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Preface

The iTi has become an established biannual conference on turbulence research
taking place in the years between the ETC—(European Turbulence Conference)
and TSFP—(Turbulence and Shear Flow Phenomena) conferences. With 80 to 100
participants, the iTi conference places value on the discussions and personal con-
tacts in the location of the beautiful town of Bertinoro in Northern Italy close to
Bologna. It continues a tradition that has been started in Bad Zwischenahn/
Germany with the first edition of the conference in 2003. The size of the conference
allows to have no parallel sessions and gives time to special topics to be stressed.
The content-related focus areas of the conference are the interdisciplinary aspects of
turbulence, defining the abbreviation iTi—interdisciplinary Turbulence initiative.
iTi attracts scientist from the engineering, physics, and mathematics communities.

It has been a tradition of the iTi to organize a one-day workshop before the iTi
conference on a distinct theme out of the wide spectrum of turbulence research. The
present workshop was onHigh Reynolds number turbulent flows—A large-scale
infrastructure perspective. The 7th iTi in 2016 conference hosted 90 scientists from 15
different countries. In total, there were 78 contributions, fromwhich 50 were presented
as talks, with six invited talks, covering a wide range of aspects of current turbulence
research. Advances in the basics of understanding and modeling turbulence were
addressed as well as practical implications such as the control of turbulence.

The content of the 7th iTi conference is documented in this volume comprising
35 contributions. All contributions were thoroughly reviewed by external review-
ers, to whom we want to express our thanks for their valuable and important
contribution. Both the workshop and conference were sponsored by the European
High-performance Infrastructures in Turbulence (EuHIT). EuHIT is an international
scientific mobility programme for researchers engaged in turbulence research
(www.euhit.org).
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Based on the successful previous conferences, we will continue with this
initiative for subsequent years with the 8th iTi Conference planned for September
2018.

Stockholm, Sweden Ramis Örlü
Forlì, Italy Alessandro Talamelli
Darmstadt, Germany Martin Oberlack
Oldenburg, Germany Joachim Peinke
2017
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Part I
Theory



Emergence of Non-Gaussianity in Turbulence

Michael Wilczek, Dimitar G. Vlaykov and Cristian C. Lalescu

Abstract Fully developed turbulence is characterized by markedly non-Gaussian
statistics. Here, we discuss some aspects of the relation between non-Gaussianity,
the emergence of coherent structures and phase correlations in turbulence. Direct
numerical simulations of homogeneous isotropic turbulence are used to demonstrate
a fairly rapid emergence of non-Gaussian statistics from Gaussian initial conditions.

1 Introduction

One hallmark of fully developed turbulent flows is the intrinsic non-Gaussianity of
the velocity field. For example, the single-point probability density function (PDF)
of the velocity, which characterizes the large scales, remains close to Gaussian with
slightly sub-Gaussian tails [1, 2]. The PDFs of small-scale quantities such as the
vorticity, however, exhibit broad tails. This translates to the frequent occurrence of
extreme events and is a signature of small-scale coherent structures such as vortex
tubes or strain sheets. In comparison, Gaussian fields, whose multi-point statistics
are jointly Gaussian, appear largely structureless.

Velocity increment PDFs effectively interpolate between the small- and large-
scale statistics. Using them to probe turbulent velocity fields on increasing scales
reveals a breaking of statistical self-similarity: the PDFs change shape as a func-
tion of scale. This well-known phenomenon of intermittency is absent in Gaussian
fields, which are statistically self-similar. This motivates the question of how non-
Gaussianity and intermittency arise from the turbulent dynamics.

In the following we give a qualitative discussion on the relation between non-
Gaussian statistics and the emergence of coherent structures and phase correlations
in turbulence. In particular, we study the evolution of a turbulent flow from Gaussian

M. Wilczek (B) · D.G. Vlaykov · C.C. Lalescu
Max Planck Institute for Dynamics and Self-Organization,
Am Faßberg 17, 37077 Göttingen, Germany
e-mail: michael.wilczek@ds.mpg.de

© Springer International Publishing AG 2017
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4 M. Wilczek et al.

initial conditions by means of direct numerical simulations. Finally, we outline how
these insights may be useful to better understand and model intermittency in turbu-
lence.

2 Direct Numerical Simulations and Gaussian Initial
Conditions

We present direct numerical simulations (DNS) of statistically stationary homo-
geneous isotropic turbulence at a Taylor-based Reynolds number of Rλ ≈ 129. A
standard pseudo-spectral solver is used to simulate the Navier–Stokes equation in
the vorticity formulation in a periodic box with 5123 grid points at a resolution of
kMηK ≈ 1.67, where kM denotes the highest resolved mode and ηK the Kolmogorov
length. The flow is forced on the large scales by a term linear in the band-passed
vorticity (Lundgren forcing) [3, 4]. Time-stepping is performed with a third-order
memory-saving Runge–Kutta method [5].

To generate Gaussian initial conditions, a snapshot from the simulation is taken
from the statistically stationary regime. The Fourier coefficients u(k) are rotated in
the complex plane, u(k) → u(k) eiϕ(k), with statistically independent random phases
ϕ(k), which are uniformly distributed in [0, 2π ] for each k. Reality of the velocity
field is imposed by ensuring ϕ(k) = −ϕ(−k). As will be clarified in Sect. 4, the
resulting velocity field is close to Gaussian. Seventeen distinct realizations of ϕ(k)

are used, such that an ensemble of approximately Gaussian fields is obtained. These
fields are then taken as initial conditions for new DNSs, the results of which are
discussed in the following sections.

3 Emergence of Non-Gaussian Statistics

A qualitative impression of the DNS results with approximately Gaussian initial
conditions can be gained from Fig. 1, which shows visualizations of the velocity
and vorticity fields for three subsequent instances in time. The fact that Gaussian
initial conditions appear structureless is particularly evident in the vorticity visual-
izations.As theflowevolves under theNavier–Stokes dynamics, small-scale coherent
structures start to emerge rapidly. Already after ten Kolmogorov time scales (charac-
terizing the fastest turbulent dynamics) they can be clearly identified. The fine-scale
structure of the velocity field changes on a comparable time scale. However, its
large-scale structure changes only slowly. The difference between the two fields is
understood through a simple eddy turnover argument by considering that the velocity
is a large-scale and the vorticity a small-scale quantity.

Quantitatively, consider the single-point PDFs for the velocity and vorticity fields
(Fig. 2). The velocity PDF is initially close to Gaussian with slightly sub-Gaussian
tails. The deviations can be explained by the fact that the initial velocity field is steeper
than k−1, which leads to corrections to the behavior expected from a central limit
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Fig. 1 Snapshots of DNS velocity fields (top row) and vorticity fields (bottom row) at simulation
times of approximately 0, 10, 100 Kolmogorov time scales. Already after ten Kolmogorov time
scales small-scale vorticity structures have emerged, and they grow stronger over time. Also the
fine-scale structure of the velocity field changes, whereas large-scale features remain qualitatively
similar
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Fig. 2 One-point PDFs for velocity andvorticityfields. ThevelocityPDFs are slightly sub-Gaussian
throughout the evolution. The vorticity PDFs start out as Gaussian, but quickly deviate and settle
into a strongly non-Gaussian form

theorem argument [6]. As the field evolves from these initial conditions, the velocity
PDF varies slightly due to the temporal evolution of fluctuations, but remains very
close to Gaussian as expected from previous theoretical considerations [7]. Along
with the emergence of small-scale coherent structures, the vorticity PDF rapidly
develops heavy tails [8]. This nicely visualizes the common picture of turbulence, in
which small-scale coherent structures break statistical self-similarity and therefore
contribute to non-Gaussianity and intermittency.
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Fig. 3 Time evolution (in units of the Kolmogorov time τK ) of the normalized moments of the
velocity field (dash-dot) and the vorticity field (solid). While for the velocity field the values remain
slightly sub-Gaussian, the vorticity quickly exhibits strong non-Gaussianity. Gaussian values are
shown as dashed lines for reference

The emergence of non-Gaussian statistics from Gaussian initial conditions can
also be confirmed by studying moments of the velocity and vorticity fields as a
function of time, as presented in Fig. 3. As can be seen, the single-point moments of
the velocity field stay close to the Gaussian values. Consistent with the observations
of the vorticity PDF, the single-point vorticity moments rapidly depart from their
Gaussian initial values.

4 Phase Correlations

There is an intimate relation between Gaussianity and phase correlations. For a
Gaussian randomfield different Fouriermodes aremutually statistically independent.
One should note that this is a much stronger statement (as it pertains to all statistical
moments) than the fact that for homogeneous random fields the phases are uncorre-
lated (which concerns only second-order moments). As mentioned above, the oppo-
site also holds: A superposition of Fourier amplitudes with random phases results in
approximately Gaussian statistics under quite general conditions (see e.g. [9]). Thus
phase correlations are a signature of non-Gaussian statistics.

To explain the emergence of phase correlations, it is instructive to consider the
well-known Fourier representation of the Navier–Stokes equations for the amplitude
al(k, t) and the phase ϕl(k, t):

(
∂t + νk2

)
al(k) = 1

2

∑

m, n

Plmn(k)
∑

p+q=k

am(p)an(q) sin
[
ϕm(p) + ϕn(q) − ϕl(k)

]

−al(k) ∂tϕl(k) = 1

2

∑

m, n

Plmn(k)
∑

p+q=k

am(p)an(q) cos
[
ϕm(p) + ϕn(q) − ϕl(k)

]
.

(1)
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Fig. 4 Phases of one component of the velocity field in the kzηK = 0 plane. The left plot shows
the phases for one of the Gaussian initial conditions, while the right plot shows the phases for the
same velocity field after the quasi-stationary regime has been reached

Here, Plmn(k) = km Pln(k) + kn Plm(k) is a suitably definedprojection operator based
on Plm(k) = δlm − kl km

k2 [10]. It is interesting to note that the linear (viscous) termdoes
not impact the phase dynamics directly. In contrast, the nonlinear term couples phase
triads of Fourier coefficients which fulfill k = p + q. This coupled phase dynamics
then gives rise to correlations among phases.

Figure 4 shows the phases of a single velocity component in the kzηK = 0 plane.
The left panel corresponds to the close toGaussian initial conditions.By construction,
all of the phases are statistically independent. The right panel shows the phases
after approximately 76τK . As expected for turbulence, the phases are more or less
random, however there is a remarkable degree of visual coherence, especially at
smaller scales, with approximately equidistant striations visible in the “1 o’clock”
region of the quadrant.

5 Conclusion and Outlook

By investigating numerical simulations of fully developed turbulence from approx-
imately Gaussian initial conditions, we have seen that small-scale statistics (like
the vorticity PDF) rapidly transition to non-Gaussianity whereas the large scales
(exemplified by the single-point velocity PDF) remain close to Gaussian. In Fourier
space, this is accompanied by the emergence of phase correlations, which appear
more pronounced at smaller scales. Combining these two observations, our current
working hypothesis is that intermittency in turbulence can be interpreted in terms
of scale-dependent phase correlations. Due to the complexity of the Navier–Stokes
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equations, it remains a formidable task for future work to derive first-principle results
on such phase correlations.

Meanwhile, it may turn out to be useful to study toymodels. For example, onemay
consider the temporal evolution of a one-dimensional periodic field with the Fourier
representation u(x, t) = ∑

k a(k)ei[ϕ(k,t)+kx]. Assuming that the amplitudes remain
fixed in time, one can impose a phase dynamics reminiscent of the Navier–Stokes
dynamics (1):

ϕ̇(k) =
N∑

p=−N

ω(k, p) cos [ϕ(p) + ϕ(k − p) − ϕ(k)] (2)

whereω(k, p) = − ka(p)a(k−p)
a(k) are coupling coefficients depending on the prescribed

Fourier amplitudes. Note that this phase couplingmodel is even simpler than the one-
dimensional Burgers equation, as the amplitudes here are time-independent.We refer
to [11] for an analysis of the phase dynamics in the one-dimensionalBurgers equation.
First numerical results indeed confirm that the phase coupling model (2) displays
phase correlations which are more pronounced at smaller scales. As a consequence,
small-scale statistics of the resulting field in real space depart more strongly from
Gaussianity than large-scale statistics. Such toy models could also be useful in the
modeling of intermittency, their simplicity invitingmore direct analytical approaches.
It is interesting to note that the phase coupling model establishes a relation to the
field of non-locally coupled oscillators which are known to display a plethora of
dynamical states including phase synchronization, chaos and chimera states. It will
be exciting to see to which extent such concepts also apply to the phase dynamics of
turbulence.
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Percolation: Statistical Description
of a Spatial and Temporal Highly Resolved
Boundary Layer Transition

Tom T. B. Wester, Dominik Traphan, Gerd Gülker and Joachim Peinke

Abstract In this article spatio-temporally resolved particle image velocimetry data
of a flat plate’s boundary layer are shown. With this set up, it is possible to capture
the highly unsteady phase transition from laminar to turbulent state of the boundary
layer close to the surface. In the evaluation of the boundary layer data it is shown
that it is possible to link the laminar-turbulent phase transition to the (2+1)D directed
percolation universality class. This can be shown by the unique exponents of the
directed percolation class which will be extracted from the PIV data.

1 Introduction

The description of transition into turbulence has always been a challenging task.
Thirty years ago Pomeau was the first to describe the dynamics of laminar-turbulent
transition by a system of coupled oscillators [1]. Thereby he paved the way for
the statistical description of laminar-turbulent transition by the directed percolation
theory. This theory allows a simple description of complex phase transitions with
only three critical exponents. These exponents are unique for each universality class
of percolation, so the transition from a laminar to a turbulent flat plate’s boundary
layer may be ascribed to a known class.

Until the last decade it was not possible to provide experimental evidence to
show the spatio-temporal intermittency which occurs in the transition from laminar
to turbulent flow. Due to more accurate measurement techniques nowadays it is
possible to capture the transition with much higher temporal and spatial resolution.

This has led to more detailed investigations with respect to directed percolation
of different flow situations such as channel flow [2, 3], Couette flow [4], shear flows
[5–8] and fully turbulent flows [9]. All of them showpromising results, which support
the presumption of Pomeau.
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