator that transforms a function x into its time

derivative d x=d t. Dm generates the derivative of order m. D−1 generates
the antiderivative. Dx(t) is the vector of time derivatives of x(t).

fl A coefficient or rate function in the homogeneous portion of a linear
differential equation. This may be a function of time or the values of
external variables, but may not be a function of the values of variables in
the system.

L A linear differential operator that transforms a function x into a linear
combination of time derivatives D jx. The coefficients in the linear
combination can be functions of time, but may not be functions of values
of variables.

� A vector of parameters that require estimation from data

xv



# A vector of parameters that require estimation from data augmented by
initial values that must also be estimated from data

x0 Refers to the starting point of the trajectory. We distinguish this from
xð0Þ because it will often need to be estimated as additional parameters.
When this is the case, we will use the augmented parameter vector
# ¼ ð�; x0Þ. The initial time 0 can be replaced by an suitable real
number.

f(xj�Þ Represents a vector-valued function of x that depends on a parameter
vector �. Generally this is used to represent the right-hand side of a
differential equation.

fi A coefficient or rate function in the forcing portion of a linear differential
equation that multiplies an additive external input u into a linear
differential equation

uðtÞ Describes a vector of external or forcing functions that are additive inputs
into an autonomous or homogeneous system and therefore render it
nonautonomous or nonhomogeneous. An individual forcing
function is u‘.

L The total number of forcing functions in a linear differential equation
yij An observation or measurement value at time tj for variable I
yj Represents the vector of measurements of length d of a set of d variables

at time tj. Sometimes it will be useful to write down a matrix of
observation vectors over time. For this we will use Yj in which rows
denote time points and columns the dimension of the observation vector.

`• A known basis function used to approximate a trajectory x in a linear
expansion

K The total number of basis functions in a linear expansion
` A vector of basis functions of length K
ck or cik Real numbers that are the coefficients in a basis function expansion of a

trajectory
c or C Either a vector or a matrix of coefficients for one or more basis function

expansions
‰ A smoothing parameter in the half-open interval [0, 1) used the analysis

of linear differential equations by program Data2LD
J The inner fitting criterion in a parameter cascading analysis in Chaps. 9

and 10
H The outer fitting criterion in a parameter cascading analysis in Chaps. 9

and 10
‚ A non-negative smoothing parameter in used the analysis of linear or

nonlinear differential equations by program CollocInfer
I An identity matrix

xvi Symbols



B A matrix of rate values for a system of linear stationary differential
equations

R The matrix defining the penalty term for the homogeneous part of a linear
differential equation, defined and used in Chap. 9

S The matrix defining the penalty term for the forcing part of a linear
differential equation, defined and used in Chap. 9

Additional symbols, primarily for variables in specific dynamical systems, are
found in the index of the book.
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Chapter 1
Introduction to Dynamic Models

1.1 Six Examples of Input/Output Dynamics

Science and baseball have much in common; what counts is not where the ball is but
where it’s going and how fast it’s getting there. This places the focus on modelling
change, and change is more complex than stasis. The trajectory of a baseball is
greatly affected by spin, so that the three dimensions of motion combine with three
spin coordinates to produce a six-dimensional system for change distributed over the
single dimension of time.

It is inevitable, then, that derivatives with respect to time and space appear often
in mathematical models as measures of instantaneous change, and in this book we
consider how these differential equations can be estimated from data.

The book is also an introduction to a new horizon in statistics: an equation as
a model for data, where a differential equation is only one possible sub-class, and
where data-fitting, parameter estimation, model evaluation, inference and so on do
not rely on finding an algebraic solution to the equation or even an accurate numerical
approximation to a solution.

This chapter lets data from various settings speak to us about situations where it
is the statistical description of change that is the primary focus. Simple dynamical
models are proposed in each setting, but with no attempt to describe what we must
do in subsequent chapters: estimate model parameters from noisy data, display the
uncertainty in these estimates, and assess fits to the data from competing models.

1.1.1 Smallpox in Montreal

Nothing leads to insight faster than facing a gruesome death. In April of 1885,
when a man knocked on the door of the Hotel Dieu hospital in Montreal hoping to
see a doctor, the 167,000 citizens had for a few years neglected vaccination against
smallpox. Within a few months 3234 would die, and about 9600 would be infected,
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2 1 Introduction to Dynamic Models

many of whomwould be permanently disfigured. Figure 1.1 tells the story with data.
We see the consequences of the introduction of compulsory vaccination in 1876 by
Sir William Hingston, the Irish Roman Catholic mayor of Montreal and its chief
surgeon. Working with Bishop Bourget to overcome the fear by French Canadian
catholics that the real purpose of vaccination was the decimation their population by
spreading the disease, it took a couple of years before most of Montreal’s children
were immunized, andwe see in the figure the decline over the next 2years in smallpox
fatalities from around 600 per year to zero.

But by 1885 noncompliance had returned, partly due to fear-mongering by a quack
physician from New York. Smallpox arrived in Montreal on the newly constructed
Canadian Pacific Railroad with soldiers returning from the suppression of the Riel
Rebellion in the prairies, and spread with the speed that the figure makes only too
obvious. The insight that vaccination was essential spread nearly as quickly.
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Fig. 1.1 The number of smallpox deaths per year in Montreal, Quebec. The first vertical line indi-
cates the introduction of compulsory vaccination, and the second the re-introduction of vaccination
following the last smallpox epidemic in North America

We are, naturally, impressed by the three levels of small pox fatalities, 600, 0
and 3000, but the data are more dramatic in terms of the two rates of change: the
disappearance of the disease in 2years or so, and its explosive return. Thus we see the
structure in the data on two time scales, namely the two long-term mortality levels,
and the two short-term transitions. We need to model both the levels and the rates of
change. That is, we want a model that relates x(t) to Dx(t), where x(t) is deaths per
year and we use the notation Dx for the first derivative of x instead of dx/dt.
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Focussing first on the decline in deaths in the 1876–1879 period, we see that,
when the death rate is high, the downward slope is negative and large, but as the
death rate approaches zero, the slope remains negative but declines to zero. It seems
plausible that the proportional relation

Dx(t) = −βx(t) or τDx(t) = −x(t) (1.1)

could get us somewhere. Whatwell-known function has a derivative value negatively
proportional to a function value? Introductory calculus and a little reflection leads to
x(t) = C exp(−βt) for some arbitrary constant C as the solution to (1.1), and from
there to the nonlinear model equation

x(t) = Ce−βt + e(t) or x(t) = Ce−t/τ + e(t) (1.2)

where an appropriate positive constant C must be estimated and the residual e(t)
takes care of small and ignorable effects. Of these two equations, (1.1) is simpler and
tells the story with the greater clarity, and gives us our first lesson in constructing or
parsing a differential equation that links rate of change to level.

Parameters β or 1/τ are, in effect, regression coefficients in a simple single-
predictor linear relation between “covariate” x and “response” Dx . A useful rule
of thumb is that x(t) will decline from a level of C to practically zero in 4τ time
units, leading to a rough-and-ready estimate derived from the 3-year disappearance
of smallpox, so that the time constant τ ≈ 3/4 years and β ≈ 4/3. That is, β controls
the speed with which the level changes to its new level, and consequently represents
what we mean by the dynamics of the system. Highly dynamic systems have large
β’s and small τ ’s, and sluggish systems have the respective converses.

This simple dynamic equation models a buffering process in which an impact of
an event, here the introduction of compulsory vaccination, is spread over time. This
concept of a differential equating defining a buffer will play a central role in this
book.

We need a statistical method for using the smallpox deaths reported to the city
in April of each year to estimate parameter β, along with confidence limits. The
useful data are those from 1876 to 1883, with the three values over 1878–1880 being
especially informative about the rate of decline in smallpox mortality. The single
report in 1885 is evocative, but by itself insufficient for describing the time course
of the infection.

1.1.2 Spread of Disease Equations

But what can be said about the onset of smallpox? Viewing vaccination as itself
a disease, as many Montrealers did, smallpox by comparison is far more dynamic.
Indeed, it is only surpassed bymeasles as themost communicable disease in humans.
We have only a single point to record the time course of smallpox infection, but here
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is a system of two equations that is often used to model the infection process:

DS = −βSI

DI = βSI − δ I . (1.3)

The S variable stands for the number of individuals susceptible to infection, roughly
all of the 167,000 citizens less those with immunity because of a prior infection.
Variable I represents the number of infected people. Focussing on the first equation,
here we have again the same relation as before between DS and S. But with a
difference! The speed of the impact of the infection is now β I , since we use β here
as the probability of infection of a single individual. This means that the population
rate of infection gathers speed in proportion to the number of infected individuals,
so that the number of uninfected persons goes down faster and faster as the epidemic
spreads. Left to itself, the entire populationwould be infected in a year or so according
to this model. But Mayor Hingston now had no trouble re-introducing compulsory
vaccination, in spite of a riot or two, and this combined with severe quarantining
arrested the disease by the end of the summer.

The second term in the left of the I equation also has this proportionality of DI to
I , and this is due to infected persons becoming noninfective due to either recovery
or death, with a speed represented by δ. But of course it also has the first term,
representing the transfer of the new infections into the infected pool. As a whole, the
SI equations seem to represent an anti-buffer, but only because the reaction speed
of the buffer itself changes over time, in this case for the worse. We will return to
simple first order buffers like these when we come to the chapters on how to use the
data to estimate a buffer’s characteristics.

1.1.3 Filling a Container

Figure 1.2 shows the level of a fluid in a tray within an oil refinery distillation column
before and after a valve setting is changed. This is a simple input–output system that
resembles the structure of the smallpox data following the onset of vaccination. In
this case, however, we have much more detailed data on both the input (V) and
output (T) processes. We see that a change in valve setting at time point 67 results in
a change in fluid level in Tray 47, and this change moves virtually instantaneously.
The slope of the tray level then rises steadily from this initial large value to find a new
equilibrium. This is what we would expect if we increase the flow into a tank with a
constant pressure-driven outflow: a rapid rise which levels off as the level rises and
the pressure on the outflow increases until it matches the new inflow rate.

We will see that the simple differential equation

DT = −βT + αV (1.4)
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does a fine job of representing these changes. Using our trick of estimating β as the
reciprocal of the time for 2/3 of the change to be realized, we see that τ is roughly
50, implying the value β = 0.02. The total change is about 4.5 level units, and we
call this the gain of the system. It turns out that the gain, denoted by K , is K = α/β,
suggesting that α = Kβ, or about 0.09. We will return to these data in a number of
chapters as simple dynamic system furnished with abundant data.
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Fig. 1.2 The upper panel shows the fluid level in a tray that receives input from another container
when a valve is opened. The lower level shows the setting of a valve before and after being opened

1.1.4 Head Impact and Brain Acceleration

The data in Fig. 1.3 were collected in a study to measure the effects of motorcycle
accident on the driver’s brain tissue. They were measurements of acceleration of
brain tissue within the cranium of a corpse before and after being struck by a blunt
object with a force typical in a collision by a motorcycle driver’s head with a hard
surface. Analyses of the data have been reported by many authors, including Härdle
(1990) and Silverman (1985). This, too, is an input/output system, although we had
to construct the input ourselves by representing it as an abrupt but brief pulse of force
positioned at the point where the hammer encountered the cranium.
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Fig. 1.3 The circles indicate observations of acceleration of brain tissue from five replications of an
experiment involving striking the cranium of a corpse with a blunt object. The box was constructed
to represent the impact itself spread over one time unit. The solid line is the fit from the data for
ρ = 0.998 and the dashed line is the fit for ρ = 0.5

The shape of the data indicates that there is a rapidly decaying oscillation in
acceleration after the impact. Anyone who dipped a paddle into a still lake early in
the morning knows that this is natural viscous fluids like brain tissue that cannot be
compressed, but can dissipate energy by wave action. We will learn that this requires
a system that uses the second derivative. We therefore analyzed the data using a
three-parameter damped harmonic equation

D2x(t) = −β0x(t) − β1Dx(t) + αu(t) (1.5)

where u is the box function located at the impact time and with unit height and
width which is displayed in the figure. Positive parameter β0 defines the period or
frequency of oscillation, and is often called the stiffness of the system. Parameter β1

determines the rate of decay of the oscillations, and thus plays a role similar to that
of the parameter in the smallpox equation (1.1). Impact pulse u is an external input
to the system described by the first two terms on the right, and is often referred to
as a forcing term. Parameter α is essentially a regression coefficient that determines
the amplitude of the oscillations, sometimes called the gain in the system.



1.1 Six Examples of Input/Output Dynamics 7

1.1.5 Compartment Models and Pharmacokinetics

The decline in smallpox deaths can thought of as having the properties of a bath
tub, where deaths are like water going down its drain. Perhaps you have noticed that
when the plug is pulled, the water level at first goes down rather quickly, but that
it drains out more and more slowly as the water level drops, so that you wind up
waiting with shivering impatience for the dirty water to get out so that you can begin
the cleanup. This happens because the pressure at the drain opening is proportional
to the weight of the water above it, so that change in water level is proportional to
level. First order dynamics, in short.

The uptake of drugs by the body is often a series of compartments, with the drug
passing along from one to another. An injected substances passes from the tissue to
the blood stream, from the blood stream to a target site such as the brain, from brain
back into the blood stream, from the blood into the liver and so on. Each of these
containers has its own elimination rate or drain size; and in each either all of the
drug may be passed on, or some fraction may be absorbed or broken down and the
balance eliminated. Simple first order dynamics seem to serve well to describe most
of these systems, and pharmacologists find systems of first order constant coefficient
differential equations highly useful in the discipline of pharmacokinetics (Fig. 1.4).

Suppose that at time 0 a drug is injected into a tissue site with concentration C0,
and that its concentration Ca(t) in the blood stream declines at a rate proportional to
its level, that is

DCa(t) = −βaCa(t) .

The decline in blood concentration is due to the drug being taken up by the target
organs, and then eliminated by the liver with speed βb, so that

DCb(t) = −βbCb(t) + βaCa(t) .

Note that Ca(t) is a forcing function for the second equation.
It is typical that the absorption dynamics are rather faster than the elimination

dynamics, and Fig. 1.5 shows how blood concentrations in fifteen patients increase
rapidly at first, and then decline more slowly as the elimination process begins to
dominate the absorption process. The Figure also illustrates the possibility that dif-
ferential equations can vary randomly. We expect that constants such as βa and βb

will vary from patient to patient, and so will the initial doseC0 to at least some extent.
That is, we often see differential equations in multilevel data structures where we
have to model variation across levels (patients in this case) as well as within-level
variation. Differential equations having randomly varying aspects are referred to as
stochastic, although we have to be careful with the term stochastic differential equa-
tion since the phase has been co-opted by financial analysts and probability theorists
to refer to something quite specialized.
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Fig. 1.4 The uptake and
elimination of a drug for 15
subjects as reflected in its
concentration in the blood
stream

These equations as well as the SIR equations are examples of mass balance
systems where something is conserved in the system, so that each equation has to
account for what happens to various fractions of that which remains constant. The
central place occupied by differential equations in astronomy, chemistry, biology and
physics is due primarily to conservation principles that imply that what goes in must
come out somewhere, and which enforce smoothness of the time-varying aspects
of the system. Conservation of momentum in mechanics, heat in thermodynamics,
mass of chemical species in chemistry, volume in fluid dynamics and energy in all
fields are examples. Even in phenomena as seemingly ephemeral as stock prices,
total wealth is conserved as long as any stock can be sold for its paper value.

1.1.6 Chinese Handwriting

The dynamics of the human body are, for most of us, endlessly fascinating. We are
far from the fastest or the most skilled creatures on the planet, but when we watch
ourselves drive home a goal on the soccer field or produce an arpeggio on a piano,
the universe seems for those few seconds to collapse. How do we do this?
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When we learn a movement, such as, say, handwriting, we at first make a few
clumsy strokes, and then, again and again, until the shapes that we have in mind
begin to emerge. Perhaps faster and with more precision for some of us than others,
but by secondary school the production of script has been mastered, and one does it
without needing any appreciable concentration.

Consider the Chinese script displayed in Fig. 1.6, which is the four characters for
“statistics”. This is the first of 50 replications of this script on a horizontal surface by
Dr. Xiachun Li, a postdoctoral fellow working with one of us in 1996–1997. A small
infra-red emitting diodewas attached to the tip of the pen, and three camerasmounted
on the recorded pen position 400 times a second with a typical error of about 0.5
mm. The total time for the production of the script varied slightly around 6s. The
experiment and some analyses were reported in Ramsay (2000).

The script includes these elements:

• strokes, curved or straight and in contact with the paper
• cusps, when the pen comes to a near standstill
• lifts, a stroke while the pen is more than 2.5 mm off the paper

On a hunch, we plotted the numbers from 1 to 46 at the times in the middles of 46
equal-sized time intervals, each 130.5ms in length. It is striking that each numbered
point corresponds closely to an event time, whether in the center of a curved stroke
or a lift, or precisely at a cusp.

This constancy of event times for a well-learned sequence of movements has
become quite familiar to us in our various investigations of human motion, although
they are usually around 120–125ms. The slight increase is no doubt due to the fact
that the writing was executed while standing and on a surface substantially larger
than would be used in normal circumstances.

We have conjectured that the brain achieves synchronized activation of many
muscles by using a stable clock cycle of about this duration to fire a discrete pulse
of neural activity over the many channels involved once each cycle. At the muscle
end, the arrival of bundle of spikes resets the tension in the muscle fibre. It is well
known (Kandel 2000) that the natural motion of the limb affected will be harmonic
with little damping, and that the period of this oscillation will depend on the tensions
in the attached muscles.

What would happen, then, if we saw the brain/arm/hand system as a single har-
monic oscillator, each coordinate of which is defined by the equation D2x(t) =
−βx(t), where D2x is the second derivative of variable x and β defines the period
of oscillation along the coordinate direction?We would need two oscillators, one for
the horizontal X direction and the other for the vertical Y direction. We could add
one for Z where the lifts play out, but let’s not, given our two-dimensional viewing
surface. This starts us off with two positive parameters, βX and βY , to estimate.


